0
|
1 |
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\common\x86\x86hlp_gcc.inl
|
|
15 |
// If there are no exports then GCC 3.4.x does not generate a .reloc
|
|
16 |
// section, without which rombuild can't relocate the .code section
|
|
17 |
// to its ROM address. Your ROM then goes boom early in the boot sequence.
|
|
18 |
// This unused export forces the PE to be generated with a .reloc section.
|
|
19 |
//
|
|
20 |
//
|
|
21 |
|
|
22 |
EXPORT_C void __ignore_this_export()
|
|
23 |
{
|
|
24 |
}
|
|
25 |
|
|
26 |
static void DivisionByZero()
|
|
27 |
{
|
|
28 |
asm("int 0");
|
|
29 |
}
|
|
30 |
|
|
31 |
extern "C" {
|
|
32 |
|
|
33 |
void __NAKED__ _alloca()
|
|
34 |
{
|
|
35 |
// GCC passes the param in eax and expects no return value
|
|
36 |
asm("pop ecx");
|
|
37 |
asm("sub esp, eax");
|
|
38 |
asm("push ecx");
|
|
39 |
asm("ret");
|
|
40 |
}
|
|
41 |
|
|
42 |
void __NAKED__ _allmul()
|
|
43 |
//
|
|
44 |
// Multiply two 64 bit integers returning a 64 bit result
|
|
45 |
// On entry:
|
|
46 |
// [esp+4], [esp+8] = arg 1
|
|
47 |
// [esp+12], [esp+16] = arg 1
|
|
48 |
// Return result in edx:eax
|
|
49 |
// Remove arguments from stack
|
|
50 |
//
|
|
51 |
{
|
|
52 |
asm("mov eax, [esp+4]"); // eax = low1
|
|
53 |
asm("mul dword ptr [esp+16]"); // edx:eax = low1*high2
|
|
54 |
asm("mov ecx, eax"); // keep low 32 bits of product
|
|
55 |
asm("mov eax, [esp+8]"); // eax = high1
|
|
56 |
asm("mul dword ptr [esp+12]"); // edx:eax = high1*low2
|
|
57 |
asm("add ecx, eax"); // accumulate low 32 bits of product
|
|
58 |
asm("mov eax, [esp+4]"); // eax = low1
|
|
59 |
asm("mul dword ptr [esp+12]"); // edx:eax = low1*low2
|
|
60 |
asm("add edx, ecx"); // add cross terms to high 32 bits
|
|
61 |
asm("ret");
|
|
62 |
}
|
|
63 |
|
|
64 |
void __NAKED__ udiv64_divby0()
|
|
65 |
{
|
|
66 |
asm("int 0"); // division by zero exception
|
|
67 |
asm("ret");
|
|
68 |
}
|
|
69 |
|
|
70 |
__NAKED__ /*LOCAL_C*/ void UDiv64()
|
|
71 |
{
|
|
72 |
// unsigned divide edx:eax by edi:esi
|
|
73 |
// quotient in ebx:eax, remainder in edi:edx
|
|
74 |
// ecx, ebp, esi also modified
|
|
75 |
asm("test edi, edi");
|
|
76 |
asm("jnz short UDiv64a"); // branch if divisor >= 2^32
|
|
77 |
asm("test esi, esi");
|
|
78 |
asm("jz %a0": : "i"(&DivisionByZero)); // if divisor=0, branch to error routine
|
|
79 |
asm("mov ebx, eax"); // ebx=dividend low
|
|
80 |
asm("mov eax, edx"); // eax=dividend high
|
|
81 |
asm("xor edx, edx"); // edx=0
|
|
82 |
asm("div esi"); // quotient high now in eax
|
|
83 |
asm("xchg eax, ebx"); // quotient high in ebx, dividend low in eax
|
|
84 |
asm("div esi"); // quotient now in ebx:eax, remainder in edi:edx
|
|
85 |
asm("ret");
|
|
86 |
asm("UDiv64e:");
|
|
87 |
asm("xor eax, eax"); // set result to 0xFFFFFFFF
|
|
88 |
asm("dec eax");
|
|
89 |
asm("jmp short UDiv64f");
|
|
90 |
asm("UDiv64a:");
|
|
91 |
asm("js short UDiv64b"); // skip if divisor msb set
|
|
92 |
asm("bsr ecx, edi"); // ecx=bit number of divisor msb - 32
