0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_pow10.cpp
|
|
15 |
// Return a power of 10 as a TReal
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
|
|
26 |
// Tables of powers of 10
|
|
27 |
LOCAL_D const TUint32 PositivePowersOfTen[] =
|
|
28 |
{
|
|
29 |
// Positive powers 1-31
|
|
30 |
0x00000000,0xA0000000,0x80020000,
|
|
31 |
0x00000000,0xC8000000,0x80050000,
|
|
32 |
0x00000000,0xFA000000,0x80080000,
|
|
33 |
0x00000000,0x9C400000,0x800C0000,
|
|
34 |
0x00000000,0xC3500000,0x800F0000,
|
|
35 |
0x00000000,0xF4240000,0x80120000,
|
|
36 |
0x00000000,0x98968000,0x80160000,
|
|
37 |
0x00000000,0xBEBC2000,0x80190000,
|
|
38 |
0x00000000,0xEE6B2800,0x801C0000,
|
|
39 |
0x00000000,0x9502F900,0x80200000,
|
|
40 |
0x00000000,0xBA43B740,0x80230000,
|
|
41 |
0x00000000,0xE8D4A510,0x80260000,
|
|
42 |
0x00000000,0x9184E72A,0x802A0000,
|
|
43 |
0x80000000,0xB5E620F4,0x802D0000,
|
|
44 |
0xA0000000,0xE35FA931,0x80300000,
|
|
45 |
0x04000000,0x8E1BC9BF,0x80340000,
|
|
46 |
0xC5000000,0xB1A2BC2E,0x80370000,
|
|
47 |
0x76400000,0xDE0B6B3A,0x803A0000,
|
|
48 |
0x89E80000,0x8AC72304,0x803E0000,
|
|
49 |
0xAC620000,0xAD78EBC5,0x80410000,
|
|
50 |
0x177A8000,0xD8D726B7,0x80440000,
|
|
51 |
0x6EAC9000,0x87867832,0x80480000,
|
|
52 |
0x0A57B400,0xA968163F,0x804B0000,
|
|
53 |
0xCCEDA100,0xD3C21BCE,0x804E0000,
|
|
54 |
0x401484A0,0x84595161,0x80520000,
|
|
55 |
0x9019A5C8,0xA56FA5B9,0x80550000,
|
|
56 |
0xF4200F3A,0xCECB8F27,0x80580000,
|
|
57 |
0xF8940984,0x813F3978,0x805C0000,
|
|
58 |
0x36B90BE5,0xA18F07D7,0x805F0000,
|
|
59 |
0x04674EDF,0xC9F2C9CD,0x80620000,
|
|
60 |
0x45812296,0xFC6F7C40,0x80650000,
|
|
61 |
|
|
62 |
// Positive powers 32-31*32 in steps of 32
|
|
63 |
0x2B70B59E,0x9DC5ADA8,0x80690000,
|
|
64 |
0xFFCFA6D5,0xC2781F49,0x80D30000,
|
|
65 |
0xC59B14A3,0xEFB3AB16,0x813D0000,
|
|
66 |
0x80E98CE0,0x93BA47C9,0x81A80000,
|
|
67 |
0x7FE617AA,0xB616A12B,0x82120000,
|
|
68 |
0x3927556B,0xE070F78D,0x827C0000,
|
|
69 |
0xE33CC930,0x8A5296FF,0x82E70000,
|
|
70 |
0x9DF9DE8E,0xAA7EEBFB,0x83510000,
|
|
71 |
0x5C6A2F8C,0xD226FC19,0x83BB0000,
|
|
72 |
0xF2CCE376,0x81842F29,0x84260000,
|
|
73 |
0xDB900AD2,0x9FA42700,0x84900000,
|
|
74 |
0xAEF8AA17,0xC4C5E310,0x84FA0000,
|
|
75 |
0xE9B09C59,0xF28A9C07,0x85640000,
|
|
76 |
0xEBF7F3D4,0x957A4AE1,0x85CF0000,
|
|
77 |
0x0795A262,0xB83ED8DC,0x86390000,
