|
1 // Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // e32test\heap\t_heap2.cpp |
|
15 // Overview: |
|
16 // Tests RHeap class, including a stress test and a "grow in place" |
|
17 // ReAlloc test. |
|
18 // API Information: |
|
19 // RHeap |
|
20 // Details: |
|
21 // - Test allocation on fixed length heaps in local, disconnected chunks for |
|
22 // different heap sizes and alignments. Assumes knowledge of heap |
|
23 // implementation. |
|
24 // - Test allocation, free, reallocation and compression on chunk heaps with |
|
25 // different maximum and minimum lengths and alignments. Assumes knowledge |
|
26 // of heap implementation. |
|
27 // - Stress test heap implementation with a single thread that allocates, frees |
|
28 // and reallocates cells, and checks the heap. |
|
29 // - Stress test heap implementation with two threads that run concurrently. |
|
30 // - Create a chunk heap, test growing in place by allocating a cell and |
|
31 // then reallocating additional space until failure, verify that the cell |
|
32 // did not move and the size was increased. |
|
33 // - The heap is checked to verify that no cells remain allocated after the |
|
34 // tests are complete. |
|
35 // Platforms/Drives/Compatibility: |
|
36 // All |
|
37 // Assumptions/Requirement/Pre-requisites: |
|
38 // Failures and causes: |
|
39 // Base Port information: |
|
40 // |
|
41 // |
|
42 |
|
43 #include <e32test.h> |
|
44 #include <e32hal.h> |
|
45 #include <e32def.h> |
|
46 #include <e32def_private.h> |
|
47 |
|
48 // Needed for KHeapShrinkHysRatio which is now ROM 'patchdata' |
|
49 #include "TestRHeapShrink.h" |
|
50 |
|
51 #define DECL_GET(T,x) inline T x() const {return i##x;} |
|
52 #define DECL_GET2(T,x,y) inline T y() const {return i##x;} |
|
53 |
|
54 |
|
55 #ifdef __EABI__ |
|
56 IMPORT_D extern const TInt KHeapMinCellSize; |
|
57 #else |
|
58 const TInt KHeapMinCellSize = 0; |
|
59 #endif |
|
60 |
|
61 RTest test(_L("T_HEAP2")); |
|
62 |
|
63 #define TEST_ALIGN(p,a) test((TLinAddr(p)&((a)-1))==0) |
|
64 |
|
65 struct STestCell |
|
66 { |
|
67 enum {EMagic = 0xb8aa3b29}; |
|
68 |
|
69 TUint32 iLength; |
|
70 TUint32 iData[1]; |
|
71 |
|
72 void Set(TInt aLength); |
|
73 void Verify(TInt aLength); |
|
74 void Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength); |
|
75 }; |
|
76 |
|
77 void STestCell::Set(TInt aLength) |
|
78 { |
|
79 TInt i; |
|
80 TUint32 x = (TUint32)this ^ (TUint32)aLength ^ (TUint32)EMagic; |
|
81 aLength -= RHeap::EAllocCellSize; |
|
82 if (aLength==0) |
|
83 return; |
|
84 iLength = x; |
|
85 aLength /= sizeof(TUint32); |
|
86 for (i=0; i<aLength-1; ++i) |
|
87 { |
|
88 x *= 69069; |
|
89 x += 41; |
|
90 iData[i] = x; |
|
91 } |
|
92 } |
|
93 |
|
94 void STestCell::Verify(TInt aLength) |
|
95 { |
|
96 Verify(this, aLength, aLength); |
|
97 } |
|
98 |
|
99 void STestCell::Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength) |
|
100 { |
|
101 TInt i; |
|
102 TUint32 x = (TUint32)aInitPtr ^ (TUint32)aInitLength ^ (TUint32)EMagic; |
|
103 aLength -= RHeap::EAllocCellSize; |
|
104 if (aLength==0) |
|
105 return; |
|
106 test(iLength == x); |
|
107 aLength /= sizeof(TUint32); |
|
108 for (i=0; i<aLength-1; ++i) |
|
109 { |
|
110 x *= 69069; |
|
111 x += 41; |
|
112 test(iData[i] == x); |
|
113 } |
|
114 } |
|
115 |
|
116 class RTestHeap : public RHeap |
|
117 { |
|
118 public: |
|
119 DECL_GET(TInt,AccessCount) |
|
120 DECL_GET(TInt,HandleCount) |
|
121 DECL_GET(TInt*,Handles) |
|
122 DECL_GET(TUint32,Flags) |
|
123 DECL_GET(TInt,CellCount) |
|
124 DECL_GET(TInt,TotalAllocSize) |
|
125 DECL_GET(TInt,MinLength) |
|
126 DECL_GET(TInt,Offset) |
|
127 DECL_GET(TInt,GrowBy) |
|
128 DECL_GET(TInt,ChunkHandle) |
|
129 DECL_GET2(const RFastLock&,Lock,LockRef) |
|
130 DECL_GET(TUint8*,Top) |
|
131 DECL_GET(TInt,Align) |
|
132 DECL_GET(TInt,MinCell) |
|
133 DECL_GET(TInt,PageSize) |
|
134 DECL_GET2(const SCell&,Free,FreeRef) |
|
135 public: |
|
136 TInt CheckAllocatedCell(const TAny* aCell) const; |
|
137 void FullCheckAllocatedCell(const TAny* aCell) const; |
|
138 TAny* TestAlloc(TInt aSize); |
|
139 void TestFree(TAny* aPtr); |
|
140 TAny* TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0); |
|
141 void FullCheck(); |
|
142 static void WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen); |
|
143 TInt FreeCellLen(const TAny* aPtr) const; |
|
144 static RTestHeap* FixedHeap(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue); |
|
145 void TakeChunkOwnership(RChunk aChunk); |
|
146 TInt LastFreeCellLen(void) const; |
|
147 TInt CalcComp(TInt aCompSize); |
|
148 void ForceCompress(TInt aFreed); |
|
149 }; |
|
150 |
|
151 TInt RTestHeap::CheckAllocatedCell(const TAny* aCell) const |
|
152 { |
|
153 SCell* pC = GetAddress(aCell); |
|
154 TInt len = pC->len; |
|
155 TUint8* pEnd = (TUint8*)pC + len; |
|
156 TEST_ALIGN(aCell, iAlign); |