|
|
93 |
asm("inc cl");
|
|
94 |
asm("push edi"); // save divisor high
|
|
95 |
asm("push esi"); // save divisor low
|
|
96 |
asm("shrd esi, edi, cl"); // shift divisor right so that msb is bit 31
|
|
97 |
asm("mov ebx, edx"); // dividend into ebx:ebp
|
|
98 |
asm("mov ebp, eax");
|
|
99 |
asm("shrd eax, edx, cl"); // shift dividend right same number of bits
|
|
100 |
asm("shr edx, cl");
|
|
101 |
asm("cmp edx, esi"); // check if approx quotient will be 2^32
|
|
102 |
asm("jae short UDiv64e"); // if so, true result must be 0xFFFFFFFF
|
|
103 |
asm("div esi"); // approximate quotient now in eax
|
|
104 |
asm("UDiv64f:");
|
|
105 |
asm("mov ecx, eax"); // into ecx
|
|
106 |
asm("mul edi"); // multiply approx. quotient by divisor high
|
|
107 |
asm("mov esi, eax"); // ls dword into esi, ms into edi
|
|
108 |
asm("mov edi, edx");
|
|
109 |
asm("mov eax, ecx"); // approx. quotient into eax
|
|
110 |
asm("mul dword ptr [esp]"); // multiply approx. quotient by divisor low
|
|
111 |
asm("add edx, esi"); // edi:edx:eax now equals approx. quotient * divisor
|
|
112 |
asm("adc edi, 0");
|
|
113 |
asm("xor esi, esi");
|
|
114 |
asm("sub ebp, eax"); // subtract dividend - approx. quotient *divisor
|
|
115 |
asm("sbb ebx, edx");
|
|
116 |
asm("sbb esi, edi");
|
|
117 |
asm("jnc short UDiv64c"); // if no borrow, result OK
|
|
118 |
asm("dec ecx"); // else result is one too big
|
|
119 |
asm("add ebp, [esp]"); // and add divisor to get correct remainder
|
|
120 |
asm("adc ebx, [esp+4]");
|
|
121 |
asm("UDiv64c:");
|
|
122 |
asm("mov eax, ecx"); // result into ebx:eax, remainder into edi:edx
|
|
123 |
asm("mov edi, ebx");
|
|
124 |
asm("mov edx, ebp");
|
|
125 |
asm("xor ebx, ebx");
|
|
126 |
asm("add esp, 8"); // remove temporary values from stack
|
|
127 |
asm("ret");
|
|
128 |
asm("UDiv64b:");
|
|
129 |
asm("mov ebx, 1");
|
|
130 |
asm("sub eax, esi"); // subtract divisor from dividend
|
|
131 |
asm("sbb edx, edi");
|
|
132 |
asm("jnc short UDiv64d"); // if no borrow, result=1, remainder in edx:eax
|
|
133 |
asm("add eax, esi"); // else add back
|
|
134 |
asm("adc edx, edi");
|
|
135 |
asm("dec ebx"); // and decrement quotient
|
|
136 |
asm("UDiv64d:");
|
|
137 |
asm("mov edi, edx"); // remainder into edi:edx
|
|
138 |
asm("mov edx, eax");
|
|
139 |
asm("mov eax, ebx"); // result in ebx:eax
|
|
140 |
asm("xor ebx, ebx");
|
|
141 |
asm("ret");
|
|
142 |
}
|
|
143 |
|
|
144 |
__NAKED__ void _aulldvrm()
|
|
145 |
//
|
|
146 |
// Divide two 64 bit unsigned integers, returning a 64 bit result
|
|
147 |
// and a 64 bit remainder
|
|
148 |
//
|
|
149 |
// On entry:
|
|
150 |
// [esp+4], [esp+8] = dividend
|
|
151 |
// [esp+12], [esp+16] = divisor
|
|
152 |
//
|
|
153 |
// Return (dividend / divisor) in edx:eax
|
|
154 |
// Return (dividend % divisor) in ebx:ecx
|
|
155 |
//
|
|
156 |
// Remove arguments from stack
|
|
157 |
//
|
|
158 |
{
|
|
159 |
asm("push ebp");
|
|
160 |
asm("push edi");
|
