|
1 /* |
|
2 * Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * The original NIST Statistical Test Suite code is placed in public domain. |
|
16 * (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) |
|
17 * |
|
18 * This software was developed at the National Institute of Standards and Technology by |
|
19 * employees of the Federal Government in the course of their official duties. Pursuant |
|
20 * to title 17 Section 105 of the United States Code this software is not subject to |
|
21 * copyright protection and is in the public domain. The NIST Statistical Test Suite is |
|
22 * an experimental system. NIST assumes no responsibility whatsoever for its use by other |
|
23 * parties, and makes no guarantees, expressed or implied, about its quality, reliability, |
|
24 * or any other characteristic. We would appreciate acknowledgment if the software is used. |
|
25 */ |
|
26 |
|
27 #include "openc.h" |
|
28 #include "../include/externs.h" |
|
29 #include "../include/cephes.h" |
|
30 |
|
31 void |
|
32 LinearComplexity(int M, int n) |
|
33 { |
|
34 int i, ii, j, d, N, L, m, N_, sign, K = 6; |
|
35 double p_value, T_, mean, nu[7], chi2; |
|
36 double pi[7] = { 0.01047, 0.03125, 0.12500, 0.50000, 0.25000, 0.06250, 0.020833 }; |
|
37 BitSequence* T = NULL; |
|
38 BitSequence* P = NULL; |
|
39 BitSequence* B_ = NULL; |
|
40 BitSequence* C = NULL; |
|
41 |
|
42 N = (int)floor(n/M); |
|
43 if ( ((B_ = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) || |
|
44 ((C = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) || |
|
45 ((P = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) || |
|
46 ((T = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ) { |
|
47 printf("Insufficient Memory for Work Space:: Linear Complexity Test\n"); |
|
48 if ( B_!= NULL ) |
|
49 free(B_); |
|
50 if ( C != NULL ) |
|
51 free(C); |
|
52 if ( P != NULL ) |
|
53 free(P); |
|
54 if ( T != NULL ) |
|
55 free(T); |
|
56 return; |
|
57 } |
|
58 |
|
59 |
|
60 fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n"); |
|
61 fprintf(stats[TEST_LINEARCOMPLEXITY], "\tL I N E A R C O M P L E X I T Y\n"); |
|
62 fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n"); |
|
63 fprintf(stats[TEST_LINEARCOMPLEXITY], "\tM (substring length) = %d\n", M); |
|
64 fprintf(stats[TEST_LINEARCOMPLEXITY], "\tN (number of substrings) = %d\n", N); |
|
65 fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n"); |
|
66 fprintf(stats[TEST_LINEARCOMPLEXITY], " F R E Q U E N C Y \n"); |
|
67 fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n"); |
|
68 fprintf(stats[TEST_LINEARCOMPLEXITY], " C0 C1 C2 C3 C4 C5 C6 CHI2 P-value\n"); |
|
69 fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n"); |
|
70 fprintf(stats[TEST_LINEARCOMPLEXITY], "\tNote: %d bits were discarded!\n", n%M); |
|
71 |
|
72 for ( i=0; i<K+1; i++ ) |
|
73 nu[i] = 0.00; |
|
74 for ( ii=0; ii<N; ii++ ) { |
|
75 for ( i=0; i<M; i++ ) { |
|
76 B_[i] = 0; |
|
77 C[i] = 0; |
|
78 T[i] = 0; |
|
79 P[i] = 0; |
|
80 } |
|
81 L = 0; |
|
82 m = -1; |
|
83 d = 0; |
|
84 C[0] = 1; |
|
85 B_[0] = 1; |
|
86 |
|
87 /* DETERMINE LINEAR COMPLEXITY */ |
|
88 N_ = 0; |
|
89 while ( N_ < M ) { |
|
90 d = (int)epsilon[ii*M+N_]; |
|
91 for ( i=1; i<=L; i++ ) |
|
92 d += C[i] * epsilon[ii*M+N_-i]; |
|
93 d = d%2; |
|
94 if ( d == 1 ) { |
|
95 for ( i=0; i<M; i++ ) { |
|
96 T[i] = C[i]; |
|
97 P[i] = 0; |
|
98 } |
|
99 for ( j=0; j<M; j++ ) |
|
100 if ( B_[j] == 1 ) |
|
101 P[j+N_-m] = 1; |
|
102 for ( i=0; i<M; i++ ) |
|
103 C[i] = (BitSequence)((C[i] + P[i])%2); |
|
104 if ( L <= N_/2 ) { |
|
105 L = N_ + 1 - L; |
|
106 m = N_; |
|
107 for ( i=0; i<M; i++ ) |
|
108 B_[i] = T[i]; |
|
109 } |
|
110 } |
|
111 N_++; |
|
112 } |
|
113 if (((M+1)%2) == 0 ) |
|
114 sign = -1; |
|
115 else |
|
116 sign = 1; |
|
117 mean = M/2.0 + (9.0+sign)/36.0 - 1.0/pow(2, M) * (M/3.0 + 2.0/9.0); |
|
118 if ( (M%2) == 0 ) |
|
119 sign = 1; |
|
120 else |
|
121 sign = -1; |
|
122 T_ = sign * (L - mean) + 2.0/9.0; |
|
123 |
|
124 if ( T_ <= -2.5 ) |
|
125 nu[0]++; |
|
126 else if ( T_ > -2.5 && T_ <= -1.5 ) |
|
127 nu[1]++; |
|
128 else if ( T_ > -1.5 && T_ <= -0.5 ) |
|
129 nu[2]++; |
|
130 else if ( T_ > -0.5 && T_ <= 0.5 ) |
|
131 nu[3]++; |
|
132 else if ( T_ > 0.5 && T_ <= 1.5 ) |
|
133 nu[4]++; |
|
134 else if ( T_ > 1.5 && T_ <= 2.5 ) |
|
135 nu[5]++; |
|
136 else |
|
137 nu[6]++; |
|
138 } |
|
139 chi2 = 0.00; |
|
140 for ( i=0; i<K+1; i++ ) |
|
141 fprintf(stats[TEST_LINEARCOMPLEXITY], "%4d ", (int)nu[i]); |
|
142 for ( i=0; i<K+1; i++ ) |
|
143 chi2 += pow(nu[i]-N*pi[i], 2) / (N*pi[i]); |
|
144 p_value = cephes_igamc(K/2.0, chi2/2.0); |
|
145 |
|
146 fprintf(stats[TEST_LINEARCOMPLEXITY], "%9.6f%9.6f\n", chi2, p_value); |
|
147 fprintf(results[TEST_LINEARCOMPLEXITY], "%f\n", p_value); |
|
148 |
|
149 free(B_); |
|
150 free(P); |
|
151 free(C); |
|
152 free(T); |
|
153 } |