0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\nkern\nk_timer.cpp
|
|
15 |
// Fast Millisecond Timer Implementation
|
|
16 |
// This file is just a template - you'd be mad not to machine code this
|
|
17 |
//
|
|
18 |
//
|
|
19 |
|
|
20 |
#include "nk_priv.h"
|
|
21 |
|
|
22 |
#define i_NTimer_iState i8888.iHState1
|
|
23 |
#define i_NTimer_iCompleteInDfc i8888.iHState2
|
|
24 |
|
|
25 |
const TInt KTimerQDfcPriority=6;
|
|
26 |
|
|
27 |
GLDEF_D NTimerQ TheTimerQ;
|
|
28 |
|
|
29 |
extern "C" void send_irq_ipi(TSubScheduler*);
|
|
30 |
|
|
31 |
#ifndef __MSTIM_MACHINE_CODED__
|
|
32 |
#ifdef _DEBUG
|
|
33 |
#define __DEBUG_CALLBACK(n) {if (iDebugFn) (*iDebugFn)(iDebugPtr,n);}
|
|
34 |
#else
|
|
35 |
#define __DEBUG_CALLBACK(n)
|
|
36 |
#endif
|
|
37 |
|
|
38 |
/** Construct a nanokernel timer tied to a specified thread or group
|
|
39 |
|
|
40 |
|
|
41 |
@param aTied Pointer to the thread/group to which the timer should be tied
|
|
42 |
@param aFunction Pointer to the function to call on timer expiry
|
|
43 |
@param aPtr Parameter to pass to the expiry handler
|
|
44 |
|
|
45 |
@pre Any context
|
|
46 |
|
|
47 |
@publishedPartner
|
|
48 |
@prototype
|
|
49 |
*/
|
|
50 |
EXPORT_C NTimer::NTimer(NSchedulable* aTied, NTimerFn aFunction, TAny* aPtr)
|
|
51 |
{
|
|
52 |
iPtr = aPtr;
|
|
53 |
iFn = aFunction;
|
|
54 |
iHType = EEventHandlerNTimer;
|
|
55 |
// i8888.iHState1 = EIdle; done by NEventHandler constructor
|
|
56 |
if (aTied)
|
|
57 |
{
|
|
58 |
SetTied(aTied);
|
|
59 |
}
|
|
60 |
}
|
|
61 |
|
|
62 |
|
|
63 |
/** Construct a nanokernel timer which mutates into and runs as a DFC on expiry
|
|
64 |
The DFC queue is not specified at object construction time, but must be set
|
|
65 |
using NTimer::SetDfcQ() before the timer is used.
|
|
66 |
|
|
67 |
@param aFunction Pointer to the function to call on timer expiry
|
|
68 |
@param aPtr Parameter to pass to the expiry handler
|
|
69 |
@param aPriority Priority of DFC within the queue (0 to 7, where 7 is highest)
|
|
70 |
|
|
71 |
@pre Any context
|
|
72 |
|
|
73 |
@publishedPartner
|
|
74 |
@prototype
|
|
75 |
*/
|
|
76 |
EXPORT_C NTimer::NTimer(TDfcFn aFunction, TAny* aPtr, TInt aPriority)
|
|
77 |
{
|
|
78 |
iPtr = aPtr;
|
|
79 |
iFn = aFunction;
|
|
80 |
iTied = 0;
|
|
81 |
iHType = (TUint8)aPriority;
|
|
82 |
// i8888.iHState0 = 0; done by NEventHandler constructor
|
|
83 |
// i8888.iHState1 = EIdle; done by NEventHandler constructor
|
|
84 |
// i8888.iHState2 = 0; done by NEventHandler constructor
|
|
85 |
}
|
|
86 |
|
|
87 |
|
|
88 |
/** Construct a nanokernel timer which mutates into and runs as a DFC on expiry
|
|
89 |
|
|
90 |
@param aFunction Pointer to the function to call on timer expiry
|
|
91 |
@param aPtr Parameter to pass to the expiry handler
|
|
92 |
@param aDfcQ Pointer to DFC queue which this timer should use
|
|
93 |
@param aPriority Priority of DFC within the queue (0 to 7, where 7 is highest)
|
|
94 |
|
|
95 |
@pre Any context
|
|
96 |
|
|
97 |
@publishedPartner
|
|
98 |
@prototype
|
|
99 |
*/
|
|
100 |
EXPORT_C NTimer::NTimer(TDfcFn aFunction, TAny* aPtr, TDfcQue* aDfcQ, TInt aPriority)
|
|
101 |
{
|
|
102 |
iPtr = aPtr;
|
|
103 |
iFn = aFunction;
|
|
104 |
iDfcQ = aDfcQ;
|
|
105 |
iHType = (TUint8)aPriority;
|
|
106 |
// i8888.iHState0 = 0; done by NEventHandler constructor
|
|
107 |
// i8888.iHState1 = EIdle; done by NEventHandler constructor
|
|
108 |
// i8888.iHState2 = 0; done by NEventHandler constructor
|
|
109 |
}
|
|
110 |
|
|
111 |
|
|
112 |
/** Set the DFC queue to be used by an NTimer constructed using a TDfcFn
|
|
113 |
|
|
114 |
@param aDfcQ Pointer to DFC queue which this timer should use
|
|
115 |
|
|
116 |
@pre Timer cannot be in use
|
|
117 |
@pre Any context
|
|
118 |
|
|
119 |
@publishedPartner
|
|
120 |
@prototype
|
|
121 |
*/
|
|
122 |
EXPORT_C void NTimer::SetDfcQ(TDfcQue* aDfcQ)
|
|
123 |
{
|
|
124 |
__NK_ASSERT_ALWAYS(aDfcQ!=0);
|
|
125 |
__NK_ASSERT_ALWAYS(iHType < KNumDfcPriorities);
|
|
126 |
__NK_ASSERT_ALWAYS(i8816.iHState16==EIdle);
|
|
127 |
iDfcQ = aDfcQ;
|
|
128 |
}
|
|
129 |
|
|
130 |
|
|
131 |
/** Tie a nanokernel timer to a thread or group
|
|
132 |
|
|
133 |
@param aTied = pointer to thread or group to which IDFC should be tied
|
|
134 |
@return KErrNone if successful
|
|
135 |
@return KErrDied if thread has exited or group has been destroyed.