|
|
78 |
0xA60E91C7,0xE319A0AE,0x86A30000,
|
|
79 |
0x432D7BC3,0x8BF61451,0x870E0000,
|
|
80 |
0x6B6795FD,0xAC83FB89,0x87780000,
|
|
81 |
0xB8FA79B0,0xD4A44FB4,0x87E20000,
|
|
82 |
0xE54A9D1D,0x830CF791,0x884D0000,
|
|
83 |
0xADE24964,0xA1884B69,0x88B70000,
|
|
84 |
0x1F8F01CC,0xC71AA36A,0x89210000,
|
|
85 |
0x437028F3,0xF56A298F,0x898B0000,
|
|
86 |
0xCD00A68C,0x973F9CA8,0x89F60000,
|
|
87 |
0xD7CC9ECD,0xBA6D9B40,0x8A600000,
|
|
88 |
0x8D737F0E,0xE5CA5A0B,0x8ACA0000,
|
|
89 |
0x1346BDA5,0x8D9E89D1,0x8B350000,
|
|
90 |
0xE3D5DBEA,0xAE8F2B2C,0x8B9F0000,
|
|
91 |
0x5A0C1B30,0xD7293020,0x8C090000,
|
|
92 |
0x0D2ECFD2,0x849A672A,0x8C740000,
|
|
93 |
0x41FA93DE,0xA3722C13,0x8CDE0000,
|
|
94 |
|
|
95 |
// Positive powers 1024-8*1024 in steps of 1024
|
|
96 |
0x81750C17,0xC9767586,0x8D480000,
|
|
97 |
0xC53D5DE5,0x9E8B3B5D,0x9A920000,
|
|
98 |
0xD88B5A8B,0xF9895D25,0xA7DB0000,
|
|
99 |
0x8A20979B,0xC4605202,0xB5250000,
|
|
100 |
0xFED3AB23,0x9A8A7EF0,0xC26F0000,
|
|
101 |
0x73A56037,0xF33C80E8,0xCFB80000,
|
|
102 |
0x61889066,0xBF6B0EC4,0xDD020000,
|
|
103 |
0x7FAF211A,0x96A3A1D1,0xEA4C0000
|
|
104 |
};
|
|
105 |
|
|
106 |
LOCAL_D const TUint32 NegativePowersOfTen[] =
|
|
107 |
{
|
|
108 |
// Negative powers 1-31
|
|
109 |
0xCCCCCCCD,0xCCCCCCCC,0x7FFB0000,
|
|
110 |
0x70A3D70A,0xA3D70A3D,0x7FF80000,
|
|
111 |
0x8D4FDF3B,0x83126E97,0x7FF50000,
|
|
112 |
0xE219652C,0xD1B71758,0x7FF10000,
|
|
113 |
0x1B478423,0xA7C5AC47,0x7FEE0000,
|
|
114 |
0xAF6C69B6,0x8637BD05,0x7FEB0000,
|
|
115 |
0xE57A42BC,0xD6BF94D5,0x7FE70000,
|
|
116 |
0x8461CEFD,0xABCC7711,0x7FE40000,
|
|
117 |
0x36B4A597,0x89705F41,0x7FE10000,
|
|
118 |
0xBDEDD5BF,0xDBE6FECE,0x7FDD0000,
|
|
119 |
0xCB24AAFF,0xAFEBFF0B,0x7FDA0000,
|
|
120 |
0x6F5088CC,0x8CBCCC09,0x7FD70000,
|
|
121 |
0x4BB40E13,0xE12E1342,0x7FD30000,
|
|
122 |
0x095CD80F,0xB424DC35,0x7FD00000,
|
|
123 |
0x3AB0ACD9,0x901D7CF7,0x7FCD0000,
|
|
124 |
0xC44DE15B,0xE69594BE,0x7FC90000,
|
|
125 |
0x36A4B449,0xB877AA32,0x7FC60000,
|
|
126 |
0x921D5D07,0x9392EE8E,0x7FC30000,
|
|
127 |
0xB69561A5,0xEC1E4A7D,0x7FBF0000,
|
|
128 |
0x92111AEB,0xBCE50864,0x7FBC0000,
|
|
129 |
0x74DA7BEF,0x971DA050,0x7FB90000,
|
|
130 |
0xBAF72CB1,0xF1C90080,0x7FB50000,
|
|
131 |
0x95928A27,0xC16D9A00,0x7FB20000,
|
|
132 |
0x44753B53,0x9ABE14CD,0x7FAF0000,
|
|
133 |
0xD3EEC551,0xF79687AE,0x7FAB0000,