|
157 TEST_ALIGN(len, iAlign); |
|
158 test(len >= iMinCell); |
|
159 test((TUint8*)pC>=iBase && pEnd<=iTop); |
|
160 return len; |
|
161 } |
|
162 |
|
163 void RTestHeap::FullCheckAllocatedCell(const TAny* aCell) const |
|
164 { |
|
165 ((STestCell*)aCell)->Verify(CheckAllocatedCell(aCell)); |
|
166 } |
|
167 |
|
168 TAny* RTestHeap::TestAlloc(TInt aSize) |
|
169 { |
|
170 TAny* p = Alloc(aSize); |
|
171 if (p) |
|
172 { |
|
173 TInt len = CheckAllocatedCell(p); |
|
174 test((len-RHeap::EAllocCellSize)>=aSize); |
|
175 ((STestCell*)p)->Set(len); |
|
176 } |
|
177 return p; |
|
178 } |
|
179 |
|
180 void RTestHeap::TestFree(TAny* aPtr) |
|
181 { |
|
182 if (aPtr) |
|
183 FullCheckAllocatedCell(aPtr); |
|
184 Free(aPtr); |
|
185 } |
|
186 |
|
187 TAny* RTestHeap::TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode) |
|
188 { |
|
189 TInt old_len = aPtr ? CheckAllocatedCell(aPtr) : 0; |
|
190 if (aPtr) |
|
191 ((STestCell*)aPtr)->Verify(old_len); |
|
192 TAny* p = ReAlloc(aPtr, aSize, aMode); |
|
193 if (!p) |
|
194 { |
|
195 ((STestCell*)aPtr)->Verify(old_len); |
|
196 return p; |
|
197 } |
|
198 TInt new_len = CheckAllocatedCell(p); |
|
199 test((new_len-RHeap::EAllocCellSize)>=aSize); |
|
200 if (p == aPtr) |
|
201 { |
|
202 ((STestCell*)p)->Verify(p, old_len, Min(old_len, new_len)); |
|
203 if (new_len != old_len) |
|
204 ((STestCell*)p)->Set(new_len); |
|
205 return p; |
|
206 } |
|
207 test(!(aMode & ENeverMove)); |
|
208 test((new_len > old_len) || (aMode & EAllowMoveOnShrink)); |
|
209 if (old_len) |
|
210 ((STestCell*)p)->Verify(aPtr, old_len, Min(old_len, new_len)); |
|
211 if (new_len != old_len) |
|
212 ((STestCell*)p)->Set(new_len); |
|
213 return p; |
|
214 } |
|
215 |
|
216 struct SHeapCellInfo |
|
217 { |
|
218 RTestHeap* iHeap; |
|
219 TInt iTotalAlloc; |
|
220 TInt iTotalAllocSize; |
|
221 TInt iTotalFree; |
|
222 TUint8* iNextCell; |
|
223 }; |
|
224 |
|
225 void RTestHeap::WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen) |
|
226 { |
|
227 (void)aCell; |
|
228 ::SHeapCellInfo& info = *(::SHeapCellInfo*)aPtr; |
|
229 switch(aType) |
|
230 { |
|
231 case EGoodAllocatedCell: |
|
232 { |
|
233 test(aCell == info.iNextCell); |
|
234 TInt len = ((SCell*)aCell)->len; |
|
235 test(len == aLen); |
|
236 info.iNextCell += len; |
|
237 ++info.iTotalAlloc; |
|
238 info.iTotalAllocSize += (aLen-EAllocCellSize); |
|
239 STestCell* pT = (STestCell*)((TUint8*)aCell + EAllocCellSize); |
|
240 pT->Verify(len); |
|
241 break; |
|
242 } |
|
243 case EGoodFreeCell: |
|
244 { |
|
245 test(aCell == info.iNextCell); |
|
246 TInt len = ((SCell*)aCell)->len; |
|
247 test(len == aLen); |
|
248 info.iNextCell += len; |
|
249 ++info.iTotalFree; |
|
250 break; |
|
251 } |
|
252 default: |
|
253 test.Printf(_L("TYPE=%d ??\n"),aType); |
|
254 test(0); |
|
255 break; |
|
256 } |
|
257 } |
|
258 |
|
259 void RTestHeap::FullCheck() |
|
260 { |
|
261 ::SHeapCellInfo info; |
|
262 Mem::FillZ(&info, sizeof(info)); |
|
263 info.iHeap = this; |
|
264 info.iNextCell = iBase; |
|
265 DebugFunction(EWalk, (TAny*)&WalkFullCheckCell, &info); |
|
266 test(info.iNextCell == iTop); |
|
267 test(info.iTotalAlloc == iCellCount); |
|
268 test(info.iTotalAllocSize == iTotalAllocSize); |
|
269 } |
|
270 |
|
271 TInt RTestHeap::FreeCellLen(const TAny* aPtr) const |
|
272 { |
|
273 SCell* p = iFree.next; |
|
274 SCell* q = (SCell*)((TUint8*)aPtr - EAllocCellSize); |
|
275 for (; p && p!=q; p = p->next) {} |
|
276 if (p == q) |
|
277 return p->len - EAllocCellSize; |
|
278 return -1; |
|
279 } |
|
280 |
|
281 TInt RTestHeap::LastFreeCellLen(void) const |
|
282 { |
|
283 SCell* p = iFree.next; |
|
284 if (p==NULL) |
|
285 return -1; |
|
286 for (; p->next; p=p->next){} |
|
287 return p->len; |
|
288 } |
|
289 |
|
290 |
|
291 /** Checks whether a call to Compress() will actually perform a reduction |
|
292 of the heap. |
|
293 Relies on the free last cell on the heap being cell that has just been freed |
|
294 plus any extra. |
|
295 Intended for use by t_heap2.cpp - DoTest4(). |
|
296 @param aFreedSize The size in bytes of the cell that was freed |
|
297 */ |
|
298 TInt RTestHeap::CalcComp(TInt aFreedSize) |
|
299 { |
|
300 TInt largestCell=0; |
|
301 largestCell = LastFreeCellLen(); |
|
302 // if the largest cell is too small or it would have been compressed by the |
|
303 // free operation then return 0. |
|
304 if (largestCell < iPageSize || aFreedSize >= KHeapShrinkHysRatio*(iGrowBy>>8)) |
|
305 { |
|
306 return 0; |
|
307 } |
|
308 else |
|
309 { |
|
310 return _ALIGN_DOWN(aFreedSize,iPageSize); |
|
311 } |
|
312 } |
|
313 |
|
314 /** compress the heap if the KHeapShrinkRatio is too large for what we are |
|
315 expecting in DoTest4(). |
|
316 */ |
|
317 void RTestHeap::ForceCompress(TInt aFreed) |
|
318 { |
|
319 if (aFreed < KHeapShrinkHysRatio*(iGrowBy>>8)) |
|
320 { |
|