|
|
136 |
|
|
137 |
@pre Call in thread context, interrupts enabled
|
|
138 |
@pre Timer must not be queued or running
|
|
139 |
@pre Timer must not already be tied
|
|
140 |
@pre Must not be a mutating timer (constructed with TDfcFn)
|
|
141 |
|
|
142 |
@publishedPartner
|
|
143 |
@prototype
|
|
144 |
*/
|
|
145 |
EXPORT_C TInt NTimer::SetTied(NSchedulable* aTied)
|
|
146 |
{
|
|
147 |
__NK_ASSERT_ALWAYS(!IsMutating());
|
|
148 |
__NK_ASSERT_ALWAYS(i8888.iHState1 == EIdle);
|
|
149 |
__NK_ASSERT_ALWAYS(aTied && !iTied);
|
|
150 |
NKern::Lock();
|
|
151 |
TInt r = aTied->AddTiedEvent(this);
|
|
152 |
__NK_ASSERT_ALWAYS(r==KErrNone || r==KErrDied);
|
|
153 |
NKern::Unlock();
|
|
154 |
return r;
|
|
155 |
}
|
|
156 |
|
|
157 |
|
|
158 |
/** Destroy a nanokernel timer
|
|
159 |
|
|
160 |
@pre Call in thread context, interrupts enabled, preemption enabled
|
|
161 |
@pre Calling thread in critical section
|
|
162 |
@pre No fast mutex held
|
|
163 |
|
|
164 |
@publishedPartner
|
|
165 |
@prototype
|
|
166 |
*/
|
|
167 |
EXPORT_C NTimer::~NTimer()
|
|
168 |
{
|
|
169 |
if (!IsMutating() && iTied)
|
|
170 |
{
|
|
171 |
NKern::Lock();
|
|
172 |
// remove from tied thread/group
|
|
173 |
NEventHandler::TiedLock.LockOnly();
|
|
174 |
NSchedulable* tied = iTied;
|
|
175 |
DoCancel(ECancelDestroy);
|
|
176 |
if (tied) // might have been dequeued by thread/group termination
|
|
177 |
{
|
|
178 |
tied->AcqSLock();
|
|
179 |
if (iTiedLink.iNext)
|
|
180 |
{
|
|
181 |
iTiedLink.Deque();
|
|
182 |
iTiedLink.iNext = 0;
|
|
183 |
}
|
|
184 |
iTied = 0;
|
|
185 |
tied->RelSLock();
|
|
186 |
}
|
|
187 |
NEventHandler::TiedLock.UnlockOnly();
|
|
188 |
NKern::Unlock();
|
|
189 |
}
|
|
190 |
else if (IsMutating() && iDfcQ)
|
|
191 |
DoCancelMutating(ECancelDestroy);
|
|
192 |
else
|
|
193 |
DoCancel(ECancelDestroy);
|
|
194 |
}
|
|
195 |
|
|
196 |
|
|
197 |
/** Starts a nanokernel timer in one-shot mode with ISR callback.
|
|
198 |
|
|
199 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
200 |
actual wait time will be at least that much and may be up to one tick more.
|
|
201 |
The expiry handler will be called in ISR context.
|
|
202 |
|
|
203 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
204 |
|
|
205 |
@param aTime Timeout in nanokernel ticks
|
|
206 |
|
|
207 |
@return KErrNone if no error; KErrInUse if timer is already active.
|
|
208 |
|
|
209 |
@pre Any context
|
|
210 |
|
|
211 |
@see NKern::TimerTicks()
|
|
212 |
*/
|
|
213 |
EXPORT_C TInt NTimer::OneShot(TInt aTime)
|
|
214 |
{
|
|
215 |
return OneShot(aTime,FALSE);
|
|
216 |
}
|
|
217 |
|
|
218 |
|
|
219 |
/** Starts a nanokernel timer in one-shot mode with ISR or DFC callback.
|
|
220 |
|
|
221 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
222 |
actual wait time will be at least that much and may be up to one tick more.
|
|
223 |
For normal timers (constructed with NTimerFn) the expiry handler will be
|
|
224 |
called in either ISR context or in the context of the nanokernel timer
|
|
225 |
thread (DfcThread1). For mutating timers (constructed with TDfcFn) the
|
|
226 |
expiry handler is called in the context of the thread running the relevant
|
|
227 |
TDfcQue.
|
|
228 |
|
|
229 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
230 |
|
|
231 |
@param aTime Timeout in nanokernel ticks
|
|
232 |
@param aDfc TRUE if DFC callback required, FALSE if ISR callback required.
|
|
233 |
Note that this parameter is ignored for mutating timers.
|
|
234 |
|
|
235 |
@return KErrNone if no error
|
|
236 |
@return KErrInUse if timer is already active.
|
|
237 |
@return KErrDied if tied thread/group has exited
|
|
238 |
|
|
239 |
@pre Any context
|
|
240 |
|
|
241 |
@see NKern::TimerTicks()
|
|
242 |
*/
|
|
243 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TBool aDfc)
|
|
244 |
{
|
|
245 |
__NK_ASSERT_DEBUG(aTime>=0);
|
|
246 |
/** iFn could be set to NULL after NTimer::OneShot(TInt, TDfc&) call.
