0
|
1 |
// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test\personality\example\main.cpp
|
|
15 |
// Test code for example RTOS personality.
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include <kernel/kern_priv.h>
|
|
20 |
#include <personality/example/personality.h>
|
|
21 |
|
|
22 |
#ifdef __cplusplus
|
|
23 |
extern "C" {
|
|
24 |
#endif
|
|
25 |
|
|
26 |
#define OC_TASK 0
|
|
27 |
#define L2_TASK 1
|
|
28 |
#define RR_TASK 2
|
|
29 |
#define NONEXISTENT_TASK 3
|
|
30 |
#define TM_TASK 4
|
|
31 |
#define TASK1 6
|
|
32 |
#define TASK2 7
|
|
33 |
#define TASK3 8
|
|
34 |
#define TASK4 9
|
|
35 |
#define L1_TASK 10
|
|
36 |
|
|
37 |
void oo_overall_control(void);
|
|
38 |
void l1_task_entry(void);
|
|
39 |
void l2_task_entry(void);
|
|
40 |
void rr_task_entry(void);
|
|
41 |
void tm_task_entry(void);
|
|
42 |
void task1_entry(void);
|
|
43 |
void task2_entry(void);
|
|
44 |
void task3_entry(void);
|
|
45 |
void task4_entry(void);
|
|
46 |
|
|
47 |
typedef void (*isr_entry)(unsigned);
|
|
48 |
|
|
49 |
extern int start_random_isr(isr_entry vector);
|
|
50 |
extern void stop_random_isr(void);
|
|
51 |
|
|
52 |
const taskinfo task_list[] =
|
|
53 |
{
|
|
54 |
|
|
55 |
/* entry_pt, priority, stack_size, task_id, auto_start */
|
|
56 |
|
|
57 |
{ &oo_overall_control, 120, 1024, OC_TASK, 1 },
|
|
58 |
{ &l2_task_entry, 236, 1024, L2_TASK, 0 },
|
|
59 |
{ &rr_task_entry, 224, 1024, RR_TASK, 0 },
|
|
60 |
{ &tm_task_entry, 240, 1024, TM_TASK, 0 },
|
|
61 |
{ &task1_entry, 112, 1024, TASK1, 0 },
|
|
62 |
{ &task2_entry, 112, 1024, TASK2, 0 },
|
|
63 |
{ &task3_entry, 112, 1024, TASK3, 0 },
|
|
64 |
{ &task4_entry, 112, 1024, TASK4, 0 },
|
|
65 |
{ &l1_task_entry, 244, 1024, L1_TASK, 0 },
|
|
66 |
/* terminator */
|
|
67 |
{ 0, 0, 0, 0, 0 }
|
|
68 |
};
|
|
69 |
|
|
70 |
const poolinfo pool_list[] =
|
|
71 |
{
|
|
72 |
/* block size, block count */
|
|
73 |
{ 32, 256 },
|
|
74 |
{ 64, 256 },
|
|
75 |
{ 128, 128 },
|
|
76 |
{ 256, 64 },
|
|
77 |
{ 512, 32 },
|
|
78 |
/* terminator */
|
|
79 |
{ 0, 0 }
|
|
80 |
};
|
|
81 |
|
|
82 |
const int timer_count = 8;
|
|
83 |
const int semaphore_count = 2;
|
|
84 |
|
|
85 |
#define TM_TIMER 0
|
|
86 |
|
|
87 |
#define TM_INIT_DELAY 1000
|
|
88 |
#define TM_PERIOD 2
|
|
89 |
|
|
90 |
volatile unsigned next_random_id = 0;
|
|
91 |
volatile unsigned random_sem_signal_interval = 0;
|
|
92 |
volatile unsigned random_sem_signal_count = 0;
|
|
93 |
volatile unsigned random_send_interval = 0;
|
|
94 |
volatile unsigned random_send_count = 0;
|
|
95 |
volatile unsigned tmcount = 0;
|
|
96 |
volatile int t1func = 0;
|
|
97 |
volatile int t2func = 0;
|
|
98 |
volatile int t3func = 0;
|
|
99 |
volatile int t4func = 0;
|
|
100 |
|
|
101 |
#define TEST_SEM 0
|
|
102 |
#define ISR_SEM 1
|
|
103 |
|
|
104 |
#define MSG_ID_INIT 1
|
|
105 |
#define MSG_ID_RUN 2
|
|
106 |
#define MSG_ID_RUN_P 3
|
|
107 |
#define MSG_ID_RND_ISR 4
|
|
108 |
#define MSG_ID_DONE 5
|
|
109 |
#define MSG_ID_DATA 6
|
|
110 |
#define MSG_ID_FLUSH 7
|
|
111 |
#define MSG_ID_SEM_RPT 8
|
|
112 |
#define MSG_ID_RCV_RPT 9
|
|
113 |
#define MSG_ID_TM_RPT 10
|
|
114 |
|
|
115 |
typedef struct _run_msg
|
|
116 |
{
|
|
117 |
msghdr header;
|
|
118 |
int task_id;
|
|
119 |
unsigned tmcount;
|
|
120 |
int parameter;
|
|
121 |
} run_msg;
|
|
122 |
|
|
123 |
typedef struct _random_isr_msg
|
|
124 |
{
|
|
125 |
msghdr header;
|
|
126 |
unsigned random_isr_number;
|
|
127 |
unsigned extra;
|
|
128 |
} random_isr_msg;
|
|
129 |
|
|
130 |
typedef struct _data_msg
|
|
131 |
{
|
|
132 |
msghdr header;
|
|
133 |
int length;
|
|
134 |
unsigned char checksum;
|
|
135 |
unsigned char data[1];
|
|
136 |
} data_msg;
|
|
137 |
|
|
138 |
typedef struct _report_msg
|
|
139 |
{
|
|
140 |
msghdr header;
|
|
141 |
int pad;
|
|
142 |
unsigned count;
|
|
143 |
unsigned ok_count;
|
|
144 |
unsigned bad_count;
|
|
145 |
} report_msg;
|
|
146 |
|
|
147 |
void busy_wait(unsigned ticks)
|
|
148 |
{
|
|
149 |
unsigned t0 = tmcount;
|
|
150 |
while ((tmcount - t0) < ticks)
|
|
151 |
{}
|
|
152 |
}
|
|
153 |
|
|
154 |
void send_run_signal()
|
|
155 |
{
|
|
156 |
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