|
|
134 |
0x76589DDB,0xC6120625,0x7FA80000,
|
|
135 |
0x91E07E48,0x9E74D1B7,0x7FA50000,
|
|
136 |
0x8300CA0E,0xFD87B5F2,0x7FA10000,
|
|
137 |
0x359A3B3E,0xCAD2F7F5,0x7F9E0000,
|
|
138 |
0x5E14FC32,0xA2425FF7,0x7F9B0000,
|
|
139 |
0x4B43FCF5,0x81CEB32C,0x7F980000,
|
|
140 |
|
|
141 |
// Negative powers 32-31*32 in steps of 32
|
|
142 |
0x453994BA,0xCFB11EAD,0x7F940000,
|
|
143 |
0xA539E9A5,0xA87FEA27,0x7F2A0000,
|
|
144 |
0xFD75539B,0x88B402F7,0x7EC00000,
|
|
145 |
0x64BCE4A1,0xDDD0467C,0x7E550000,
|
|
146 |
0xDB73A093,0xB3F4E093,0x7DEB0000,
|
|
147 |
0x5423CC06,0x91FF8377,0x7D810000,
|
|
148 |
0x4A314EBE,0xECE53CEC,0x7D160000,
|
|
149 |
0x637A193A,0xC0314325,0x7CAC0000,
|
|
150 |
0x836AC577,0x9BECCE62,0x7C420000,
|
|
151 |
0x478238D1,0xFD00B897,0x7BD70000,
|
|
152 |
0x46F34F7D,0xCD42A113,0x7B6D0000,
|
|
153 |
0xB11B0858,0xA686E3E8,0x7B030000,
|
|
154 |
0x3FFC68A6,0x871A4981,0x7A990000,
|
|
155 |
0xB6074245,0xDB377599,0x7A2E0000,
|
|
156 |
0x79007736,0xB1D983B4,0x79C40000,
|
|
157 |
0xDB23D21C,0x9049EE32,0x795A0000,
|
|
158 |
0x467F9466,0xEA1F3806,0x78EF0000,
|
|
159 |
0xEE5092C7,0xBDF139F0,0x78850000,
|
|
160 |
0xB4730DD0,0x9A197865,0x781B0000,
|
|
161 |
0x8871347D,0xFA0A6CDB,0x77B00000,
|
|
162 |
0x3C8736FC,0xCADB6D31,0x77460000,
|
|
163 |
0x52EB8375,0xA493C750,0x76DC0000,
|
|
164 |
0x774FB85E,0x85855C0F,0x76720000,
|
|
165 |
0x505DE96B,0xD8A66D4A,0x76070000,
|
|
166 |
0xCB39A7B1,0xAFC47766,0x759D0000,
|
|
167 |
0xA9B05AC8,0x8E997872,0x75330000,
|
|
168 |
0xFDC06462,0xE761832E,0x74C80000,
|
|
169 |
0xBB827F2D,0xBBB7EF38,0x745E0000,
|
|
170 |
0xE1F045DD,0x984B9B19,0x73F40000,
|
|
171 |
0x3613F568,0xF71D01E0,0x73890000,
|
|
172 |
0x3F64789E,0xC87B6D2F,0x731F0000,
|
|
173 |
|
|
174 |
// Negative powers 1024-8*1024 in steps of 1024
|
|
175 |
0xDA57C0BE,0xA2A682A5,0x72B50000,
|
|
176 |
0x34362DE4,0xCEAE534F,0x656B0000,
|
|
177 |
0x91575A88,0x8350BF3C,0x58220000,
|
|
178 |
0xD2CE9FDE,0xA6DD04C8,0x4AD80000,
|
|
179 |
0x0DA5D8E8,0xD408CB01,0x3D8E0000,
|
|
180 |
0x22EB58E9,0x86B77A60,0x30450000,
|
|
181 |
0x4779611E,0xAB2F7655,0x22FB0000,
|
|
182 |
0x686DA869,0xD986C20B,0x15B10000
|
|
183 |
};
|
|
184 |
|
|
185 |
TInt Math::MultPow10X(TRealX& aTrg, TInt aPower)
|
|
186 |
{
|
|
187 |
if (aTrg.IsZero())
|
|
188 |
return KErrNone;
|
|
189 |
if (!aTrg.IsFinite())
|
|
190 |
{
|
|