|
|
247 |
Call-back mechanism cannot be changed in the life time of a timer. */
|
|
248 |
__NK_ASSERT_DEBUG(iFn!=NULL);
|
|
249 |
|
|
250 |
TInt irq = TheTimerQ.iTimerSpinLock.LockIrqSave();
|
|
251 |
if (!IsValid())
|
|
252 |
{
|
|
253 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
254 |
return KErrDied;
|
|
255 |
}
|
|
256 |
TUint16 state = i8816.iHState16;
|
|
257 |
if (IsNormal())
|
|
258 |
state &= 0xFF;
|
|
259 |
else
|
|
260 |
aDfc = FALSE; // mutating timers start as ISR completion
|
|
261 |
if (state!=EIdle)
|
|
262 |
{
|
|
263 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
264 |
return KErrInUse;
|
|
265 |
}
|
|
266 |
mb(); // ensure that if we observe an idle state all accesses to the NTimer have also been observed
|
|
267 |
i_NTimer_iCompleteInDfc=TUint8(aDfc?1:0);
|
|
268 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime;
|
|
269 |
TheTimerQ.Add(this);
|
|
270 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
271 |
return KErrNone;
|
|
272 |
}
|
|
273 |
|
|
274 |
|
|
275 |
/** Starts a nanokernel timer in one-shot mode with callback in dfc thread that provided DFC belongs to.
|
|
276 |
|
|
277 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
278 |
actual wait time will be at least that much and may be up to one tick more.
|
|
279 |
On expiry aDfc will be queued in ISR context.
|
|
280 |
|
|
281 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
282 |
|
|
283 |
@param aTime Timeout in nanokernel ticks
|
|
284 |
@param aDfc - Dfc to be queued when the timer expires.
|
|
285 |
|
|
286 |
@return KErrNone if no error
|
|
287 |
@return KErrInUse if timer is already active.
|
|
288 |
@return KErrDied if tied thread/group has exited
|
|
289 |
|
|
290 |
@pre Any context
|
|
291 |
@pre Must not be a mutating timer (constructed with TDfcFn)
|
|
292 |
|
|
293 |
@see NKern::TimerTicks()
|
|
294 |
*/
|
|
295 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TDfc& aDfc)
|
|
296 |
{
|
|
297 |
__NK_ASSERT_DEBUG(!IsMutating());
|
|
298 |
__NK_ASSERT_DEBUG(aTime>=0);
|
|
299 |
TInt irq = TheTimerQ.iTimerSpinLock.LockIrqSave();
|
|
300 |
if (iHType != EEventHandlerNTimer)
|
|
301 |
{
|
|
302 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
303 |
return KErrDied;
|
|
304 |
}
|
|
305 |
if (i_NTimer_iState!=EIdle)
|
|
306 |
{
|
|
307 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
308 |
return KErrInUse;
|
|
309 |
}
|
|
310 |
mb(); // ensure that if we observe an idle state all accesses to the NTimer have also been observed
|
|
311 |
i_NTimer_iCompleteInDfc = 0;
|
|
312 |
iFn = NULL;
|
|
313 |
iPtr = (TAny*) &aDfc;
|
|
314 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime;
|
|
315 |
TheTimerQ.Add(this);
|
|
316 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
317 |
return KErrNone;
|
|
318 |
}
|
|
319 |
|
|
320 |
|
|
321 |
/** Starts a nanokernel timer in zero-drift periodic mode with ISR or DFC callback.
|
|
322 |
|
|
323 |
Queues the timer to expire in the specified number of nanokernel ticks,
|
|
324 |
measured from the time at which it last expired. This allows exact periodic
|
|
325 |
timers to be implemented with no drift caused by delays in requeueing the
|
|
326 |
timer.
|
|
327 |
|
|
328 |
The expiry handler will be called in the same context as the previous timer
|
|
329 |
expiry. Generally the way this is used is that NTimer::OneShot() is used to start
|
|
330 |
the first time interval and this specifies whether the callback is in ISR context
|
|
331 |
or in the context of the nanokernel timer thread (DfcThread1) or other Dfc thread.
|
|
332 |
The expiry handler then uses NTimer::Again() to requeue the timer.
|
|
333 |
|
|
334 |
@param aTime Timeout in nanokernel ticks
|
|
335 |
|
|
336 |
@return KErrNone if no error
|
|
337 |
@return KErrInUse if timer is already active;
|
|
338 |
@return KErrArgument if the requested expiry time is in the past.
|
|
339 |
@return KErrDied if tied thread/group has exited
|
|
340 |
|
|
341 |
@pre Any context
|
|
342 |
*/
|
|
343 |
EXPORT_C TInt NTimer::Again(TInt aTime)
|
|
344 |
//
|
|
345 |
// Wait aTime from last trigger time - used for periodic timers
|
|
346 |
//
|
|
347 |
{
|
|
348 |
__NK_ASSERT_DEBUG(aTime>0);
|
|
349 |
TInt irq = TheTimerQ.iTimerSpinLock.LockIrqSave();
|
|
350 |
if (!IsValid())
|
|
351 |
{
|
|
352 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
353 |
return KErrDied;
|
|
354 |
}
|
|
355 |
TUint16 state = i8816.iHState16;
|
|
356 |
if (IsNormal())
|
|
357 |
state &= 0xFF;
|
|
358 |
if (state!=EIdle)
|
|
359 |
{
|
|
360 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
361 |
return KErrInUse;
|
|
362 |
}
|
|
363 |
mb(); // ensure that if we observe an idle state all accesses to the NTimer have also been observed
|
|
364 |
TUint32 nextTick=TheTimerQ.iMsCount;
|
|
365 |
TUint32 trigger=iTriggerTime+(TUint32)aTime;
|
|
366 |
TUint32 d=trigger-nextTick;
|
|
367 |
if (d>=0x80000000)
|
|
368 |
{
|
|
369 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
370 |
return KErrArgument; // requested time is in the past
|
|
371 |
}
|
|
372 |
iTriggerTime=trigger;
|
|
373 |
TheTimerQ.Add(this);
|
|
374 |
TheTimerQ.iTimerSpinLock.UnlockIrqRestore(irq);
|
|
375 |
return KErrNone;
|
|
376 |
}
|
|
377 |
|
|
378 |
|
|
379 |
/** Cancels a nanokernel timer.