|
|
157 |
assert(m);
|
|
158 |
m->header.msg_id = MSG_ID_RUN;
|
|
159 |
m->task_id = current_task_id();
|
|
160 |
m->tmcount = tmcount;
|
|
161 |
int r = send_msg(OC_TASK, &m->header);
|
|
162 |
assert(r == OK);
|
|
163 |
}
|
|
164 |
|
|
165 |
void send_run_signal_p(int parameter)
|
|
166 |
{
|
|
167 |
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
|
|
168 |
assert(m);
|
|
169 |
m->header.msg_id = MSG_ID_RUN_P;
|
|
170 |
m->task_id = current_task_id();
|
|
171 |
m->tmcount = tmcount;
|
|
172 |
m->parameter = parameter;
|
|
173 |
int r = send_msg(OC_TASK, &m->header);
|
|
174 |
assert(r == OK);
|
|
175 |
}
|
|
176 |
|
|
177 |
void tsend_run_signal_p(int task_id, int parameter)
|
|
178 |
{
|
|
179 |
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
|
|
180 |
assert(m);
|
|
181 |
m->header.msg_id = MSG_ID_RUN_P;
|
|
182 |
m->task_id = current_task_id();
|
|
183 |
m->tmcount = tmcount;
|
|
184 |
m->parameter = parameter;
|
|
185 |
int r = send_msg(task_id, &m->header);
|
|
186 |
assert(r == OK);
|
|
187 |
}
|
|
188 |
|
|
189 |
void check_no_signal()
|
|
190 |
{
|
|
191 |
msghdr* m = NULL;
|
|
192 |
int r = recv_msg(&m, NO_WAIT);
|
|
193 |
assert(r == TIMED_OUT);
|
|
194 |
}
|
|
195 |
|
|
196 |
unsigned check_for_signal(int task_id)
|
|
197 |
{
|
|
198 |
msghdr* m = NULL;
|
|
199 |
int r = recv_msg(&m, NO_WAIT);
|
|
200 |
assert(r == OK);
|
|
201 |
assert(m->msg_id == MSG_ID_RUN);
|
|
202 |
run_msg* rm = (run_msg*)m;
|
|
203 |
assert(rm->task_id == task_id);
|
|
204 |
unsigned tmc = rm->tmcount;
|
|
205 |
free_mem_block(m);
|
|
206 |
return tmc;
|
|
207 |
}
|
|
208 |
|
|
209 |
int check_for_signal_p(int task_id, int task_id2, unsigned* pt)
|
|
210 |
{
|
|
211 |
msghdr* m = NULL;
|
|
212 |
int r = recv_msg(&m, NO_WAIT);
|
|
213 |
assert(r == OK);
|
|
214 |
assert(m->msg_id == MSG_ID_RUN_P);
|
|
215 |
run_msg* rm = (run_msg*)m;
|
|
216 |
assert(rm->task_id == task_id);
|
|
217 |
assert(m->sending_task_id == task_id2);
|
|
218 |
r = rm->parameter;
|
|
219 |
if (pt)
|
|
220 |
*pt = rm->tmcount;
|
|
221 |
free_mem_block(m);
|
|
222 |
return r;
|
|
223 |
}
|
|
224 |
|
|
225 |
int wait_for_signal_p(int task_id, unsigned* pt)
|
|
226 |
{
|
|
227 |
msghdr* m = NULL;
|
|
228 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
229 |
assert(r == OK);
|
|
230 |
assert(m->msg_id == MSG_ID_RUN_P);
|
|
231 |
run_msg* rm = (run_msg*)m;
|
|
232 |
assert(rm->task_id == task_id);
|
|
233 |
r = rm->parameter;
|
|
234 |
if (pt)
|
|
235 |
*pt = rm->tmcount;
|
|
236 |
free_mem_block(m);
|
|
237 |
return r;
|
|
238 |
}
|
|
239 |
|
|
240 |
void resume_4(int t1, int t2, int t3, int t4)
|
|
241 |
{
|
|
242 |
if (t1>=0)
|
|
243 |
assert(resume_task(t1)==OK);
|
|
244 |
if (t2>=0)
|
|
245 |
assert(resume_task(t2)==OK);
|
|
246 |
if (t3>=0)
|
|
247 |
assert(resume_task(t3)==OK);
|
|
248 |
if (t4>=0)
|
|
249 |
assert(resume_task(t4)==OK);
|
|
250 |
}
|
|
251 |
|
|
252 |
void check_signal_4(int t1, int t2, int t3, int t4)
|
|
253 |
{
|
|
254 |
if (t1>=0)
|
|
255 |
check_for_signal(t1);
|
|
256 |
else
|
|
257 |
check_no_signal();
|
|
258 |
if (t2>=0)
|
|
259 |
check_for_signal(t2);
|
|
260 |
else
|
|
261 |
check_no_signal();
|
|
262 |
if (t3>=0)
|
|
263 |
check_for_signal(t3);
|
|
264 |
else
|
|
265 |
check_no_signal();
|
|
266 |
if (t4>=0)
|
|
267 |
check_for_signal(t4);
|
|
268 |
else
|
|
269 |
check_no_signal();
|
|
270 |
}
|
|
271 |
|
|
272 |
void check_for_multiple_signals(int task_id, int count)
|
|
273 |
{
|
|
274 |
unsigned t = check_for_signal(task_id);
|
|
275 |
while (--count)
|
|
276 |
{
|
|
277 |
unsigned t2 = check_for_signal(task_id);
|
|
278 |
assert(t2 - t >= 1);
|
|
279 |
t = t2;
|
|
280 |
}
|
|
281 |
}
|
|
282 |
|
|
283 |
int flush_signals(void)
|
|
284 |
{
|
|
285 |
int c = 0;
|
|
286 |
for (;;)
|
|
287 |
{
|
|
288 |
msghdr* m = NULL;
|
|
289 |
int r = recv_msg(&m, NO_WAIT);
|
|
290 |
if (r == TIMED_OUT)
|
|
291 |
break;
|
|
292 |
assert(r == OK);
|
|
293 |
assert(m->msg_id == MSG_ID_RUN);
|
|
294 |
free_mem_block(m);
|
|
295 |
++c;
|
|
296 |
}
|
|
297 |
return c;
|
|
298 |
}
|
|
299 |
|
|
300 |
void test_mem_pool(size_t size, int count, void** chain)