321 Compress(); |
|
322 } |
|
323 } |
|
324 RTestHeap* RTestHeap::FixedHeap(TInt aMaxLength, TInt aAlign, TBool aSingleThread) |
|
325 { |
|
326 RChunk c; |
|
327 TInt bottom = 0x40000; |
|
328 TInt top = bottom + aMaxLength; |
|
329 TInt r = c.CreateDisconnectedLocal(bottom, top, top + bottom, EOwnerThread); |
|
330 if (r!=KErrNone) |
|
331 return NULL; |
|
332 TUint8* base = c.Base() + bottom; |
|
333 RTestHeap* h = (RTestHeap*)UserHeap::FixedHeap(base, aMaxLength, aAlign, aSingleThread); |
|
334 if (!aAlign) |
|
335 aAlign = RHeap::ECellAlignment; |
|
336 test((TUint8*)h == base); |
|
337 test(h->AccessCount() == 1); |
|
338 test(h->HandleCount() == (aSingleThread ? 0 : 1)); |
|
339 test(h->Handles() == (aSingleThread ? NULL : (TInt*)&h->LockRef())); |
|
340 test(h->Flags() == TUint32(RAllocator::EFixedSize | (aSingleThread ? RAllocator::ESingleThreaded : 0))); |
|
341 test(h->CellCount() == 0); |
|
342 test(h->TotalAllocSize() == 0); |
|
343 test(h->MaxLength() == aMaxLength); |
|
344 test(h->MinLength() == h->Top() - (TUint8*)h); |
|
345 test(h->Offset() == 0); |
|
346 test(h->GrowBy() == 0); |
|
347 test(h->ChunkHandle() == 0); |
|
348 test(h->Align() == aAlign); |
|
349 TInt min_cell = _ALIGN_UP((KHeapMinCellSize + Max((TInt)RHeap::EAllocCellSize, (TInt)RHeap::EFreeCellSize)), aAlign); |
|
350 TInt hdr_len = _ALIGN_UP(sizeof(RHeap) + RHeap::EAllocCellSize, aAlign) - RHeap::EAllocCellSize; |
|
351 TInt user_len = _ALIGN_DOWN(aMaxLength - hdr_len, aAlign); |
|
352 test(h->Base() == base + hdr_len); |
|
353 test(h->MinCell() == min_cell); |
|
354 test(h->Top() - h->Base() == user_len); |
|
355 test(h->FreeRef().next == (RHeap::SCell*)h->Base()); |
|
356 h->TakeChunkOwnership(c); |
|
357 return h; |
|
358 } |
|
359 |
|
360 void RTestHeap::TakeChunkOwnership(RChunk aChunk) |
|
361 { |
|
362 iChunkHandle = aChunk.Handle(); |
|
363 ++iHandleCount; |
|
364 iHandles = &iChunkHandle; |
|
365 } |
|
366 |
|
367 |
|
368 #define ACCESS_COUNT(h) (((RTestHeap*)h)->AccessCount()) |
|
369 #define HANDLE_COUNT(h) (((RTestHeap*)h)->HandleCount()) |
|
370 #define HANDLES(h) (((RTestHeap*)h)->Handles()) |
|
371 #define FLAGS(h) (((RTestHeap*)h)->Flags()) |
|
372 #define CELL_COUNT(h) (((RTestHeap*)h)->CellCount()) |
|
373 #define TOTAL_ALLOC_SIZE(h) (((RTestHeap*)h)->TotalAllocSize()) |
|
374 #define MIN_LENGTH(h) (((RTestHeap*)h)->MinLength()) |
|
375 #define OFFSET(h) (((RTestHeap*)h)->Offset()) |
|
376 #define GROW_BY(h) (((RTestHeap*)h)->GrowBy()) |
|
377 #define CHUNK_HANDLE(h) (((RTestHeap*)h)->ChunkHandle()) |
|
378 #define LOCK_REF(h) (((RTestHeap*)h)->LockRef()) |
|
379 #define TOP(h) (((RTestHeap*)h)->Top()) |
|
380 #define ALIGN(h) (((RTestHeap*)h)->Align()) |
|
381 #define MIN_CELL(h) (((RTestHeap*)h)->MinCell()) |
|
382 #define PAGE_SIZE(h) (((RTestHeap*)h)->PageSize()) |
|
383 #define FREE_REF(h) (((RTestHeap*)h)->FreeRef()) |
|
384 |
|
385 void DoTest1(RHeap* aH) |
|
386 { |
|
387 RTestHeap* h = (RTestHeap*)aH; |
|
388 test.Printf(_L("Test Alloc: min=%x max=%x align=%d growby=%d\n"), |
|
389 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
390 TInt l; |
|
391 TAny* p = NULL; |
|
392 TUint8* next = h->Base(); |
|
393 TUint8* top = h->Top(); |
|
394 TUint8* limit = (TUint8*)h + h->MaxLength(); |
|
395 TBool fixed = h->Flags() & RAllocator::EFixedSize; |
|
396 for (l=1; l<=1024; ++l) |
|
397 { |
|
398 TInt remain1 = top - next; |
|
399 TInt xl1 = _ALIGN_UP(Max((l+RHeap::EAllocCellSize), h->MinCell()), h->Align()); |
|
400 p = h->TestAlloc(l); |
|
401 if ( (fixed && remain1 < xl1) || (next + xl1 > limit) ) |
|
402 { |
|
403 test(p == NULL); |
|
404 test(top == h->Top()); |
|
405 test.Printf(_L("Alloc failed at l=%d next=%08x\n"), l, next); |
|
406 break; |
|
407 } |
|
408 test(p == next + RHeap::EAllocCellSize); |
|
409 if (xl1 > remain1) |
|
410 { |
|
411 // no room for this cell |
|
412 TInt g = h->GrowBy(); |
|
413 while (xl1 > remain1) |
|
414 { |
|
415 top += g; |
|
416 remain1 += g; |
|
417 } |
|
418 } |
|
419 test(top == h->Top()); |
|
420 if (xl1 + h->MinCell() > remain1) |
|
421 { |
|
422 // this cell fits but remainder is too small or nonexistent |
|
423 xl1 = top - next; |
|
424 next = top; |
|
425 test(h->FreeRef().next == NULL); |
|
426 } |
|
427 else |
|
428 { |
|
429 // this cell fits and remainder can be reused |
|
430 next += xl1; |
|
431 } |
|
432 test(aH->AllocLen(p) == xl1 - RHeap::EAllocCellSize); |
|
433 } |
|
434 h->FullCheck(); |
|
435 } |
|
436 |
|
437 void DoTest2(RHeap* aH) |
|
438 { |
|
439 RTestHeap* h = (RTestHeap*)aH; |
|
440 test.Printf(_L("Test Free: min=%x max=%x align=%d growby=%d\n"), |
|
441 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
442 TInt al; |
|
443 TInt min = h->MinCell(); |
|
444 TBool pad = EFalse; |
|
445 for (al=1; al<256; (void)((pad=!pad)!=0 || (al+=al+1)) ) |
|
446 { |
|
447 TAny* p[32]; |
|
448 TInt last_len = 0; |