|
|
380 |
|
|
381 |
Removes this timer from the nanokernel timer queue. Does nothing if the
|
|
382 |
timer is inactive or has already expired.
|
|
383 |
Note that if the timer was queued and DFC callback requested it is possible
|
|
384 |
for the expiry handler to run even after Cancel() has been called. This will
|
|
385 |
occur in the case where DfcThread1 is preempted just before calling the
|
|
386 |
expiry handler for this timer and the preempting thread/ISR/IDFC calls
|
|
387 |
Cancel() on the timer.
|
|
388 |
|
|
389 |
@pre Any context for a non-mutating NTimer (constructed with NTimerFn)
|
|
390 |
@pre For mutating NTimer (constructed with TDfcFn), IDFC or thread context only.
|
|
391 |
@return TRUE if timer was actually cancelled
|
|
392 |
@return FALSE if timer was not cancelled - this could be because it was not
|
|
393 |
active or because its expiry handler was already running on
|
|
394 |
another CPU or in the timer DFC.
|
|
395 |
*/
|
|
396 |
EXPORT_C TBool NTimer::Cancel()
|
|
397 |
{
|
|
398 |
if (IsMutating() && iDfcQ)
|
|
399 |
return DoCancelMutating(0);
|
|
400 |
return DoCancel(0)!=EIdle;
|
|
401 |
}
|
|
402 |
|
|
403 |
void NTimer::DoCancel0(TUint aState)
|
|
404 |
{
|
|
405 |
if (aState>ETransferring && aState<=EFinal) // idle or transferring timers are not on a queue
|
|
406 |
Deque();
|
|
407 |
switch (aState)
|
|
408 |
{
|
|
409 |
case ETransferring: // signal DFC to abort this iteration
|
|
410 |
TheTimerQ.iTransferringCancelled=TRUE;
|
|
411 |
break;
|
|
412 |
case ECritical: // signal DFC to abort this iteration
|
|
413 |
TheTimerQ.iCriticalCancelled=TRUE;
|
|
414 |
break;
|
|
415 |
case EFinal:
|
|
416 |
{
|
|
417 |
// Need to clear bit in iPresent if both final queues now empty
|
|
418 |
// NOTE: Timer might actually be on the completed queue rather than the final queue
|
|
419 |
// but the check is harmless in any case.
|
|
420 |
TInt i=iTriggerTime & NTimerQ::ETimerQMask;
|
|
421 |
NTimerQ::STimerQ& q=TheTimerQ.iTickQ[i];
|
|
422 |
if (q.iIntQ.IsEmpty() && q.iDfcQ.IsEmpty())
|
|
423 |
TheTimerQ.iPresent &= ~(1<<i);
|
|
424 |
break;
|
|
425 |
}
|
|
426 |
case EIdle: // nothing to do
|
|
427 |
case EHolding: // just deque
|
|
428 |
case EOrdered: // just deque
|
|
429 |
break;
|
|
430 |
default:
|
|
431 |
__NK_ASSERT_ALWAYS(0);
|
|
432 |
}
|
|
433 |
}
|
|
434 |
|
|
435 |
TUint NTimer::DoCancel(TUint aFlags)
|
|
436 |
{
|
|
437 |
NSchedulable* tied = 0;
|
|
438 |
TInt irq = NKern::DisableAllInterrupts();
|
|
439 |
TheTimerQ.iTimerSpinLock.LockOnly();
|
|
440 |
TUint state = i_NTimer_iState;
|
|
441 |
mb();
|
|
442 |
if (IsNormal() && state>=EEventQ)
|
|
443 |
{
|
|
444 |
// It's on a CPU's event handler queue
|
|
445 |
TInt cpu = state - EEventQ;
|
|
446 |
if (cpu < TheScheduler.iNumCpus)
|
|
447 |
{
|
|
448 |
TSubScheduler* ss = TheSubSchedulers + cpu;
|
|
449 |
ss->iEventHandlerLock.LockOnly();
|
|
450 |
state = i_NTimer_iState;
|
|
451 |
if (state != EIdle)
|
|
452 |
{
|
|
453 |
Deque(); // we got to it first
|
|
454 |
tied = iTied;
|
|
455 |
i_NTimer_iState = EIdle;
|
|
456 |
}
|
|
457 |
ss->iEventHandlerLock.UnlockOnly();
|
|
458 |
goto end;
|
|
459 |
}
|
|
460 |
}
|
|
461 |
DoCancel0(state);
|
|
462 |
if (IsMutating())
|
|
463 |
i8816.iHState16 = 0;
|
|
464 |
else
|
|
465 |
i_NTimer_iState=EIdle;
|
|
466 |
end:
|
|
467 |
if (aFlags & ECancelDestroy)
|
|
468 |
iHType = EEventHandlerDummy;
|
|
469 |
TheTimerQ.iTimerSpinLock.UnlockOnly();
|
|
470 |
if (tied)
|
|
471 |
tied->EndTiedEvent(); // FIXME - Could be called in thread context
|
|
472 |
NKern::RestoreInterrupts(irq);
|
|
473 |
return state;
|
|
474 |
}
|
|
475 |
|
|
476 |
TBool NTimer::DoCancelMutating(TUint aFlags)
|
|
477 |
{
|
|
478 |
CHECK_PRECONDITIONS(MASK_NOT_ISR,"NTimer::Cancel (mutating NTimer)");
|
|
479 |
TSubScheduler& ss0 = SubScheduler();
|
|
480 |
TBool wait = FALSE;
|
|
481 |
TInt cpu = -1;
|
|
482 |
TBool result = TRUE;
|
|
483 |
TDfc* d = (TDfc*)this;
|
|
484 |
NKern::Lock();
|
|
485 |
TDfcQue* q = iDfcQ;
|