|
|
301 |
{
|
|
302 |
int i, fill;
|
|
303 |
void *b, *bb, *c;
|
|
304 |
c = *chain;
|
|
305 |
for (i=0; i<count; ++i)
|
|
306 |
{
|
|
307 |
b = alloc_mem_block(size);
|
|
308 |
assert(b != NULL);
|
|
309 |
fill = (int)(size>>5);
|
|
310 |
fill += 29;
|
|
311 |
fill *= fill;
|
|
312 |
fill &= 0xff;
|
|
313 |
memset(b, fill, size);
|
|
314 |
*(void**)b = c;
|
|
315 |
((int*)b)[1] = (int)size;
|
|
316 |
c = b;
|
|
317 |
}
|
|
318 |
bb = alloc_mem_block(size);
|
|
319 |
assert(bb == NULL);
|
|
320 |
*chain = c;
|
|
321 |
}
|
|
322 |
|
|
323 |
void check_blocks(void* chain)
|
|
324 |
{
|
|
325 |
void* p = chain;
|
|
326 |
while (p)
|
|
327 |
{
|
|
328 |
unsigned char *q, *qq;
|
|
329 |
int size, fill, x;
|
|
330 |
size = ((int*)p)[1];
|
|
331 |
fill = (size>>5)+29;
|
|
332 |
fill = (fill*fill)&0xff;
|
|
333 |
q = (unsigned char*)p + sizeof(void*) + sizeof(int);
|
|
334 |
qq = (unsigned char*)p + size;
|
|
335 |
x = 0;
|
|
336 |
while (q<qq)
|
|
337 |
x |= (*q++ ^ fill);
|
|
338 |
assert(x==0);
|
|
339 |
p = *(void**)p;
|
|
340 |
}
|
|
341 |
}
|
|
342 |
|
|
343 |
int free_blocks(void* chain)
|
|
344 |
{
|
|
345 |
void* p = chain;
|
|
346 |
int c = 0;
|
|
347 |
while (p)
|
|
348 |
{
|
|
349 |
void* n = *(void**)p;
|
|
350 |
free_mem_block(p);
|
|
351 |
p = n;
|
|
352 |
++c;
|
|
353 |
}
|
|
354 |
return c;
|
|
355 |
}
|
|
356 |
|
|
357 |
void test_mem_mgr(void)
|
|
358 |
{
|
|
359 |
void* chain = NULL;
|
|
360 |
const poolinfo* pi = pool_list;
|
|
361 |
int nblocks = 0;
|
|
362 |
int nfreed = 0;
|
|
363 |
for (; pi->block_size; ++pi)
|
|
364 |
{
|
|
365 |
nblocks += pi->block_count;
|
|
366 |
test_mem_pool(pi->block_size, pi->block_count, &chain);
|
|
367 |
}
|
|
368 |
check_blocks(chain);
|
|
369 |
nfreed = free_blocks(chain);
|
|
370 |
assert(nfreed == nblocks);
|
|
371 |
chain = NULL;
|
|
372 |
for (--pi; pi >= pool_list; --pi)
|
|
373 |
test_mem_pool(pi->block_size, pi->block_count, &chain);
|
|
374 |
check_blocks(chain);
|
|
375 |
nfreed = free_blocks(chain);
|
|
376 |
assert(nfreed == nblocks);
|
|
377 |
chain = NULL;
|
|
378 |
kprintf("Memory Manager Test OK");
|
|
379 |
}
|
|
380 |
|
|
381 |
void test_suspend_1(void)
|
|
382 |
{
|
|
383 |
unsigned t1, t2, t3;
|
|
384 |
int r;
|
|
385 |
t1 = tmcount;
|
|
386 |
delay(5*TM_PERIOD);
|
|
387 |
t2 = tmcount;
|
|
388 |
assert( ((int)t2)-((int)t1) >= 5 );
|
|
389 |
r = suspend_task(TM_TASK);
|
|
390 |
assert(r == OK);
|
|
391 |
t1 = tmcount;
|
|
392 |
delay(5*TM_PERIOD);
|
|
393 |
t2 = tmcount;
|
|
394 |
assert(t2==t1);
|
|
395 |
r = resume_task(TM_TASK);
|
|
396 |
assert(r == OK);
|
|
397 |
t3 = tmcount;
|
|
398 |
assert( ((int)t3)-((int)t2) >= 5 );
|
|
399 |
|
|
400 |
r = suspend_task(TM_TASK);
|
|
401 |
assert(r == OK);
|
|
402 |
r = suspend_task(TM_TASK);
|
|
403 |
assert(r == OK);
|
|
404 |
t1 = tmcount;
|
|
405 |
delay(5*TM_PERIOD);
|
|
406 |
t2 = tmcount;
|
|
407 |
assert(t2==t1);
|
|
408 |
r = resume_task(TM_TASK);
|
|
409 |
assert(r == OK);
|
|
410 |
t3 = tmcount;
|
|
411 |
assert(t3==t2);
|
|
412 |
r = resume_task(TM_TASK);
|
|
413 |
assert(r == OK);
|
|
414 |
t3 = tmcount;
|
|
415 |
assert( ((int)t3)-((int)t2) >= 5 );
|
|
416 |
|
|
417 |
r = suspend_task(-1);
|
|
418 |
assert(r == BAD_TASK_ID);
|
|
419 |
r = suspend_task(300);
|
|
420 |
assert(r == BAD_TASK_ID);
|
|
421 |
r = suspend_task(NONEXISTENT_TASK);
|
|
422 |
assert(r == BAD_TASK_ID);
|
|
423 |
r = resume_task(-1);
|
|
424 |
assert(r == BAD_TASK_ID);
|
|
425 |
r = resume_task(300);
|
|
426 |
assert(r == BAD_TASK_ID);
|
|
427 |
r = resume_task(NONEXISTENT_TASK);
|
|
428 |
assert(r == BAD_TASK_ID);
|
|
429 |
|
|
430 |
kprintf("test_suspend_1 OK");
|
|
431 |
}
|
|
432 |
|
|
433 |
void test_priority_scheduling(void)
|
|
434 |
{
|
|
435 |
int init_pri = get_task_priority(current_task_id());
|
|
436 |
resume_4(TASK1, TASK2, TASK3, TASK4);
|
|
437 |
delay(80*TM_PERIOD);
|
|
438 |
check_for_multiple_signals(TASK1, 50); // check no timeslicing
|
|
439 |
assert(flush_signals()<=31);
|
|
440 |
suspend_task(TASK1);
|
|
441 |
delay(80*TM_PERIOD);
|
|
442 |
check_for_multiple_signals(TASK2, 50); // check no timeslicing
|
|
443 |
assert(flush_signals()<=31);