|
449 TAny* last = NULL; |
|
450 TInt i; |
|
451 test.Printf(_L("al=%d pad=%d\n"), al, pad); |
|
452 TUint8* top=0; |
|
453 TAny* spare=0; |
|
454 TBool heapReduced = EFalse; |
|
455 for (i=0; i<32; ++i) |
|
456 { |
|
457 // Check whether the cell created for the allocation of al would end up |
|
458 // including extra bytes from the last free cell that aren't enough |
|
459 // to create a new free cell. |
|
460 top = h->Top(); |
|
461 TInt freeLen=h->LastFreeCellLen(); |
|
462 TInt actualAllocBytes = Max(_ALIGN_UP(al + RHeap::EAllocCellSize, h->Align()), min); |
|
463 TInt remainingBytes = freeLen - actualAllocBytes; |
|
464 if (remainingBytes < min) |
|
465 { |
|
466 // Force the heap to grow so that once this allocation is freed |
|
467 // the free cell left will be large enough to include the al allocation |
|
468 // and to create a new free cell if necessary. |
|
469 actualAllocBytes = _ALIGN_UP(actualAllocBytes + min, h->Align()); |
|
470 TAny* q = h->TestAlloc(actualAllocBytes); |
|
471 // Check heap has grown |
|
472 test(top < h->Top()); |
|
473 top = h->Top(); |
|
474 test(q!=NULL); |
|
475 // Have grown the heap so allocate a cell as a place holder to stop |
|
476 // the heap being shrunk and the actual cell we want to allocate from being the |
|
477 // wrong size |
|
478 spare=h->TestAlloc(8); |
|
479 h->TestFree(q); |
|
480 // Ensure heap wasn't shrunk after free |
|
481 test(top == h->Top()); |
|
482 } |
|
483 top = h->Top(); |
|
484 // Allocate the new |
|
485 p[i] = h->TestAlloc(al); |
|
486 test(p[i]!=NULL); |
|
487 if (remainingBytes < min) |
|
488 {// now safe to free any padding as p[i] now allocated and its size can't change |
|
489 h->TestFree(spare); |
|
490 } |
|
491 TInt tmp1=h->AllocLen(p[i]); |
|
492 TInt tmp2=Max(_ALIGN_UP(al+RHeap::EAllocCellSize,h->Align()), min)-RHeap::EAllocCellSize; |
|
493 test(tmp1 == tmp2); |
|
494 } |
|
495 last = (TUint8*)p[31] + _ALIGN_UP(Max((al + RHeap::EAllocCellSize), min), h->Align()); |
|
496 last_len = h->FreeCellLen(last); |
|
497 test(last_len > 0); |
|
498 if (pad) |
|
499 { |
|
500 test(h->TestAlloc(last_len) == last); |
|
501 test(h->FreeRef().next == NULL); |
|
502 } |
|
503 else |
|
504 last = NULL; |
|
505 top = h->Top(); |
|
506 for (i=0,heapReduced=EFalse; i<32; ++i) |
|
507 { |
|
508 h->TestFree(p[i]); |
|
509 TInt fl = h->FreeCellLen(p[i]); |
|
510 TInt xfl = _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize; |
|
511 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
512 { |
|
513 top = h->Top(); |
|
514 heapReduced = ETrue; |
|
515 } |
|
516 |
|
517 if (i < 31 || pad) |
|
518 test(fl == xfl); |
|
519 else |
|
520 { |
|
521 if (!heapReduced) |
|
522 test(fl == xfl + RHeap::EAllocCellSize + last_len); |
|
523 else |
|
524 { |
|
525 heapReduced = EFalse; |
|
526 } |
|
527 } |
|
528 test(h->TestAlloc(al)==p[i]); |
|
529 } |
|
530 for (i=0,heapReduced=EFalse; i<31; ++i) |
|
531 { |
|
532 TInt j = i+1; |
|
533 TUint8* q; |
|
534 // Free to adjacent cells and check that the free cell left is the combined |
|
535 // size of the 2 adjacent cells just freed |
|
536 h->TestFree(p[i]); |
|
537 h->TestFree(p[j]); |
|
538 TInt fl = h->FreeCellLen(p[i]); |
|
539 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
540 { |
|
541 top = h->Top(); |
|
542 heapReduced = ETrue; |
|
543 } |
|
544 TInt xfl = 2 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize; |
|
545 if (j < 31 || pad) |
|
546 test(fl == xfl); |
|
547 else |
|
548 { |
|
549 if (!heapReduced) |
|
550 test(fl == xfl + RHeap::EAllocCellSize + last_len); |
|
551 else |
|
552 { |
|
553 heapReduced = EFalse; |
|
554 } |
|
555 } |
|
556 test(h->FreeCellLen(p[j]) < 0); |
|
557 test(h->TestAlloc(fl)==p[i]); |
|
558 test(h->Top() == top); |
|
559 h->TestFree(p[i]); |
|
560 test(h->FreeCellLen(p[i]) == fl); |
|
561 // test when you alloc a cell that is larger than cells just freed |
|
562 // that its position is not the same as the freed cells |
|
563 // will hold for all cells except top/last one |
|
564 if (j < 31 && !pad && fl < last_len) |
|
565 { |
|
566 q = (TUint8*)h->TestAlloc(fl+1); |
|
567 if (h->Top() > top) |
|
568 top = h->Top(); |
|
569 test(h->Top() == top); |
|
570 test(q > p[i]); |
|
571 h->TestFree(q); |
|
572 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
573 { |
|
574 top = h->Top(); |
|
575 heapReduced = ETrue; |
|
576 } |
|
577 } |
|
578 // check cell that is just smaller than space but not small enough |
|
579 // for a new free cell to be created, is the size of whole free cell |
|
580 test(h->TestAlloc(fl-min+1)==p[i]); |
|
581 test(h->Top() == top); |
|
582 test(h->AllocLen(p[i])==fl); |
|
583 h->TestFree(p[i]); |
|
584 // Check cell that is small enough for new free cell and alloc'd cell to be |
|
585 // created at p[i] cell is created at p[i] |
|
586 test(h->TestAlloc(fl-min)==p[i]); |
|