|
486 |
NThreadBase* t = q->iThread;
|
|
487 |
t->AcqSLock();
|
|
488 |
TheTimerQ.iTimerSpinLock.LockIrq();
|
|
489 |
|
|
490 |
// 0000->0000, XX00->ZZ00, xxYY->zzYY
|
|
491 |
TUint state = d->CancelInitialStateChange();
|
|
492 |
if (state & 0xFF00)
|
|
493 |
{
|
|
494 |
// someone else cancelling at the same time - just wait for them to finish
|
|
495 |
// they can only be waiting for the cancel IPI
|
|
496 |
result = FALSE;
|
|
497 |
wait = TRUE;
|
|
498 |
goto end;
|
|
499 |
}
|
|
500 |
if (state == 0) // timer was not active
|
|
501 |
{
|
|
502 |
result = FALSE;
|
|
503 |
goto end;
|
|
504 |
}
|
|
505 |
if (state>=ETransferring && state<=EFinal)
|
|
506 |
{
|
|
507 |
DoCancel0(state);
|
|
508 |
// cancel is complete
|
|
509 |
goto reset;
|
|
510 |
}
|
|
511 |
if (state==1)
|
|
512 |
{
|
|
513 |
// on DFC final queue
|
|
514 |
q->Remove((TPriListLink*)this);
|
|
515 |
goto reset;
|
|
516 |
}
|
|
517 |
// must be on IDFC queue - need to send cancel IPI
|
|
518 |
__NK_ASSERT_ALWAYS((state>>5)==4);
|
|
519 |
cpu = state & 0x1f;
|
|
520 |
if (TUint(cpu) == ss0.iCpuNum)
|
|
521 |
{
|
|
522 |
// it's on this CPU's IDFC queue so just dequeue it and finish
|
|
523 |
Deque();
|
|
524 |
cpu = -1;
|
|
525 |
reset:
|
|
526 |
d->ResetState(); // release semantics
|
|
527 |
}
|
|
528 |
end:
|
|
529 |
if (aFlags & ECancelDestroy)
|
|
530 |
iHType = EEventHandlerDummy;
|
|
531 |
TheTimerQ.iTimerSpinLock.UnlockIrq();
|
|
532 |
t->RelSLock();
|
|
533 |
if (cpu>=0)
|
|
534 |
{
|
|
535 |
TCancelIPI ipi;
|
|
536 |
ipi.Send(d, cpu);
|
|
537 |
ipi.WaitCompletion();
|
|
538 |
wait = TRUE;
|
|
539 |
}
|
|
540 |
if (wait)
|
|
541 |
{
|
|
542 |
TUint n = 0x01000000;
|
|
543 |
while ((i8816.iHState16>>8) & ss0.iCpuMask)
|
|
544 |
{
|
|
545 |
__chill();
|
|
546 |
if (!--n)
|
|
547 |
__crash();
|
|
548 |
}
|
|
549 |
}
|
|
550 |
NKern::Unlock();
|
|
551 |
return result;
|
|
552 |
}
|
|
553 |
#endif
|
|
554 |
|
|
555 |
|
|
556 |
/** Obtains the address of the nanokernel timer queue object.
|
|
557 |
|
|
558 |
Not intended for general use. Intended only for base ports in order to get
|
|
559 |
the address used to call NTimerQ::Tick() with.
|
|
560 |
|
|
561 |
@return The address of the nanokernel timer queue object
|
|
562 |
@pre Any context
|
|
563 |
*/
|
|
564 |
EXPORT_C TAny* NTimerQ::TimerAddress()
|
|
565 |
{
|
|
566 |
return &TheTimerQ;
|
|
567 |
}
|
|
568 |
|
|
569 |
NTimerQ::NTimerQ()
|
|
570 |
: iDfc(NTimerQ::DfcFn,this,NULL,KTimerQDfcPriority),
|
|
571 |
iDfcCompleteCount(1),
|
|
572 |
iTimerSpinLock(TSpinLock::EOrderNTimerQ)
|
|
573 |
{
|
|
574 |
// NOTE: All other members are initialised to zero since the single instance
|
|
575 |
// of NTimerQ resides in .bss
|
|
576 |
}
|
|
577 |
|
|
578 |
void NTimerQ::Init1(TInt aTickPeriod)
|
|
579 |
{
|
|
580 |
TheTimerQ.iTickPeriod=aTickPeriod;
|
|
581 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init1 - period %d us",aTickPeriod));
|
|
582 |
__KTRACE_OPT(KMEMTRACE, DEBUGPRINT("MT:P %d",aTickPeriod));
|
|
583 |
}
|
|
584 |
|
|
585 |
void NTimerQ::Init3(TDfcQue* aDfcQ)
|
|
586 |
{
|
|
587 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init3 DFCQ at %08x",aDfcQ));
|
|
588 |
TheTimerQ.iDfc.SetDfcQ(aDfcQ);
|
|
589 |
}
|
|
590 |
|
|
591 |
#ifndef __MSTIM_MACHINE_CODED__
|
|
592 |
void NTimerQ::Add(NTimer* aTimer)
|
|
593 |
//
|
|
594 |
// Internal function to add a timer to the queue.
|
|
595 |
// Enter and return with timer queue spin lock held.
|
|
596 |
//
|
|
597 |
{
|
|
598 |
TInt t=TInt(aTimer->iTriggerTime-iMsCount);
|
|
599 |
if (t<ENumTimerQueues)
|
|
600 |
AddFinal(aTimer);
|
|
601 |
else
|
|
602 |
{
|
|
603 |
// >=32ms to expiry, so put on holding queue
|
|
604 |
aTimer->i_NTimer_iState=NTimer::EHolding;
|
|
605 |
iHoldingQ.Add(aTimer);
|
|
606 |
}
|
|
607 |
}
|
|
608 |
|
|
609 |
void NTimerQ::AddFinal(NTimer* aTimer)
|
|
610 |
//
|
|
611 |
// Internal function to add a timer to the corresponding final queue.
|
|
612 |
// Enter and return with timer queue spin lock held.