|
|
444 |
suspend_task(TASK2);
|
|
445 |
delay(80*TM_PERIOD);
|
|
446 |
check_for_multiple_signals(TASK3, 50); // check no timeslicing
|
|
447 |
assert(flush_signals()<=31);
|
|
448 |
suspend_task(TASK3);
|
|
449 |
delay(1);
|
|
450 |
check_for_signal(TASK4);
|
|
451 |
assert(flush_signals()<=1);
|
|
452 |
|
|
453 |
t1func = 1;
|
|
454 |
t2func = 1;
|
|
455 |
t3func = 1;
|
|
456 |
t4func = 1;
|
|
457 |
|
|
458 |
resume_4(TASK1, TASK2, TASK3, TASK4);
|
|
459 |
delay(10);
|
|
460 |
flush_signals();
|
|
461 |
|
|
462 |
resume_4(TASK3, TASK2, TASK4, TASK1);
|
|
463 |
delay(10);
|
|
464 |
check_signal_4(TASK3, TASK2, TASK4, TASK1);
|
|
465 |
check_no_signal();
|
|
466 |
resume_4(TASK1, TASK2, TASK3, TASK4);
|
|
467 |
check_no_signal(); // all lower priority so don't run
|
|
468 |
set_task_priority(TASK2, 255); // higher than current task so run immediately
|
|
469 |
check_for_signal(TASK2);
|
|
470 |
set_task_priority(TASK4, 116);
|
|
471 |
check_no_signal(); // all lower priority so don't run
|
|
472 |
delay(10);
|
|
473 |
check_for_signal(TASK4);
|
|
474 |
check_for_signal(TASK1);
|
|
475 |
check_for_signal(TASK3);
|
|
476 |
set_task_priority(TASK1, 116);
|
|
477 |
set_task_priority(TASK2, 116);
|
|
478 |
set_task_priority(TASK3, 116);
|
|
479 |
set_task_priority(TASK4, 116);
|
|
480 |
resume_4(TASK1, TASK2, TASK3, TASK4);
|
|
481 |
set_task_priority(current_task_id(), 112); // drop current task priority
|
|
482 |
assert(get_task_priority(current_task_id())==112);
|
|
483 |
check_signal_4(TASK1, TASK2, TASK3, TASK4);
|
|
484 |
set_task_priority(current_task_id(), init_pri);
|
|
485 |
assert(get_task_priority(current_task_id())==init_pri);
|
|
486 |
|
|
487 |
kprintf("test_priority_scheduling OK");
|
|
488 |
}
|
|
489 |
|
|
490 |
unsigned sem_test(int task_id)
|
|
491 |
{
|
|
492 |
int r = semaphore_signal(TEST_SEM);
|
|
493 |
assert(r==OK);
|
|
494 |
return check_for_signal(task_id);
|
|
495 |
}
|
|
496 |
|
|
497 |
unsigned sem_test_p(int task_id, int parameter)
|
|
498 |
{
|
|
499 |
unsigned t;
|
|
500 |
int r = semaphore_signal(TEST_SEM);
|
|
501 |
assert(r==OK);
|
|
502 |
r = check_for_signal_p(task_id, task_id, &t);
|
|
503 |
assert(r == parameter);
|
|
504 |
return t;
|
|
505 |
}
|
|
506 |
|
|
507 |
unsigned sem_test_pt(int task_id, int parameter)
|
|
508 |
{
|
|
509 |
unsigned t;
|
|
510 |
int r = semaphore_signal(TEST_SEM);
|
|
511 |
assert(r==OK);
|
|
512 |
r = check_for_signal_p(task_id, task_id, &t);
|
|
513 |
assert(r == parameter);
|
|
514 |
return t;
|
|
515 |
}
|
|
516 |
|
|
517 |
void test_semaphore(void)
|
|
518 |
{
|
|
519 |
unsigned t1, t2, t3;
|
|
520 |
int r;
|
|
521 |
int init_pri = get_task_priority(current_task_id());
|
|
522 |
set_task_priority(TASK1, 128);
|
|
523 |
set_task_priority(TASK2, 128);
|
|
524 |
set_task_priority(TASK3, 128);
|
|
525 |
set_task_priority(TASK4, 128);
|
|
526 |
t1func = 2;
|
|
527 |
t2func = 2;
|
|
528 |
t3func = 2;
|
|
529 |
t4func = 2;
|
|
530 |
resume_4(TASK1, TASK2, TASK3, TASK4);
|
|
531 |
delay(10); // let tasks wait on semaphore
|
|
532 |
check_no_signal();
|
|
533 |
sem_test(TASK1); // test they are released in same order
|
|
534 |
sem_test(TASK2);
|
|
535 |
sem_test(TASK3);
|
|
536 |
sem_test(TASK4);
|
|
537 |
check_no_signal();
|
|
538 |
set_task_priority(TASK3, 132); // test highest priority is released first
|
|
539 |
sem_test(TASK3);
|
|
540 |
sem_test(TASK3);
|
|
541 |
suspend_task(TASK3); // test suspended task doesn't contend for semaphore
|
|
542 |
sem_test(TASK1);
|
|
543 |
sem_test(TASK2);
|
|
544 |
sem_test(TASK4);
|
|
545 |
sem_test(TASK1);
|
|
546 |
suspend_task(TASK2);
|
|
547 |
sem_test(TASK4);
|
|
548 |
sem_test(TASK1);
|
|
549 |
sem_test(TASK4);
|
|
550 |
set_task_priority(TASK2, 136); // change priority while suspended
|
|
551 |
sem_test(TASK1);
|
|
552 |
sem_test(TASK4);
|
|
553 |
sem_test(TASK1);
|
|
554 |
resume_task(TASK2);
|
|
555 |
sem_test(TASK2);
|
|
556 |
sem_test(TASK2); // test new highest priority task acquires semaphore first
|
|
557 |
delay(100*TM_PERIOD);
|
|
558 |
check_no_signal(); // check waits don't time out
|
|
559 |
|
|
560 |