191 |
if (aTrg.IsNaN())
|
|
192 |
return KErrArgument;
|
|
193 |
return KErrOverflow;
|
|
194 |
}
|
|
195 |
if (aPower==0)
|
|
196 |
return KErrNone;
|
|
197 |
// smallest non-zero TRealX is 2^-32766=2.83E-9864
|
|
198 |
// largest TRealX is 2^32768=1.42E+9864
|
|
199 |
// Therefore aPower>=19728 guarantees an overflow
|
|
200 |
// and aPower<=-19728 guarantees an underflow
|
|
201 |
if (aPower>=19728)
|
|
202 |
{
|
|
203 |
aTrg.SetInfinite(aTrg.iSign);
|
|
204 |
return KErrOverflow;
|
|
205 |
}
|
|
206 |
if (aPower<=-19728)
|
|
207 |
{
|
|
208 |
aTrg.SetZero(aTrg.iSign);
|
|
209 |
return KErrUnderflow;
|
|
210 |
}
|
|
211 |
const TRealX* powTab;
|
|
212 |
if (aPower>0)
|
|
213 |
powTab=(const TRealX*)PositivePowersOfTen;
|
|
214 |
else
|
|
215 |
{
|
|
216 |
aPower=-aPower;
|
|
217 |
powTab=(const TRealX*)NegativePowersOfTen;
|
|
218 |
}
|
|
219 |
TInt r=KErrNone;
|
|
220 |
while(aPower>=8192)
|
|
221 |
{
|
|
222 |
aPower-=8192;
|
|
223 |
r=aTrg.MultEq(powTab[31+31+7]);
|
|
224 |
if (r!=KErrNone)
|
|
225 |
return r;
|
|
226 |
}
|
|
227 |
TInt bottom5=aPower & 0x1f;
|
|
228 |
TInt middle5=(aPower>>5)&0x1f;
|
|
229 |
TInt top3=(aPower>>10);
|
|
230 |
if (top3)
|
|
231 |
r=aTrg.MultEq(powTab[31+31+top3-1]);
|
|
232 |
if (r==KErrNone && middle5)
|
|
233 |
r=aTrg.MultEq(powTab[31+middle5-1]);
|
|
234 |
if (r==KErrNone && bottom5)
|
|
235 |
r=aTrg.MultEq(powTab[bottom5-1]);
|
|
236 |
return r;
|
|
237 |
}
|
|
238 |
|
|
239 |
|
|
240 |
|
|
241 |
|
|
242 |
EXPORT_C TInt Math::Pow10(TReal &aTrg,const TInt aExp)
|
|
243 |
/**
|
|
244 |
Calculates the value of 10 to the power of x.
|
|
245 |
|
|
246 |
@param aTrg A reference containing the result.
|
|
247 |
@param aExp The power to which 10 is to be raised.
|
|
248 |
|
|
249 |
@return KErrNone if successful, otherwise another of
|
|
250 |
the system-wide error codes.
|
|
251 |
*/
|
|
252 |
//
|
|
253 |
// Write the binary floating point representation of a power of 10 to aSrc
|
|
254 |
// Returns KErrNone if OK or a negative error number otherwise.
|
|
255 |
//
|
|
256 |
{
|
|
257 |
#ifndef __USE_VFP_MATH
|
|
258 |
TRealX x=1;
|
|
259 |
TInt r=Math::MultPow10X(x,aExp);
|
|
260 |
TInt s=x.GetTReal(aTrg);
|
|
261 |
return (r==KErrNone)?s:r;
|
|
262 |
#else // __USE_VFP_MATH
|
|
263 |
return Math::Pow(aTrg,10,aExp);
|
|
264 |
#endif
|
|
265 |
}
|