|
|
613 |
//
|
|
614 |
{
|
|
615 |
TInt i=aTimer->iTriggerTime & ETimerQMask;
|
|
616 |
SDblQue* pQ;
|
|
617 |
if (aTimer->i_NTimer_iCompleteInDfc)
|
|
618 |
pQ=&iTickQ[i].iDfcQ;
|
|
619 |
else
|
|
620 |
pQ=&iTickQ[i].iIntQ;
|
|
621 |
iPresent |= (1<<i);
|
|
622 |
aTimer->i_NTimer_iState=NTimer::EFinal;
|
|
623 |
pQ->Add(aTimer);
|
|
624 |
}
|
|
625 |
|
|
626 |
void NTimerQ::DfcFn(TAny* aPtr)
|
|
627 |
{
|
|
628 |
((NTimerQ*)aPtr)->Dfc();
|
|
629 |
}
|
|
630 |
|
|
631 |
void NTimerQ::Dfc()
|
|
632 |
//
|
|
633 |
// Do deferred timer queue processing and/or DFC completions
|
|
634 |
//
|
|
635 |
{
|
|
636 |
// First transfer entries on the Ordered queue to the Final queues
|
|
637 |
FOREVER
|
|
638 |
{
|
|
639 |
iTimerSpinLock.LockIrq();
|
|
640 |
if (iOrderedQ.IsEmpty())
|
|
641 |
break;
|
|
642 |
NTimer* pC=(NTimer*)iOrderedQ.First();
|
|
643 |
TInt remain=pC->iTriggerTime-iMsCount;
|
|
644 |
if (remain>=ENumTimerQueues)
|
|
645 |
break;
|
|
646 |
|
|
647 |
// If remaining time <32 ticks, add it to final queue;
|
|
648 |
// also if remain < 0 we've 'missed it' so add to final queue.
|
|
649 |
pC->Deque();
|
|
650 |
AddFinal(pC);
|
|
651 |
iTimerSpinLock.UnlockIrq();
|
|
652 |
__DEBUG_CALLBACK(0);
|
|
653 |
}
|
|
654 |
iTimerSpinLock.UnlockIrq();
|
|
655 |
__DEBUG_CALLBACK(1);
|
|
656 |
|
|
657 |
// Next transfer entries on the Holding queue to the Ordered queue or final queue
|
|
658 |
FOREVER
|
|
659 |
{
|
|
660 |
iTimerSpinLock.LockIrq();
|
|
661 |
if (iHoldingQ.IsEmpty())
|
|
662 |
break;
|
|
663 |
NTimer* pC=(NTimer*)iHoldingQ.First();
|
|
664 |
pC->Deque();
|
|
665 |
pC->i_NTimer_iState=NTimer::ETransferring;
|
|
666 |
iTransferringCancelled=FALSE;
|
|
667 |
TUint32 trigger=pC->iTriggerTime;
|
|
668 |
if (TInt(trigger-iMsCount)<ENumTimerQueues)
|
|
669 |
{
|
|
670 |
// <32ms remaining so put it on final queue
|
|
671 |
AddFinal(pC);
|
|
672 |
}
|
|
673 |
else
|
|
674 |
{
|
|
675 |
FOREVER
|
|
676 |
{
|
|
677 |
iTimerSpinLock.UnlockIrq();
|
|
678 |
__DEBUG_CALLBACK(2);
|
|
679 |
|
|
680 |
// we now need to walk ordered queue to find correct position for pC
|
|
681 |
SDblQueLink* anchor=&iOrderedQ.iA;
|
|
682 |
iCriticalCancelled=FALSE;
|
|
683 |
iTimerSpinLock.LockIrq();
|
|
684 |
NTimer* pN=(NTimer*)iOrderedQ.First();
|
|
685 |
while (pN!=anchor && !iTransferringCancelled)
|
|
686 |
{
|
|
687 |
if ((pN->iTriggerTime-trigger)<0x80000000u)
|
|
688 |
break; // insert before pN
|
|
689 |
pN->i_NTimer_iState=NTimer::ECritical;
|
|
690 |
iTimerSpinLock.UnlockIrq();
|
|
691 |
__DEBUG_CALLBACK(3);
|
|
692 |
iTimerSpinLock.LockIrq();
|
|
693 |
if (iCriticalCancelled)
|
|
694 |
break;
|
|
695 |
pN->i_NTimer_iState=NTimer::EOrdered;
|
|
696 |
pN=(NTimer*)pN->iNext;
|
|
697 |
}
|
|
698 |
|
|
699 |
if (iTransferringCancelled)
|
|
700 |
break; // this one has been cancelled, go on to next one
|
|
701 |
if (!iCriticalCancelled)
|
|
702 |
{
|
|
703 |
pC->InsertBefore(pN);
|
|
704 |
pC->i_NTimer_iState=NTimer::EOrdered;
|
|
705 |
break; // done this one
|
|
706 |
}
|
|
707 |
}
|
|
708 |
}
|
|
709 |
iTimerSpinLock.UnlockIrq();
|
|
710 |
__DEBUG_CALLBACK(4);
|
|
711 |
}
|
|
712 |
iTimerSpinLock.UnlockIrq();
|
|
713 |
__DEBUG_CALLBACK(5);
|
|
714 |
|
|
715 |
// Finally do call backs for timers which requested DFC callback
|
|
716 |
FOREVER
|
|
717 |
{
|
|
718 |
iTimerSpinLock.LockIrq();
|
|
719 |
if (iCompletedQ.IsEmpty())
|
|
720 |
break;
|
|
721 |
NTimer* pC=(NTimer*)iCompletedQ.First();
|
|
722 |
pC->Deque();
|
|
723 |
pC->i_NTimer_iState=NTimer::EIdle;
|
|
724 |
TAny* p=pC->iPtr;
|
|
725 |
NTimerFn f=pC->iFn;
|
|
726 |
iTimerSpinLock.UnlockIrq();
|
|
727 |
__DEBUG_CALLBACK(7);
|
|
728 |
(*f)(p);
|
|
729 |
}
|
|
730 |
iTimerSpinLock.UnlockIrq();
|
|
731 |
__e32_atomic_add_rel32(&iDfcCompleteCount, 2);
|
|
732 |
}
|
|
733 |
|
|
734 |
|
|
735 |
/** Tick over the nanokernel timer queue.