t2func = 3; // switch over to timed waits for task 2
|
|
561 |
t1 = sem_test(TASK2); // get one last message of previous type
|
|
562 |
delay(5*TM_PERIOD);
|
|
563 |
t2 = sem_test_p(TASK2, OK); // signal after half the timeout and check OK
|
|
564 |
delay(11*TM_PERIOD); // wait for > timeout
|
|
565 |
r = check_for_signal_p(TASK2, TASK2, &t3);
|
|
566 |
assert(r == TIMED_OUT);
|
|
567 |
kprintf("t2-t1=%d t3-t2=%d", t2-t1, t3-t2);
|
|
568 |
assert(t2-t1 >= 5);
|
|
569 |
assert(t3-t2 >= 10);
|
|
570 |
sem_test_p(TASK2, OK);
|
|
571 |
resume_task(TASK3);
|
|
572 |
|
|
573 |
set_task_priority(current_task_id(), 176); // raise current task priority
|
|
574 |
semaphore_signal(TEST_SEM); // signal semaphore 4 times - should release all 4 waiting threads
|
|
575 |
semaphore_signal(TEST_SEM);
|
|
576 |
semaphore_signal(TEST_SEM);
|
|
577 |
semaphore_signal(TEST_SEM);
|
|
578 |
set_task_priority(current_task_id(), init_pri); // let tasks run
|
|
579 |
r = check_for_signal_p(TASK2, TASK2, NULL);
|
|
580 |
assert(r == OK);
|
|
581 |
check_for_signal(TASK3);
|
|
582 |
check_for_signal(TASK4);
|
|
583 |
check_for_signal(TASK1);
|
|
584 |
set_task_priority(current_task_id(), 176); // raise current task priority
|
|
585 |
busy_wait(11); // let semaphore wait time out
|
|
586 |
t1func = 4; // switch all threads over
|
|
587 |
t2func = 4; //
|
|
588 |
t3func = 4; //
|
|
589 |
t4func = 4; //
|
|
590 |
semaphore_signal(TEST_SEM); // signal semaphore 3 times - should release other 3 waiting threads
|
|
591 |
semaphore_signal(TEST_SEM);
|
|
592 |
semaphore_signal(TEST_SEM);
|
|
593 |
set_task_priority(current_task_id(), init_pri); // let tasks run
|
|
594 |
r = check_for_signal_p(TASK2, TASK2, NULL);
|
|
595 |
assert(r == TIMED_OUT);
|
|
596 |
check_for_signal(TASK3);
|
|
597 |
check_for_signal(TASK4);
|
|
598 |
check_for_signal(TASK1);
|
|
599 |
|
|
600 |
kprintf("test_semaphore OK");
|
|
601 |
}
|
|
602 |
|
|
603 |
void test_message_queue(void)
|
|
604 |
{
|
|
605 |
unsigned t1, t2, t3, t4;
|
|
606 |
int tid, p, r;
|
|
607 |
int init_pri = get_task_priority(current_task_id());
|
|
608 |
p = 0;
|
|
609 |
t1 = 0;
|
|
610 |
for (tid = TASK1; tid <= TASK4; ++tid)
|
|
611 |
{
|
|
612 |
for (p = 1; p; p<<=1)
|
|
613 |
{
|
|
614 |
tsend_run_signal_p(tid, p);
|
|
615 |
r = check_for_signal_p(OC_TASK, tid, NULL);
|
|
616 |
assert(r == p);
|
|
617 |
}
|
|
618 |
}
|
|
619 |
check_no_signal();
|
|
620 |
set_task_priority(current_task_id(), 176); // raise current task priority
|
|
621 |
set_task_priority(TASK4, 144); // change task priorities while they are waiting
|
|
622 |
set_task_priority(TASK3, 140);
|
|
623 |
set_task_priority(TASK2, 136);
|
|
624 |
set_task_priority(TASK1, 132);
|
|
625 |
t1func = 5; // switch task 1 to timed waits
|
|
626 |
for (tid = TASK1; tid <= TASK4; ++tid)
|
|
627 |
{
|
|
628 |
for (p = 0; p<0x40000000; p+=(0x413b9cb+tid))
|
|
629 |
{
|
|
630 |
tsend_run_signal_p(tid, p); // let multiple messages accumulate on the queues
|
|
631 |
}
|
|
632 |
}
|
|
633 |
check_no_signal();
|
|
634 |
set_task_priority(current_task_id(), init_pri); // let tasks run
|
|
635 |
kprintf("init_pri=%d",init_pri);
|
|
636 |
for (tid = TASK4; tid >= TASK1; --tid)
|
|
637 |
{
|
|
638 |
for (p = 0; p<0x40000000; p+=(0x413b9cb+tid))
|
|
639 |
{
|
|
640 |
r = check_for_signal_p(OC_TASK, tid, &t1);
|
|
641 |
assert(r == p);
|
|
642 |
}
|
|
643 |
}
|
|
644 |
|
|
645 |
delay(5*TM_PERIOD);
|
|
646 |
tsend_run_signal_p(TASK1, p); // send after half timeout
|
|
647 |
r = check_for_signal_p(OC_TASK, TASK1, &t2);
|
|
648 |
assert(r == p);
|
|
649 |
delay(11*TM_PERIOD); // wait for > timeout
|
|
650 |
tsend_run_signal_p(TASK1, ~p); // send after timeout
|
|
651 |
r = check_for_signal_p(TASK1, TASK1, &t3);
|
|
652 |
assert(r == TIMED_OUT);
|
|
653 |
kprintf("t2-t1=%d t3-t2=%d", t2-t1, t3-t2);
|
|
654 |
assert(t2-t1 >= 5);
|
|
655 |
assert(t3-t2 >= 10);
|
|
656 |
r = check_for_signal_p(OC_TASK, TASK1, &t4);
|
|
657 |
assert(r == ~p);
|
|
658 |
assert(t4-t3 <= 1);
|
|
659 |
t1func = 6; // switch task 1 to timed semaphore wait
|
|
660 |
t2func = 7; // switch task 2 to timed queue wait
|
|
661 |
t3func = 8; //
|
|
662 |