587 test(h->Top() == top); |
|
588 // check free cell is at expected position |
|
589 q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize; |
|
590 test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize); |
|
591 // alloc 0 length cell at q, will work as new cell of min length will be created |
|
592 test(h->TestAlloc(0) == q); |
|
593 test(h->Top() == top); |
|
594 h->TestFree(p[i]); |
|
595 test(h->FreeCellLen(p[i]) == fl - min); |
|
596 h->TestFree(q); |
|
597 // again check free cells are combined |
|
598 test(h->FreeCellLen(q) < 0); |
|
599 test(h->FreeCellLen(p[i]) == fl); |
|
600 // check reallocating the cells places them back to same positions |
|
601 test(h->TestAlloc(al)==p[i]); |
|
602 test(h->Top() == top); |
|
603 test(h->TestAlloc(al)==p[j]); |
|
604 test(h->Top() == top); |
|
605 if (pad) |
|
606 test(h->FreeRef().next == NULL); |
|
607 } |
|
608 for (i=0,heapReduced=EFalse; i<30; ++i) |
|
609 { |
|
610 TInt j = i+1; |
|
611 TInt k = i+2; |
|
612 TUint8* q; |
|
613 // Free 3 adjacent cells and check free cell created is combined size |
|
614 h->TestFree(p[i]); |
|
615 h->TestFree(p[k]); |
|
616 h->TestFree(p[j]); |
|
617 h->FullCheck(); |
|
618 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
619 { |
|
620 top = h->Top(); |
|
621 heapReduced = ETrue; |
|
622 } |
|
623 TInt fl = h->FreeCellLen(p[i]); |
|
624 TInt xfl = 3 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize; |
|
625 if (k < 31 || pad) |
|
626 test(fl == xfl); |
|
627 else |
|
628 { |
|
629 if (!heapReduced) |
|
630 test(fl == xfl + RHeap::EAllocCellSize + last_len); |
|
631 else |
|
632 { |
|
633 heapReduced = EFalse; |
|
634 } |
|
635 } |
|
636 test(h->FreeCellLen(p[j]) < 0); |
|
637 test(h->FreeCellLen(p[k]) < 0); |
|
638 //ensure created free cell is allocated to new cell of free cell size |
|
639 test(h->TestAlloc(fl)==p[i]); |
|
640 test(h->Top() == top); |
|
641 h->TestFree(p[i]); |
|
642 test(h->FreeCellLen(p[i]) == fl); |
|
643 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
644 top = h->Top(); |
|
645 if (k < 31 && !pad && fl < last_len) |
|
646 { |
|
647 // Test new cell one larger than free cell size is allocated somewhere else |
|
648 q = (TUint8*)h->TestAlloc(fl+1); |
|
649 if (h->Top() > top) |
|
650 top = h->Top(); |
|
651 test(h->Top() == top); |
|
652 test(q > p[i]); |
|
653 h->TestFree(q); |
|
654 if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize |
|
655 { |
|
656 top = h->Top(); |
|
657 heapReduced = ETrue; |
|
658 } |
|
659 } |
|
660 // check allocating cell just smaller than free cell size but |
|
661 // too large for neew free cell to be created, is size of whole free cell |
|
662 test(h->TestAlloc(fl-min+1)==p[i]); |
|
663 test(h->Top() == top); |
|
664 test(h->AllocLen(p[i])==fl); |
|
665 h->TestFree(p[i]); |
|
666 // ensure free cell is created this time as well as alloc'd cell |
|
667 test(h->TestAlloc(fl-min)==p[i]); |
|
668 test(h->Top() == top); |
|
669 q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize; |
|
670 test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize); |
|
671 test(h->TestAlloc(0) == q); |
|
672 test(h->Top() == top); |
|
673 h->TestFree(p[i]); |
|
674 test(h->FreeCellLen(p[i]) == fl - min); |
|
675 h->TestFree(q); |
|
676 test(h->FreeCellLen(q) < 0); |
|
677 test(h->FreeCellLen(p[i]) == fl); |
|
678 // realloc all cells and check heap not expanded |
|
679 test(h->TestAlloc(al)==p[i]); |
|
680 test(h->Top() == top); |
|
681 test(h->TestAlloc(al)==p[j]); |
|
682 test(h->Top() == top); |
|
683 test(h->TestAlloc(al)==p[k]); |
|
684 test(h->Top() == top); |
|
685 // If padding than no space should left on heap |
|
686 if (pad) |
|
687 test(h->FreeRef().next == NULL); |
|
688 } |
|
689 // when padding this will free padding from top of heap |
|
690 h->TestFree(last); |
|
691 } |
|
692 h->FullCheck(); |
|
693 } |
|
694 |
|
695 void DoTest3(RHeap* aH) |
|
696 { |
|
697 RTestHeap* h = (RTestHeap*)aH; |
|
698 test.Printf(_L("Test ReAlloc: min=%x max=%x align=%d growby=%d\n"), |
|
699 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
700 // allocate continuous heap cell, then free them and reallocate again |
|
701 TInt al; |
|
702 for (al=1; al<256; al+=al+1) |
|
703 { |
|
704 TAny* p0 = h->TestAlloc(al); |
|
705 TInt al0 = h->AllocLen(p0); |
|
706 h->TestFree(p0); |
|
707 TAny* p1 = h->TestReAlloc(NULL, al, 0); |
|
708 TInt al1 = h->AllocLen(p1); |
|
709 test(p1 == p0); |
|
710 test(al1 == al0); |
|
711 h->TestFree(p1); |
|
712 TAny* p2 = h->TestAlloc(1); |
|
713 TAny* p3 = h->TestReAlloc(p2, al, 0); |
|
714 test(p3 == p0); |
|
715 TInt al3 = h->AllocLen(p3); |
|
716 test(al3 == al0); |
|
717 h->TestFree(p3); |
|
718 TAny* p4 = h->TestAlloc(1024); |
|
719 TAny* p5 = h->TestReAlloc(p4, al, 0); |
|
720 test(p5 == p0); |
|
721 TInt al5 = h->AllocLen(p5); |
|
722 test(al5 == al0); |
|
723 h->TestFree(p5); |
|