|
|
736 |
This function should be called by the base port in the system tick timer ISR.
|
|
737 |
It should not be called at any other time.
|
|
738 |
The value of 'this' to pass is the value returned by NTimerQ::TimerAddress().
|
|
739 |
|
|
740 |
@see NTimerQ::TimerAddress()
|
|
741 |
*/
|
|
742 |
EXPORT_C void NTimerQ::Tick()
|
|
743 |
{
|
|
744 |
TInt irq = iTimerSpinLock.LockIrqSave();
|
|
745 |
TInt i=iMsCount & ETimerQMask;
|
|
746 |
iMsCount++;
|
|
747 |
STimerQ* pQ=iTickQ+i;
|
|
748 |
iPresent &= ~(1<<i);
|
|
749 |
TBool doDfc=FALSE;
|
|
750 |
if (!pQ->iDfcQ.IsEmpty())
|
|
751 |
{
|
|
752 |
// transfer DFC completions to completed queue and queue DFC
|
|
753 |
iCompletedQ.MoveFrom(&pQ->iDfcQ);
|
|
754 |
doDfc=TRUE;
|
|
755 |
}
|
|
756 |
if ((i&(ETimerQMask>>1))==0)
|
|
757 |
{
|
|
758 |
// Every 16 ticks we check if a DFC is required.
|
|
759 |
// This allows a DFC latency of up to 16 ticks before timers are missed.
|
|
760 |
if (!iHoldingQ.IsEmpty())
|
|
761 |
{
|
|
762 |
doDfc=TRUE; // if holding queue nonempty, queue DFC to sort
|
|
763 |
}
|
|
764 |
else if (!iOrderedQ.IsEmpty())
|
|
765 |
{
|
|
766 |
// if first ordered queue entry expires in <32ms, queue the DFC to transfer
|
|
767 |
NTimer* pC=(NTimer*)iOrderedQ.First();
|
|
768 |
TUint x = pC->iTriggerTime - iMsCount;
|
|
769 |
if (x < (TUint)ENumTimerQueues)
|
|
770 |
{
|
|
771 |
doDfc=TRUE;
|
|
772 |
}
|
|
773 |
}
|
|
774 |
}
|
|
775 |
if (!pQ->iIntQ.IsEmpty())
|
|
776 |
{
|
|
777 |
// transfer ISR completions to a temporary queue
|
|
778 |
// careful here - other CPUs could dequeue timers!
|
|
779 |
SDblQue q(&pQ->iIntQ,0);
|
|
780 |
for (; !q.IsEmpty(); iTimerSpinLock.LockIrqSave())
|
|
781 |
{
|
|
782 |
NTimer* pC=(NTimer*)q.First();
|
|
783 |
pC->Deque();
|
|
784 |
if (pC->IsMutating())
|
|
785 |
{
|
|
786 |
pC->AddAsDFC(); //mutate NTimer into TDfc and Add() it
|
|
787 |
iTimerSpinLock.UnlockIrqRestore(irq);
|
|
788 |
continue;
|
|
789 |
}
|
|
790 |
if (!pC->iFn)
|
|
791 |
{
|
|
792 |
pC->i_NTimer_iState=NTimer::EIdle;
|
|
793 |
iTimerSpinLock.UnlockIrqRestore(irq);
|
|
794 |
((TDfc*)(pC->iPtr))->Add();
|
|
795 |
continue;
|
|
796 |
}
|
|
797 |
NSchedulable* tied = pC->iTied;
|
|
798 |
if (tied)
|
|
799 |
{
|
|
800 |
TInt cpu = tied->BeginTiedEvent();
|
|
801 |
if (cpu != NKern::CurrentCpu())
|
|
802 |
{
|
|
803 |
pC->i_NTimer_iState = TUint8(NTimer::EEventQ + cpu);
|
|
804 |
TSubScheduler* ss = TheSubSchedulers + cpu;
|
|
805 |
TBool kick = ss->QueueEvent(pC);
|
|
806 |
iTimerSpinLock.UnlockIrqRestore(irq);
|
|
807 |
if (kick)
|
|
808 |
send_irq_ipi(ss);
|
|
809 |
continue;
|
|
810 |
}
|
|
811 |
}
|
|
812 |
pC->i_NTimer_iState=NTimer::EIdle;
|
|
813 |
TAny* p = pC->iPtr;
|
|
814 |
NTimerFn f = pC->iFn;
|
|
815 |
iTimerSpinLock.UnlockIrqRestore(irq);
|
|
816 |
(*f)(p);
|
|
817 |
if (tied)
|
|
818 |
tied->EndTiedEvent();
|
|
819 |
}
|
|
820 |
}
|
|
821 |
iTimerSpinLock.UnlockIrqRestore(irq);
|
|
822 |
if (doDfc)
|
|
823 |
iDfc.Add();
|
|
824 |
}
|
|
825 |
|
|
826 |
|
|
827 |
/** Mutate an NTimer into a DFC and Add() it
|
|
828 |
|
|
829 |
If NTimer state is EFinal, change to DFC state 008n and add to endogenous IDFC
|
|
830 |
queue for this CPU.