t4func = 8; //
|
|
663 |
for (tid = TASK1; tid <= TASK4; ++tid)
|
|
664 |
{
|
|
665 |
tsend_run_signal_p(tid, 0);
|
|
666 |
r = check_for_signal_p(OC_TASK, tid, NULL);
|
|
667 |
assert(r == 0);
|
|
668 |
}
|
|
669 |
check_no_signal();
|
|
670 |
|
|
671 |
kprintf("test_message_queue OK");
|
|
672 |
}
|
|
673 |
|
|
674 |
void random_isr(unsigned n)
|
|
675 |
{
|
|
676 |
random_isr_msg* m;
|
|
677 |
unsigned extra = 1;
|
|
678 |
unsigned count = 1;
|
|
679 |
int r;
|
|
680 |
if (!(n%11))
|
|
681 |
++count;
|
|
682 |
if (!(n%13))
|
|
683 |
++count;
|
|
684 |
while (count--)
|
|
685 |
{
|
|
686 |
m = (random_isr_msg*)alloc_mem_block(sizeof(random_isr_msg));
|
|
687 |
m->header.msg_id = MSG_ID_RND_ISR;
|
|
688 |
m->random_isr_number = n;
|
|
689 |
extra *= n;
|
|
690 |
m->extra = extra;
|
|
691 |
r = send_msg(L1_TASK, &m->header);
|
|
692 |
}
|
|
693 |
if (random_sem_signal_count && !--random_sem_signal_count)
|
|
694 |
{
|
|
695 |
random_sem_signal_count = random_sem_signal_interval;
|
|
696 |
semaphore_signal(ISR_SEM);
|
|
697 |
}
|
|
698 |
}
|
|
699 |
|
|
700 |
void flush_queue(msghdr** f, msghdr** l, msghdr* tm)
|
|
701 |
{
|
|
702 |
msghdr* m = *f;
|
|
703 |
*f = NULL;
|
|
704 |
*l = NULL;
|
|
705 |
send_to_epoc(tm);
|
|
706 |
while (m)
|
|
707 |
{
|
|
708 |
msghdr* n = m->next;
|
|
709 |
send_to_epoc(m);
|
|
710 |
m = n;
|
|
711 |
}
|
|
712 |
}
|
|
713 |
|
|
714 |
void l1_task_entry(void)
|
|
715 |
{
|
|
716 |
msghdr* first = NULL;
|
|
717 |
msghdr* last = NULL;
|
|
718 |
unsigned state = 0;
|
|
719 |
unsigned extra_count = 0;
|
|
720 |
unsigned extra_value = 0;
|
|
721 |
assert(current_task_id() == L1_TASK);
|
|
722 |
kprintf("L1_TASK running");
|
|
723 |
for (;;)
|
|
724 |
{
|
|
725 |
msghdr* m = NULL;
|
|
726 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
727 |
assert(r == OK);
|
|
728 |
switch (m->msg_id)
|
|
729 |
{
|
|
730 |
case MSG_ID_RND_ISR:
|
|
731 |
{
|
|
732 |
random_isr_msg* rm = (random_isr_msg*)m;
|
|
733 |
assert(m->sending_task_id == TASK_ID_ISR);
|
|
734 |
assert(rm->random_isr_number == next_random_id);
|
|
735 |
if (state == 0)
|
|
736 |
{
|
|
737 |
extra_count = 0;
|
|
738 |
if (!(next_random_id % 11))
|
|
739 |
++extra_count;
|
|
740 |
if (!(next_random_id % 13))
|
|
741 |
++extra_count;
|
|
742 |
extra_value = next_random_id;
|
|
743 |
}
|
|
744 |
else if (state > 0)
|
|
745 |
{
|
|
746 |
extra_value *= next_random_id;
|
|
747 |
}
|
|
748 |
assert(rm->extra == extra_value);
|
|
749 |
if (++state > extra_count)
|
|
750 |
state = 0;
|
|
751 |
if (state == 0)
|
|
752 |
++next_random_id;
|
|
753 |
if (rm->random_isr_number == 0)
|
|
754 |
send_msg(OC_TASK, m), m=NULL;
|
|
755 |
if (state == 1 && extra_count == 2 && m)
|
|
756 |
{
|
|
757 |
flush_queue(&first, &last, m);
|
|
758 |
m = NULL;
|
|
759 |
}
|
|
760 |
if (random_send_count && !--random_send_count)
|
|
761 |
{
|
|
762 |
random_send_count = random_send_interval;
|
|
763 |
if (m)
|
|
764 |
send_msg(TASK2, m), m=NULL;
|
|
765 |
}
|
|
766 |
break;
|
|
767 |
}
|
|
768 |
case MSG_ID_DATA:
|
|
769 |
m->next = NULL;
|
|
770 |
if (last)
|
|
771 |
last->next = m;
|
|
772 |
else
|
|
773 |
first = m;
|
|
774 |
last = m;
|
|
775 |
m = NULL;
|
|
776 |
break;
|
|
777 |
case MSG_ID_FLUSH:
|
|
778 |
flush_queue(&first, &last, m);
|
|
779 |
m = NULL;
|
|
780 |
break;
|
|
781 |
default:
|
|
782 |
kprintf("L1<-%08x",m->msg_id);
|
|
783 |
break;
|
|
784 |
}
|
|
785 |
if (m)
|
|
786 |
free_mem_block(m);
|
|
787 |
}
|
|
788 |
}
|
|
789 |
|
|
790 |
void l2_task_entry(void)
|
|
791 |
{
|
|
792 |
assert(current_task_id() == L2_TASK);
|
|
793 |
kprintf("L2_TASK running");
|
|
794 |
for (;;)
|
|
795 |
{
|
|
796 |
msghdr* m = NULL;
|
|
797 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
798 |
assert(r == OK);
|
|
799 |
switch (m->msg_id)
|
|
800 |
{
|
|
801 |
case MSG_ID_DATA:
|
|
802 |
{
|
|
803 |
data_msg* dm = (data_msg*)m;
|
|
804 |
int i;
|
|
805 |
unsigned char cs = 0;
|
|
806 |
for (i=0; i<dm->length; ++i)
|
|
807 |
cs = (unsigned char)(cs + dm->data[i]);
|
|
808 |
dm->checksum = cs;
|
|
809 |
send_msg(L1_TASK, m);
|
|
810 |
m=NULL;
|
|
811 |
break;
|
|
812 |
}
|
|
813 |
default:
|
|
814 |