724 } |
|
725 TInt i; |
|
726 TInt j; |
|
727 for (j=0; j<30; j+=3) |
|
728 { |
|
729 TAny* p[30]; |
|
730 TInt ala[30]; |
|
731 TInt fla[30]; |
|
732 h->Reset(); |
|
733 for (i=0; i<30; ++i) |
|
734 { |
|
735 p[i] = h->TestAlloc(8*i*i); |
|
736 ala[i] = h->AllocLen(p[i]); |
|
737 fla[i] = 0; |
|
738 } |
|
739 for (i=1; i<30; i+=3) |
|
740 { |
|
741 h->TestFree(p[i]); |
|
742 fla[i] = h->FreeCellLen(p[i]); |
|
743 test(fla[i] == ala[i]); |
|
744 test(h->FreeCellLen(p[i-1]) < 0); |
|
745 test(h->FreeCellLen(p[i+1]) < 0); |
|
746 } |
|
747 h->FullCheck(); |
|
748 TInt al1 = _ALIGN_UP(Max((RHeap::EAllocCellSize + 1), h->MinCell()), h->Align()); |
|
749 // adjust al1 for some case when reallocated heap cell will not be shrinked because remainder will not big enough |
|
750 // to form a new free cell due to a big KHeapMinCellSize value |
|
751 TInt alaj = ala[j] + RHeap::EAllocCellSize; |
|
752 if (al1 < alaj && alaj - al1 < h->MinCell()) |
|
753 al1 = alaj; |
|
754 TAny* p1 = h->TestReAlloc(p[j], 1, RHeap::ENeverMove); |
|
755 test(p1 == p[j]); |
|
756 test(h->AllocLen(p1) == al1 - RHeap::EAllocCellSize); |
|
757 TAny* p1b = (TUint8*)p1 + al1; |
|
758 test(h->FreeCellLen(p1b) == fla[j+1] + RHeap::EAllocCellSize + ala[j] - al1); |
|
759 TInt l2 = ala[j] + fla[j+1] + RHeap::EAllocCellSize; // max without moving |
|
760 TInt l3 = l2 - h->MinCell(); |
|
761 TAny* p3 = h->TestReAlloc(p[j], l3, RHeap::ENeverMove); |
|
762 test(p3 == p[j]); |
|
763 TAny* p3b = (TUint8*)p3 + h->AllocLen(p3) + RHeap::EAllocCellSize; |
|
764 test(h->FreeCellLen(p3b) == h->MinCell() - RHeap::EAllocCellSize); |
|
765 TAny* p2 = h->TestReAlloc(p[j], l2, RHeap::ENeverMove); |
|
766 test(p2 == p[j]); |
|
767 test(h->AllocLen(p2) == l2); |
|
768 TAny* p4 = h->TestReAlloc(p[j], l2+1, RHeap::ENeverMove); |
|
769 test(p4 == NULL); |
|
770 test(h->AllocLen(p2) == l2); |
|
771 TAny* p5 = h->TestReAlloc(p[j], l2+1, 0); |
|
772 TInt k = 0; |
|
773 for (; k<30 && fla[k] <= l2; ++k) {} |
|
774 if (k < 30) |
|
775 test(p5 == p[k]); |
|
776 else |
|
777 test(p5 >= (TUint8*)p[29] + ala[29]); |
|
778 test(h->FreeCellLen(p2) == ala[j] + ala[j+1] + RHeap::EAllocCellSize); |
|
779 TInt ali = _ALIGN_UP(RHeap::EAllocCellSize,h->Align()); |
|
780 TAny* p6b = (TUint8*)p[j+2] + ala[j+2] - ali + RHeap::EAllocCellSize; |
|
781 test(h->FreeCellLen(p6b) < 0); |
|
782 TAny* p6 = h->TestReAlloc(p[j+2], ala[j+2] - ali , 0); |
|
783 test(p6 == p[j+2]); |
|
784 if (h->AllocLen(p6) != ala[j+2]) // allocated heap cell size changed |
|
785 test(h->FreeCellLen(p6b) == h->MinCell() - RHeap::EAllocCellSize); |
|
786 TInt g = h->GrowBy(); |
|
787 TAny* p7 = h->TestReAlloc(p5, 8*g, 0); |
|
788 test(p7 >= p5); |
|
789 TUint8* p8 = (TUint8*)p7 - RHeap::EAllocCellSize + al1; |
|
790 TUint8* p9 = (TUint8*)_ALIGN_UP(TLinAddr(p8), h->PageSize()); |
|
791 if (p9-p8 < h->MinCell()) |
|
792 p9 += h->PageSize(); |
|
793 TAny* p7b = h->TestReAlloc(p7, 1, 0); |
|
794 test(p7b == p7); |
|
795 test(h->Top() + (RHeap::EAllocCellSize & (h->Align()-1)) == p9); |
|
796 |
|
797 h->FullCheck(); |
|
798 } |
|
799 } |
|
800 |
|
801 // Test compression |
|
802 // {1 free cell, >1 free cell} x {reduce cell, eliminate cell, reduce cell but too small} |
|
803 // |
|
804 void DoTest4(RHeap* aH) |
|
805 { |
|
806 RTestHeap* h = (RTestHeap*)aH; |
|
807 test.Printf(_L("Test Compress: min=%x max=%x align=%d growby=%d\n"), |
|
808 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
809 TInt page_size; |
|
810 UserHal::PageSizeInBytes(page_size); |
|
811 test(page_size == h->PageSize()); |
|
812 TInt g = h->GrowBy(); |
|
813 TEST_ALIGN(g, page_size); |
|
814 test(g >= page_size); |
|
815 RChunk c; |
|
816 c.SetHandle(h->ChunkHandle()); |
|
817 TInt align = h->Align(); |
|
818 TInt minc = h->MinCell(); |
|
819 |
|
820 TInt orig_size = c.Size(); |
|
821 TUint8* orig_top = h->Top(); |
|
822 |
|
823 // size in bytes that last free cell on the top of the heap must be |
|
824 // before the heap will be shrunk, size must include the no of bytes to |
|
825 // store the cell data/header i.e RHeap::EAllocCellSize |
|
826 TInt shrinkThres = KHeapShrinkHysRatio*(g>>8); |
|
827 |
|
828 TInt pass; |
|
829 for (pass=0; pass<2; ++pass) |
|
830 { |
|
831 TUint8* p0 = (TUint8*)h->TestAlloc(4); |
|
832 test(p0 == h->Base() + RHeap::EAllocCellSize); |
|
833 TInt l1 = h->Top() - (TUint8*)h->FreeRef().next; |
|
834 TEST_ALIGN(l1, align); |
|
835 l1 -= RHeap::EAllocCellSize; |
|
836 TUint8* p1; |
|
837 // Grow heap by 2*iGrowBy bytes |
|
838 p1 = (TUint8*)h->TestAlloc(l1 + 2*g); |
|
839 test(p1 == p0 + h->AllocLen(p0) + RHeap::EAllocCellSize); |
|
840 test(h->Top() - orig_top == 2*g); |
|
841 test(c.Size() - orig_size == 2*g); |
|
842 // May compress heap, may not |
|
843 h->TestFree(p1); |
|
844 h->ForceCompress(2*g); |
|
845 test(h->Top() == orig_top); |
|
846 test(c.Size() == orig_size); |