|
161 |
asm("push esi");
|
|
162 |
asm("mov eax, [esp+16]");
|
|
163 |
asm("mov edx, [esp+20]");
|
|
164 |
asm("mov esi, [esp+24]");
|
|
165 |
asm("mov edi, [esp+28]");
|
|
166 |
asm("call %a0": : "i"(&UDiv64));
|
|
167 |
asm("mov ecx, edx");
|
|
168 |
asm("mov edx, ebx");
|
|
169 |
asm("mov ebx, edi");
|
|
170 |
asm("pop esi");
|
|
171 |
asm("pop edi");
|
|
172 |
asm("pop ebp");
|
|
173 |
asm("ret");
|
|
174 |
}
|
|
175 |
|
|
176 |
__NAKED__ void _alldvrm()
|
|
177 |
//
|
|
178 |
// Divide two 64 bit signed integers, returning a 64 bit result
|
|
179 |
// and a 64 bit remainder
|
|
180 |
//
|
|
181 |
// On entry:
|
|
182 |
// [esp+4], [esp+8] = dividend
|
|
183 |
// [esp+12], [esp+16] = divisor
|
|
184 |
//
|
|
185 |
// Return (dividend / divisor) in edx:eax
|
|
186 |
// Return (dividend % divisor) in ebx:ecx
|
|
187 |
//
|
|
188 |
// Remove arguments from stack
|
|
189 |
//
|
|
190 |
{
|
|
191 |
asm("push ebp");
|
|
192 |
asm("push edi");
|
|
193 |
asm("push esi");
|
|
194 |
asm("mov eax, [esp+16]");
|
|
195 |
asm("mov edx, [esp+20]");
|
|
196 |
asm("mov esi, [esp+24]");
|
|
197 |
asm("mov edi, [esp+28]");
|
|
198 |
asm("test edx, edx");
|
|
199 |
asm("jns alldrvm_dividend_nonnegative");
|
|
200 |
asm("neg edx");
|
|
201 |
asm("neg eax");
|
|
202 |
asm("sbb edx, 0");
|
|
203 |
asm("alldrvm_dividend_nonnegative:");
|
|
204 |
asm("test edi, edi");
|
|
205 |
asm("jns alldrvm_divisor_nonnegative");
|
|
206 |
asm("neg edi");
|
|
207 |
asm("neg esi");
|
|
208 |
asm("sbb edi, 0");
|
|
209 |
asm("alldrvm_divisor_nonnegative:");
|
|
210 |
asm("call %a0": : "i"(&UDiv64));
|
|
211 |
asm("mov ebp, [esp+20]");
|
|
212 |
asm("mov ecx, edx");
|
|
213 |
asm("xor ebp, [esp+28]");
|
|
214 |
asm("mov edx, ebx");
|
|
215 |
asm("mov ebx, edi");
|
|
216 |
asm("jns alldrvm_quotient_nonnegative");
|
|
217 |
asm("neg edx");
|
|
218 |
asm("neg eax");
|
|
219 |
asm("sbb edx, 0");
|
|
220 |
asm("alldrvm_quotient_nonnegative:");
|
|
221 |
asm("cmp dword ptr [esp+20], 0");
|
|
222 |
asm("jns alldrvm_rem_nonnegative");
|
|
223 |
asm("neg ebx");
|
|
224 |
asm("neg ecx");
|
|
225 |
asm("sbb ebx, 0");
|
|
226 |
asm("alldrvm_rem_nonnegative:");
|
|
227 |
asm("pop esi");
|
|
228 |
asm("pop edi");
|
|
229 |
asm("pop ebp");
|
|
230 |
asm("ret");
|
|
231 |
}
|
|
232 |
|
|
233 |
//__NAKED__ void _aulldiv()
|
|
234 |
__NAKED__ void __udivdi3 ()
|
|
235 |
//
|
|
236 |
// Divide two 64 bit unsigned integers returning a 64 bit result
|
|
237 |
// On entry:
|
|
238 |
// [esp+4], [esp+8] = dividend
|
|
239 |
// [esp+12], [esp+16] = divisor
|
|
240 |
// Return result in edx:eax
|
|
241 |
// Remove arguments from stack
|
|
242 |
//
|
|
243 |
{
|
|
244 |
asm("push ebp");
|
|
245 |
asm("push edi");
|
|
246 |
asm("push esi");
|
|
247 |
asm("push ebx");
|
|
248 |
asm("mov eax, [esp+20]");
|
|
249 |
asm("mov edx, [esp+24]");
|
|
250 |
asm("mov esi, [esp+28]");
|
|
251 |
asm("mov edi, [esp+32]");
|
|
252 |
asm("call %a0": : "i"(&UDiv64));
|
|
253 |