kprintf("L2<-%08x",m->msg_id);
|
|
815 |
break;
|
|
816 |
}
|
|
817 |
if (m)
|
|
818 |
free_mem_block(m);
|
|
819 |
}
|
|
820 |
}
|
|
821 |
|
|
822 |
void rr_task_entry(void)
|
|
823 |
{
|
|
824 |
assert(current_task_id() == RR_TASK);
|
|
825 |
kprintf("RR_TASK running");
|
|
826 |
for (;;)
|
|
827 |
{
|
|
828 |
msghdr* m = NULL;
|
|
829 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
830 |
assert(r == OK);
|
|
831 |
switch (m->msg_id)
|
|
832 |
{
|
|
833 |
case MSG_ID_DATA:
|
|
834 |
send_msg(L2_TASK, m);
|
|
835 |
m=NULL;
|
|
836 |
break;
|
|
837 |
default:
|
|
838 |
kprintf("RR<-%08x",m->msg_id);
|
|
839 |
break;
|
|
840 |
}
|
|
841 |
if (m)
|
|
842 |
free_mem_block(m);
|
|
843 |
}
|
|
844 |
}
|
|
845 |
|
|
846 |
void tm_task_entry(void)
|
|
847 |
{
|
|
848 |
assert(current_task_id() == TM_TASK);
|
|
849 |
kprintf("TM_TASK running");
|
|
850 |
for (;;)
|
|
851 |
{
|
|
852 |
msghdr* m = NULL;
|
|
853 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
854 |
assert(r == OK);
|
|
855 |
switch (m->msg_id)
|
|
856 |
{
|
|
857 |
case MSG_ID_TIMEOUT:
|
|
858 |
tmcount = ((timer_msg*)m)->count;
|
|
859 |
assert(m->sending_task_id == TASK_ID_ISR);
|
|
860 |
if (!(tmcount & 255))
|
|
861 |
{
|
|
862 |
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
|
|
863 |
rpt->header.msg_id = MSG_ID_TM_RPT;
|
|
864 |
rpt->count = tmcount;
|
|
865 |
rpt->ok_count = 0;
|
|
866 |
rpt->bad_count = 0;
|
|
867 |
send_to_epoc(&rpt->header);
|
|
868 |
}
|
|
869 |
break;
|
|
870 |
default:
|
|
871 |
kprintf("TM<-%08x",m->msg_id);
|
|
872 |
break;
|
|
873 |
}
|
|
874 |
free_mem_block(m);
|
|
875 |
}
|
|
876 |
}
|
|
877 |
|
|
878 |
void generic_task(volatile int* f)
|
|
879 |
{
|
|
880 |
int r;
|
|
881 |
msghdr* m;
|
|
882 |
unsigned t1, t2;
|
|
883 |
unsigned count = 0;
|
|
884 |
unsigned ok_count = 0;
|
|
885 |
unsigned bad_count = 0;
|
|
886 |
while (*f==0)
|
|
887 |
{
|
|
888 |
send_run_signal();
|
|
889 |
busy_wait(1);
|
|
890 |
}
|
|
891 |
while (*f==1)
|
|
892 |
{
|
|
893 |
send_run_signal();
|
|
894 |
suspend_task(current_task_id());
|
|
895 |
}
|
|
896 |
while (*f==2)
|
|
897 |
{
|
|
898 |
r = semaphore_wait(TEST_SEM, WAIT_FOREVER);
|
|
899 |
assert(r == OK);
|
|
900 |
send_run_signal();
|
|
901 |
}
|
|
902 |
while (*f==3)
|
|
903 |
{
|
|
904 |
r = semaphore_wait(TEST_SEM, 10*TM_PERIOD);
|
|
905 |
assert(r==OK || r==TIMED_OUT);
|
|
906 |
send_run_signal_p(r);
|
|
907 |
}
|
|
908 |
while (*f==4)
|
|
909 |
{
|
|
910 |
r = recv_msg(&m, WAIT_FOREVER);
|
|
911 |
assert(r==OK);
|
|
912 |
assert(m->sending_task_id == OC_TASK);
|
|
913 |
r = send_msg(OC_TASK, m);
|
|
914 |
assert(r == OK);
|
|
915 |
}
|
|
916 |
while (*f==5)
|
|
917 |
{
|
|
918 |
r = recv_msg(&m, 10*TM_PERIOD);
|
|
919 |
assert(r==OK || r==TIMED_OUT);
|
|
920 |
if (r == OK)
|
|
921 |
{
|
|
922 |
assert(m->sending_task_id == OC_TASK);
|
|
923 |
r = send_msg(OC_TASK, m);
|
|
924 |
assert(r == OK);
|
|
925 |
}
|
|
926 |
else
|
|
927 |
send_run_signal_p(r);
|
|
928 |
}
|
|
929 |
while (*f==6)
|
|
930 |
{
|
|
931 |
t1 = tick_count();
|
|
932 |
r = semaphore_wait(ISR_SEM, 5);
|
|
933 |
t2 = tick_count() - t1;
|
|
934 |
if (r == TIMED_OUT && t2<5)
|
|
935 |
{
|
|
936 |
kprintf("SEM timed out too soon: %d", t2);
|
|
937 |
++bad_count;
|
|
938 |
}
|
|
939 |
if (r == OK)
|
|
940 |
++ok_count;
|
|
941 |
++count;
|
|
942 |
if (!(count & 0xff))
|
|
943 |
{
|
|
944 |
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
|
|
945 |
rpt->header.msg_id = MSG_ID_SEM_RPT;
|
|
946 |
rpt->count = count;
|
|
947 |
rpt->ok_count = ok_count;
|
|
948 |
rpt->bad_count = bad_count;
|
|
949 |
send_to_epoc(&rpt->header);
|
|
950 |
}
|
|
951 |
}
|
|
952 |
while (*f==7)
|
|
953 |
{
|
|
954 |
t1 = tick_count();
|
|
955 |
r = recv_msg(&m, 5);
|
|
956 |
t2 = tick_count() - t1;
|
|
957 |
if (r == TIMED_OUT && t2<5)
|
|
958 |
{
|
|
959 |
kprintf("RECV timed out too soon: %d", t2);
|
|
960 |
++bad_count;
|
|
961 |
}
|
|
962 |
if (r==OK)
|
|
963 |
++ok_count, free_mem_block(m);
|
|
964 |
++count;
|
|
965 |
if (!(count & 0xff))
|
|
966 |
{
|
|
967 |
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
|
|
968 |
rpt->header.msg_id = MSG_ID_RCV_RPT;