|
847 test((TUint8*)h->FreeRef().next == p1 - RHeap::EAllocCellSize); |
|
848 h->FullCheck(); |
|
849 //if KHeapShrinkHysRatio is > 2.0 then heap compression will occur here |
|
850 test(h->Compress() == 0); |
|
851 test(h->TestAlloc(l1) == p1); |
|
852 test(h->FreeRef().next == NULL); |
|
853 if (pass) |
|
854 h->TestFree(p0); // leave another free cell on second pass |
|
855 TInt l2 = g - RHeap::EAllocCellSize; |
|
856 // Will grow heap by iGrowBy bytes |
|
857 TUint8* p2 = (TUint8*)h->TestAlloc(l2); |
|
858 test(p2 == orig_top + RHeap::EAllocCellSize); |
|
859 test(h->Top() - orig_top == g); |
|
860 test(c.Size() - orig_size == g); |
|
861 // may or may not compress heap |
|
862 h->TestFree(p2); |
|
863 if (l2+RHeap::EAllocCellSize >= shrinkThres) |
|
864 { |
|
865 // When KHeapShrinkRatio small enough heap will have been compressed |
|
866 test(h->Top() == orig_top); |
|
867 if (pass) |
|
868 { |
|
869 test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize); |
|
870 test((TUint8*)h->FreeRef().next->next == NULL); |
|
871 } |
|
872 else |
|
873 test((TUint8*)h->FreeRef().next == NULL); |
|
874 } |
|
875 else |
|
876 { |
|
877 test(h->Top() - orig_top == g); |
|
878 if (pass) |
|
879 { |
|
880 test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize); |
|
881 test((TUint8*)h->FreeRef().next->next == orig_top); |
|
882 } |
|
883 else |
|
884 test((TUint8*)h->FreeRef().next == orig_top); |
|
885 } |
|
886 // this compress will only do anything if the KHeapShrinkRatio is large |
|
887 // enough to introduce hysteresis otherwise the heap would have been compressed |
|
888 // by the free operation itself |
|
889 TInt tmp1,tmp2; |
|
890 tmp2=h->CalcComp(g); |
|
891 tmp1=h->Compress(); |
|
892 test(tmp1 == tmp2); |
|
893 test(h->Top() == orig_top); |
|
894 test(c.Size() == orig_size); |
|
895 h->FullCheck(); |
|
896 // shouldn't compress heap as already compressed |
|
897 test(h->Compress() == 0); |
|
898 //grow heap by iGrowBy bytes |
|
899 test(h->TestAlloc(l2) == p2); |
|
900 //grow heap by iGrowBy bytes |
|
901 TUint8* p3 = (TUint8*)h->TestAlloc(l2); |
|
902 test(p3 == p2 + g); |
|
903 test(h->Top() - orig_top == 2*g); |
|
904 test(c.Size() - orig_size == 2*g); |
|
905 // may or may not reduce heap |
|
906 h->TestFree(p2); |
|
907 // may or may not reduce heap |
|
908 h->TestFree(p3); |
|
909 h->ForceCompress(2*g); |
|
910 test(h->Top() == orig_top); |
|
911 test(c.Size() == orig_size); |
|
912 h->FullCheck(); |
|
913 if (pass) |
|
914 { |
|
915 test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize); |
|
916 test((TUint8*)h->FreeRef().next->next == NULL); |
|
917 } |
|
918 else |
|
919 test((TUint8*)h->FreeRef().next == NULL); |
|
920 //grow heap by iGrowBy bytes |
|
921 test(h->TestAlloc(l2) == p2); |
|
922 //grow heap by iGrowBy*2 + page size bytes |
|
923 test(h->TestAlloc(l2 + g + page_size) == p3); |
|
924 test(h->Top() - orig_top == 4*g); |
|
925 test(c.Size() - orig_size == 4*g); |
|
926 // will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatioDflt |
|
927 test(h->TestReAlloc(p3, page_size - RHeap::EAllocCellSize, 0) == p3); |
|
928 h->ForceCompress(g+page_size); |
|
929 test(h->Top() - orig_top == g + page_size); |
|
930 test(c.Size() - orig_size == g + page_size); |
|
931 h->FullCheck(); |
|
932 // will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1 |
|
933 h->TestFree(p2); |
|
934 // will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1 && g<=page_size |
|
935 // or KHeapShrinkHysRatio >= 2.0 and g==page_size |
|
936 h->TestFree(p3); |
|
937 // may or may not perform further compression |
|
938 tmp1=h->CalcComp(g+page_size); |
|
939 tmp2=h->Compress(); |
|
940 test(tmp1 == tmp2); |
|
941 test(h->Top() == orig_top); |
|
942 test(c.Size() == orig_size); |
|
943 h->FullCheck(); |
|
944 test(h->TestAlloc(l2 - minc) == p2); |
|
945 test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc); |
|
946 test(h->Top() - orig_top == 4*g); |
|
947 test(c.Size() - orig_size == 4*g); |
|
948 h->TestFree(p3 - minc); |
|
949 h->ForceCompress(l2 + g + page_size + minc); |
|
950 test(h->Top() - orig_top == g); |
|
951 test(c.Size() - orig_size == g); |
|
952 h->FullCheck(); |
|
953 if (pass) |
|
954 { |
|
955 test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize); |
|
956 test((TUint8*)h->FreeRef().next->next == p3 - minc - RHeap::EAllocCellSize); |
|
957 } |
|
958 else |
|
959 test((TUint8*)h->FreeRef().next == p3 - minc - RHeap::EAllocCellSize); |
|
960 h->TestFree(p2); |
|
961 if (l2+RHeap::EAllocCellSize >= shrinkThres) |
|
962 { |
|
963 // When KHeapShrinkRatio small enough heap will have been compressed |
|
964 test(h->Top() == orig_top); |
|
965 test(c.Size() - orig_size == 0); |
|
966 } |
|
967 else |
|
968 { |
|
969 test(h->Top() - orig_top == g); |
|
970 test(c.Size() - orig_size == g); |
|
971 } |
|
972 h->FullCheck(); |