asm("mov edx, ebx");
|
|
254 |
asm("pop ebx");
|
|
255 |
asm("pop esi");
|
|
256 |
asm("pop edi");
|
|
257 |
asm("pop ebp");
|
|
258 |
asm("ret");
|
|
259 |
}
|
|
260 |
|
|
261 |
|
|
262 |
__NAKED__ void __divdi3()
|
|
263 |
|
|
264 |
//
|
|
265 |
// Divide two 64 bit signed integers returning a 64 bit result
|
|
266 |
// On entry:
|
|
267 |
// [esp+4], [esp+8] = dividend
|
|
268 |
// [esp+12], [esp+16] = divisor
|
|
269 |
// Return result in edx:eax
|
|
270 |
// Remove arguments from stack
|
|
271 |
//
|
|
272 |
{
|
|
273 |
asm("push ebp");
|
|
274 |
asm("push edi");
|
|
275 |
asm("push esi");
|
|
276 |
asm("push ebx");
|
|
277 |
asm("mov eax, [esp+20]");
|
|
278 |
asm("mov edx, [esp+24]");
|
|
279 |
asm("mov esi, [esp+28]");
|
|
280 |
asm("mov edi, [esp+32]");
|
|
281 |
asm("test edx, edx");
|
|
282 |
asm("jns divdi_dividend_nonnegative");
|
|
283 |
asm("neg edx");
|
|
284 |
asm("neg eax");
|
|
285 |
asm("sbb edx, 0");
|
|
286 |
asm("divdi_dividend_nonnegative:");
|
|
287 |
asm("test edi, edi");
|
|
288 |
asm("jns divdi_divisor_nonnegative");
|
|
289 |
asm("neg edi");
|
|
290 |
asm("neg esi");
|
|
291 |
asm("sbb edi, 0");
|
|
292 |
asm("divdi_divisor_nonnegative:");
|
|
293 |
asm("call %a0": : "i"(&UDiv64));
|
|
294 |
asm("mov ecx, [esp+24]");
|
|
295 |
asm("mov edx, ebx");
|
|
296 |
asm("xor ecx, [esp+32]");
|
|
297 |
asm("jns divdi_quotient_nonnegative");
|
|
298 |
asm("neg edx");
|
|
299 |
asm("neg eax");
|
|
300 |
asm("sbb edx, 0");
|
|
301 |
asm("divdi_quotient_nonnegative:");
|
|
302 |
asm("pop ebx");
|
|
303 |
asm("pop esi");
|
|
304 |
asm("pop edi");
|
|
305 |
asm("pop ebp");
|
|
306 |
asm("ret");
|
|
307 |
}
|
|
308 |
|
|
309 |
__NAKED__ void __umoddi3()
|
|
310 |
//
|
|
311 |
// Divide two 64 bit unsigned integers and return 64 bit remainder
|
|
312 |
// On entry:
|
|
313 |
// [esp+4], [esp+8] = dividend
|
|
314 |
// [esp+12], [esp+16] = divisor
|
|
315 |
// Return result in edx:eax
|
|
316 |
// Remove arguments from stack
|
|
317 |
//
|
|
318 |
{
|
|
319 |
asm("push ebp");
|
|
320 |
asm("push edi");
|
|
321 |
asm("push esi");
|
|
322 |
asm("push ebx");
|
|
323 |
asm("mov eax, [esp+20]");
|
|
324 |
asm("mov edx, [esp+24]");
|
|
325 |
asm("mov esi, [esp+28]");
|
|
326 |
asm("mov edi, [esp+32]");
|
|
327 |
asm("call %a0": : "i"(&UDiv64));
|
|
328 |
asm("mov eax, edx");
|
|
329 |
asm("mov edx, edi");
|
|
330 |
asm("pop ebx");
|
|
331 |
asm("pop esi");
|
|
332 |
asm("pop edi");
|
|
333 |
asm("pop ebp");
|
|
334 |
asm("ret");
|
|
335 |
}
|
|
336 |
|
|
337 |
__NAKED__ void __moddi3()
|
|
338 |
//
|
|
339 |
// Divide two 64 bit signed integers and return 64 bit remainder
|
|
340 |
// On entry:
|
|
341 |
// [esp+4], [esp+8] = dividend
|
|
342 |
// [esp+12], [esp+16] = divisor
|
|
343 |
// Return result in edx:eax
|
|
344 |
// Remove arguments from stack
|
|
345 |
//
|
|
346 |
{
|
|
347 |
asm("push ebp");
|
|
348 |
asm("push edi");
|
|
349 |
asm("push esi");
|
|
350 |
asm("push ebx");
|
|
351 |