|
|
969 |
rpt->count = count;
|
|
970 |
rpt->ok_count = ok_count;
|
|
971 |
rpt->bad_count = bad_count;
|
|
972 |
send_to_epoc(&rpt->header);
|
|
973 |
}
|
|
974 |
}
|
|
975 |
kprintf("Task %d finished", current_task_id());
|
|
976 |
for(;;)
|
|
977 |
suspend_task(current_task_id());
|
|
978 |
}
|
|
979 |
|
|
980 |
void task1_entry(void)
|
|
981 |
{
|
|
982 |
assert(current_task_id() == TASK1);
|
|
983 |
generic_task(&t1func);
|
|
984 |
}
|
|
985 |
|
|
986 |
void task2_entry(void)
|
|
987 |
{
|
|
988 |
assert(current_task_id() == TASK2);
|
|
989 |
generic_task(&t2func);
|
|
990 |
}
|
|
991 |
|
|
992 |
void task3_entry(void)
|
|
993 |
{
|
|
994 |
assert(current_task_id() == TASK3);
|
|
995 |
generic_task(&t3func);
|
|
996 |
}
|
|
997 |
|
|
998 |
void task4_entry(void)
|
|
999 |
{
|
|
1000 |
assert(current_task_id() == TASK4);
|
|
1001 |
generic_task(&t4func);
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
|
|
1005 |
|
|
1006 |
void oo_overall_control(void)
|
|
1007 |
{
|
|
1008 |
int r;
|
|
1009 |
msghdr* m;
|
|
1010 |
random_isr_msg* rm;
|
|
1011 |
unsigned t1, t2, rss_interval;
|
|
1012 |
kprintf("OC_TASK running");
|
|
1013 |
assert(current_task_id() == OC_TASK);
|
|
1014 |
resume_task(L2_TASK);
|
|
1015 |
resume_task(RR_TASK);
|
|
1016 |
resume_task(TM_TASK);
|
|
1017 |
test_mem_mgr();
|
|
1018 |
|
|
1019 |
kprintf("Wait for init msg");
|
|
1020 |
r = recv_msg(&m, WAIT_FOREVER);
|
|
1021 |
assert(r == OK);
|
|
1022 |
assert(m->msg_id == MSG_ID_INIT);
|
|
1023 |
assert(m->sending_task_id == TASK_ID_UNKNOWN);
|
|
1024 |
free_mem_block(m);
|
|
1025 |
kprintf("Received init msg");
|
|
1026 |
|
|
1027 |
r = start_periodic_timer(TM_TIMER, TM_TASK, TM_INIT_DELAY, TM_PERIOD, NULL);
|
|
1028 |
assert(r == OK);
|
|
1029 |
delay(TM_INIT_DELAY-10);
|
|
1030 |
assert(tmcount == 0);
|
|
1031 |
delay(10*TM_PERIOD+20);
|
|
1032 |
assert(tmcount > 0);
|
|
1033 |
test_suspend_1();
|
|
1034 |
test_priority_scheduling();
|
|
1035 |
test_semaphore();
|
|
1036 |
test_message_queue();
|
|
1037 |
|
|
1038 |
resume_task(L1_TASK);
|
|
1039 |
r = start_random_isr(&random_isr);
|
|
1040 |
if (r != OK)
|
|
1041 |
goto no_random_isr;
|
|
1042 |
|
|
1043 |
r = recv_msg(&m, WAIT_FOREVER);
|
|
1044 |
assert(r == OK);
|
|
1045 |
assert(m->msg_id == MSG_ID_RND_ISR);
|
|
1046 |
assert(m->sending_task_id == L1_TASK);
|
|
1047 |
rm = (random_isr_msg*)m;
|
|
1048 |
assert(rm->random_isr_number == 0);
|
|
1049 |
free_mem_block(m);
|
|
1050 |
t1 = next_random_id;
|
|
1051 |
delay(1024);
|
|
1052 |
t2 = next_random_id;
|
|
1053 |
kprintf("%d random ISRs in 1024 ticks", t2-t1);
|
|
1054 |
rss_interval = (5*(t2-t1)+512)/1024;
|
|
1055 |
set_task_priority(TASK1, 196); // needs to be higher than DfcThread1
|
|
1056 |
set_task_priority(TASK2, 196);
|
|
1057 |
random_sem_signal_interval = rss_interval;
|
|
1058 |
random_sem_signal_count = rss_interval;
|
|
1059 |
random_send_interval = rss_interval;
|
|
1060 |
random_send_count = rss_interval;
|
|
1061 |
|
|
1062 |
no_random_isr:
|
|
1063 |
m = (msghdr*)alloc_mem_block(sizeof(msghdr));
|
|
1064 |
m->msg_id = MSG_ID_DONE;
|
|
1065 |
send_to_epoc(m);
|
|
1066 |
kprintf("All tests completed OK");
|
|
1067 |
for (;;)
|
|
1068 |
{
|
|
1069 |
int r = recv_msg(&m, WAIT_FOREVER);
|
|
1070 |
assert(r == OK);
|
|
1071 |
switch (m->msg_id)
|
|
1072 |
{
|
|
1073 |
case MSG_ID_DATA:
|
|
1074 |
send_msg(RR_TASK, m);
|
|
1075 |
m=NULL;
|
|
1076 |
break;
|
|
1077 |
case MSG_ID_FLUSH:
|
|
1078 |
send_msg(L1_TASK, m);
|
|
1079 |
m=NULL;
|
|
1080 |
break;
|
|
1081 |
case MSG_ID_DONE:
|
|
1082 |
stop_random_isr();
|
|
1083 |
stop_timer(TM_TIMER);
|
|
1084 |
suspend_task(L1_TASK);
|
|
1085 |
suspend_task(L2_TASK);
|
|
1086 |
suspend_task(RR_TASK);
|
|
1087 |
suspend_task(TM_TASK);
|
|
1088 |
suspend_task(TASK1);
|
|
1089 |
suspend_task(TASK2);
|
|
1090 |
suspend_task(TASK3);
|
|
1091 |
suspend_task(TASK4);
|
|
1092 |
break;
|
|
1093 |
default:
|
|
1094 |
kprintf("OC<-%08x",m->msg_id);
|
|
1095 |
break;
|
|
1096 |
}
|
|
1097 |
if (m)
|
|
1098 |
free_mem_block(m);
|
|
1099 |
}
|
|
1100 |
}
|
|
1101 |
|
|
1102 |
#ifdef __cplusplus
|
|
1103 |
}
|
|
1104 |
#endif
|