|
|
831 |
|
|
832 |
Enter and return with IRQs disabled and timer spin lock held
|
|
833 |
No need to worry about Cancel()s since timer spin lock is held
|
|
834 |
Don't touch iHState0
|
|
835 |
|
|
836 |
@internalComponent
|
|
837 |
*/
|
|
838 |
void NTimer::AddAsDFC()
|
|
839 |
{
|
|
840 |
TSubScheduler& ss = SubScheduler();
|
|
841 |
i8816.iHState16 = (TUint16)(0x80|ss.iCpuNum);
|
|
842 |
ss.iDfcs.Add(this);
|
|
843 |
ss.iDfcPendingFlag = 1;
|
|
844 |
}
|
|
845 |
|
|
846 |
|
|
847 |
/** Check if a nanokernel timer is pending or not
|
|
848 |
|
|
849 |
@return TRUE if the timer is pending (OneShot() etc. would return KErrInUse)
|
|
850 |
@return FALSE if the timer is idle (OneShot() etc. would succeed)
|
|
851 |
@pre Any context
|
|
852 |
|
|
853 |
@publishedPartner
|
|
854 |
@prototype
|
|
855 |
*/
|
|
856 |
EXPORT_C TBool NTimer::IsPending()
|
|
857 |
{
|
|
858 |
TUint16 state = i8816.iHState16;
|
|
859 |
return state != EIdle;
|
|
860 |
}
|
|
861 |
|
|
862 |
|
|
863 |
/** Return the number of ticks before the next nanokernel timer expiry.
|
|
864 |
May on occasion return a pessimistic estimate (i.e. too low).
|
|
865 |
Used by base port to disable the system tick interrupt when the system
|
|
866 |
is idle.
|
|
867 |
|
|
868 |
@return The number of ticks before the next nanokernel timer expiry.
|
|
869 |
|
|
870 |
@pre Interrupts must be disabled.
|
|
871 |
|
|
872 |
@post Interrupts are disabled.
|
|
873 |
*/
|
|
874 |
EXPORT_C TInt NTimerQ::IdleTime()
|
|
875 |
{
|
|
876 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::IdleTime");
|
|
877 |
NTimerQ& m=TheTimerQ;
|
|
878 |
TUint32 next=m.iMsCount; // number of next tick
|
|
879 |
TUint32 p=m.iPresent;
|
|
880 |
TInt r=KMaxTInt;
|
|
881 |
if (p)
|
|
882 |
{
|
|
883 |
// Final queues nonempty
|
|
884 |
TInt nx=next&0x1f; // number of next tick modulo 32
|
|
885 |
p=(p>>nx)|(p<<(32-nx)); // rotate p right by nx (so lsb corresponds to next tick)
|
|
886 |
r=__e32_find_ls1_32(p); // find number of zeros before LS 1
|
|
887 |
}
|
|
888 |
if (!m.iHoldingQ.IsEmpty())
|
|
889 |
{
|
|
890 |
// Sort operation required - need to process next tick divisible by 16
|
|
891 |
TInt nx=next&0x0f; // number of next tick modulo 16
|
|
892 |
TInt r2=nx?(16-nx):0; // number of ticks before next divisible by 16
|
|
893 |
if (r2<r)
|
|
894 |
r=r2;
|
|
895 |
}
|
|
896 |
if (!m.iOrderedQ.IsEmpty())
|
|
897 |
{
|
|
898 |
// Timers present on ordered queue
|
|
899 |
NTimer* pC=(NTimer*)m.iOrderedQ.First();
|
|
900 |
TUint32 tt=pC->iTriggerTime;
|
|
901 |
tt=(tt&~0x0f)-16; // time at which transfer to final queue would occur
|
|
902 |
TInt r3=(TInt)(tt-next);
|
|
903 |
if (r3<r)
|
|
904 |
r=r3;
|
|
905 |
}
|
|
906 |
return r;
|
|
907 |
}
|
|
908 |
#endif
|
|
909 |
|
|
910 |
|
|
911 |
/** Advance the nanokernel timer queue by the specified number of ticks.
|
|
912 |
It is assumed that no timers expire as a result of this.
|
|
913 |
Used by base port when system comes out of idle mode after disabling the
|
|
914 |
system tick interrupt to bring the timer queue up to date.
|
|
915 |
|
|
916 |
@param aTicks Number of ticks skipped due to tick suppression
|
|
917 |
|
|
918 |
@pre Interrupts must be disabled.
|
|
919 |
|
|
920 |
@post Interrupts are disabled.
|
|
921 |
*/
|
|
922 |
EXPORT_C void NTimerQ::Advance(TInt aTicks)
|
|
923 |
{
|
|
924 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::Advance");
|
|
925 |
TheTimerQ.iMsCount+=(TUint32)aTicks;
|
|
926 |
}
|
|
927 |
|
|
928 |
|
|
929 |
/** Returns the period of the nanokernel timer.
|
|
930 |
@return Period in microseconds
|
|
931 |
@pre any context
|
|
932 |
@see NTimer
|
|
933 |
*/
|
|
934 |
EXPORT_C TInt NKern::TickPeriod()
|
|
935 |
{
|
|
936 |
return TheTimerQ.iTickPeriod;
|
|
937 |
}
|
|
938 |
|
|
939 |
|
|
940 |
/** Converts a time interval to timer ticks.
|
|
941 |
|
|
942 |
@param aMilliseconds time interval in milliseconds.
|
|
943 |
@return Number of nanokernel timer ticks. Non-integral results are rounded up.
|
|
944 |
|
|
945 |
@pre aMilliseconds should be <=2147483 to avoid integer overflow.
|
|
946 |
@pre any context
|
|
947 |
*/
|
|
948 |
EXPORT_C TInt NKern::TimerTicks(TInt aMilliseconds)
|
|
949 |
{
|
|
950 |
__ASSERT_WITH_MESSAGE_DEBUG(aMilliseconds<=2147483,"aMilliseconds should be <=2147483","NKern::TimerTicks");
|
|
951 |
TUint32 msp=TheTimerQ.iTickPeriod;
|
|
952 |
if (msp==1000) // will be true except on pathological hardware
|
|
953 |
return aMilliseconds;
|
|
954 |
TUint32 us=(TUint32)aMilliseconds*1000;
|
|
955 |
return (us+msp-1)/msp;
|
|
956 |
}
|
|
957 |
|