asm("mov eax, [esp+20]");
|
|
352 |
asm("mov edx, [esp+24]");
|
|
353 |
asm("mov esi, [esp+28]");
|
|
354 |
asm("mov edi, [esp+32]");
|
|
355 |
asm("test edx, edx");
|
|
356 |
asm("jns dividend_nonnegative");
|
|
357 |
asm("neg edx");
|
|
358 |
asm("neg eax");
|
|
359 |
asm("sbb edx, 0");
|
|
360 |
asm("dividend_nonnegative:");
|
|
361 |
asm("test edi, edi");
|
|
362 |
asm("jns divisor_nonnegative");
|
|
363 |
asm("neg edi");
|
|
364 |
asm("neg esi");
|
|
365 |
asm("sbb edi, 0");
|
|
366 |
asm("divisor_nonnegative:");
|
|
367 |
asm("call %a0": : "i"(&UDiv64));
|
|
368 |
asm("mov eax, edx");
|
|
369 |
asm("mov edx, edi");
|
|
370 |
asm("cmp dword ptr [esp+24], 0");
|
|
371 |
asm("jns rem_nonnegative");
|
|
372 |
asm("neg edx");
|
|
373 |
asm("neg eax");
|
|
374 |
asm("sbb edx, 0");
|
|
375 |
asm("rem_nonnegative:");
|
|
376 |
asm("pop ebx");
|
|
377 |
asm("pop esi");
|
|
378 |
asm("pop edi");
|
|
379 |
asm("pop ebp");
|
|
380 |
asm("ret");
|
|
381 |
}
|
|
382 |
|
|
383 |
__NAKED__ void _allshr()
|
|
384 |
//
|
|
385 |
// Arithmetic shift right EDX:EAX by CL
|
|
386 |
//
|
|
387 |
{
|
|
388 |
asm("cmp cl, 64");
|
|
389 |
asm("jae asr_count_ge_64");
|
|
390 |
asm("cmp cl, 32");
|
|
391 |
asm("jae asr_count_ge_32");
|
|
392 |
asm("shrd eax, edx, cl");
|
|
393 |
asm("sar edx, cl");
|
|
394 |
asm("ret");
|
|
395 |
asm("asr_count_ge_32:");
|
|
396 |
asm("sub cl, 32");
|
|
397 |
asm("mov eax, edx");
|
|
398 |
asm("cdq");
|
|
399 |
asm("sar eax, cl");
|
|
400 |
asm("ret");
|
|
401 |
asm("asr_count_ge_64:");
|
|
402 |
asm("sar edx, 32");
|
|
403 |
asm("mov eax, edx");
|
|
404 |
asm("ret");
|
|
405 |
}
|
|
406 |
|
|
407 |
__NAKED__ void _allshl()
|
|
408 |
//
|
|
409 |
// shift left EDX:EAX by CL
|
|
410 |
//
|
|
411 |
{
|
|
412 |
asm("cmp cl, 64");
|
|
413 |
asm("jae lsl_count_ge_64");
|
|
414 |
asm("cmp cl, 32");
|
|
415 |
asm("jae lsl_count_ge_32");
|
|
416 |
asm("shld edx, eax, cl");
|
|
417 |
asm("shl eax, cl");
|
|
418 |
asm("ret");
|
|
419 |
asm("lsl_count_ge_32:");
|
|
420 |
asm("sub cl, 32");
|
|
421 |
asm("mov edx, eax");
|
|
422 |
asm("xor eax, eax");
|
|
423 |
asm("shl edx, cl");
|
|
424 |
asm("ret");
|
|
425 |
asm("lsl_count_ge_64:");
|
|
426 |
asm("xor edx, edx");
|
|
427 |
asm("xor eax, eax");
|
|
428 |
asm("ret");
|
|
429 |
}
|
|
430 |
|
|
431 |
__NAKED__ void _aullshr()
|
|
432 |
//
|
|
433 |
// Logical shift right EDX:EAX by CL
|
|
434 |
//
|
|
435 |
{
|
|
436 |
asm("cmp cl, 64");
|
|
437 |
asm("jae lsr_count_ge_64");
|
|
438 |
asm("cmp cl, 32");
|
|
439 |
asm("jae lsr_count_ge_32");
|
|
440 |
asm("shrd eax, edx, cl");
|
|
441 |
asm("shr edx, cl");
|
|
442 |
asm("ret");
|
|
443 |
asm("lsr_count_ge_32:");
|
|
444 |
asm("sub cl, 32");
|
|
445 |
asm("mov eax, edx");
|
|
446 |
asm("xor edx, edx");
|
|
447 |
asm("shr eax, cl");
|
|
448 |
asm("ret");
|
|
449 |
asm("lsr_count_ge_64:");
|
|
450 |
asm("xor edx, edx");
|
|
451 |
asm("xor eax, eax");
|
|
452 |
asm("ret");
|
|
453 |
}
|
|
454 |
|
|
455 |
}
|