|
973 if ( ((TLinAddr)orig_top & (align-1)) == 0) |
|
974 { |
|
975 TAny* free; |
|
976 TEST_ALIGN(p2 - RHeap::EAllocCellSize, page_size); |
|
977 // will have free space of g-minc |
|
978 test(h->TestAlloc(l2 + minc) == p2); |
|
979 test(h->Top() - orig_top == 2*g); |
|
980 test(c.Size() - orig_size == 2*g); |
|
981 free = pass ? h->FreeRef().next->next : h->FreeRef().next; |
|
982 test(free != NULL); |
|
983 test(h->TestReAlloc(p2, l2 - 4, 0) == p2); |
|
984 TInt freeSp = g-minc + (l2+minc - (l2-4)); |
|
985 TInt adjust = 0; |
|
986 if (freeSp >= shrinkThres && freeSp-page_size >= minc) |
|
987 { |
|
988 // if page_size is less than growBy (g) then heap will be shrunk |
|
989 // by less than a whole g. |
|
990 adjust = g-((page_size<g)?page_size:0); |
|
991 } |
|
992 test(h->Top() - orig_top == 2*g - adjust); |
|
993 test(c.Size() - orig_size == 2*g - adjust); |
|
994 free = pass ? h->FreeRef().next->next : h->FreeRef().next; |
|
995 test(free != NULL); |
|
996 TEST_ALIGN(TLinAddr(free)+4, page_size); |
|
997 test(h->TestAlloc(l2 + g + page_size + 4) == p3 - 4); |
|
998 test(h->Top() - orig_top == 4*g - adjust); |
|
999 test(c.Size() - orig_size == 4*g - adjust); |
|
1000 h->TestFree(p3 - 4); |
|
1001 h->ForceCompress(l2 + g + page_size + 4); |
|
1002 test(h->Top() - orig_top == g + page_size); |
|
1003 test(c.Size() - orig_size == g + page_size); |
|
1004 h->FullCheck(); |
|
1005 h->TestFree(p2); |
|
1006 h->ForceCompress(l2-4); |
|
1007 test(h->Compress() == 0); |
|
1008 // check heap is grown, will have free space of g-minc |
|
1009 test(h->TestAlloc(l2 + minc) == p2); |
|
1010 test(h->Top() - orig_top == 2*g); |
|
1011 test(c.Size() - orig_size == 2*g); |
|
1012 free = pass ? h->FreeRef().next->next : h->FreeRef().next; |
|
1013 test(free != NULL); |
|
1014 // may shrink heap as will now have g+minc free bytes |
|
1015 test(h->TestReAlloc(p2, l2 - minc, 0) == p2); |
|
1016 if (g+minc >= shrinkThres) |
|
1017 { |
|
1018 test(h->Top() - orig_top == g); |
|
1019 test(c.Size() - orig_size == g); |
|
1020 } |
|
1021 else |
|
1022 { |
|
1023 test(h->Top() - orig_top == 2*g); |
|
1024 test(c.Size() - orig_size == 2*g); |
|
1025 } |
|
1026 free = pass ? h->FreeRef().next->next : h->FreeRef().next; |
|
1027 test(free != NULL); |
|
1028 TEST_ALIGN(TLinAddr(free)+minc, page_size); |
|
1029 test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc); |
|
1030 test(h->Top() - orig_top == 4*g); |
|
1031 test(c.Size() - orig_size == 4*g); |
|
1032 h->TestFree(p3 - minc); |
|
1033 h->ForceCompress(l2 + g + page_size + minc); |
|
1034 test(h->Top() - orig_top == g); |
|
1035 test(c.Size() - orig_size == g); |
|
1036 h->FullCheck(); |
|
1037 h->TestFree(p2); |
|
1038 } |
|
1039 |
|
1040 h->TestFree(p1); |
|
1041 if (pass == 0) |
|
1042 h->TestFree(p0); |
|
1043 h->Compress(); |
|
1044 } |
|
1045 h->FullCheck(); |
|
1046 } |
|
1047 |
|
1048 void Test1() |
|
1049 { |
|
1050 RHeap* h; |
|
1051 h = RTestHeap::FixedHeap(0x1000, 0); |
|
1052 test(h != NULL); |
|
1053 DoTest1(h); |
|
1054 h->Close(); |
|
1055 h = RTestHeap::FixedHeap(0x1000, 0, EFalse); |
|
1056 test(h != NULL); |
|
1057 DoTest1(h); |
|
1058 h->Close(); |
|
1059 h = RTestHeap::FixedHeap(0x10000, 64); |
|
1060 test(h != NULL); |
|
1061 DoTest1(h); |
|
1062 h->Close(); |
|
1063 h = RTestHeap::FixedHeap(0x100000, 4096); |
|
1064 test(h != NULL); |
|
1065 DoTest1(h); |
|
1066 h->Close(); |
|
1067 h = RTestHeap::FixedHeap(0x100000, 8192); |
|
1068 test(h != NULL); |
|
1069 DoTest1(h); |
|
1070 h->Close(); |
|
1071 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x1000, 0x1000, 4); |
|
1072 test(h != NULL); |
|
1073 DoTest1(h); |
|
1074 h->Close(); |
|
1075 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x10000, 0x1000, 4); |
|
1076 test(h != NULL); |
|
1077 DoTest1(h); |
|
1078 h->Close(); |
|
1079 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4096); |
|
1080 test(h != NULL); |
|
1081 DoTest1(h); |
|
1082 h->Close(); |
|
1083 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4); |
|
1084 test(h != NULL); |
|
1085 DoTest1(h); |
|
1086 h->Reset(); |
|
1087 DoTest2(h); |
|
1088 h->Reset(); |
|
1089 DoTest3(h); |
|
1090 h->Reset(); |
|
1091 DoTest4(h); |
|
1092 h->Close(); |
|
1093 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8); |
|
1094 test(h != NULL); |
|
1095 DoTest1(h); |
|
1096 h->Reset(); |
|
1097 DoTest2(h); |
|
1098 h->Reset(); |
|
1099 DoTest3(h); |
|
1100 h->Reset(); |
|
1101 DoTest4(h); |
|
1102 h->Close(); |
|
1103 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 16); |
|
1104 test(h != NULL); |
|
1105 DoTest1(h); |
|
1106 h->Reset(); |
|
1107 DoTest2(h); |
|
1108 h->Reset(); |
|
1109 DoTest3(h); |
|
1110 h->Reset(); |
|
1111 DoTest4(h); |
|
1112 h->Close(); |
|
1113 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 32); |
|
1114 test(h != NULL); |
|
1115 DoTest1(h); |
|
1116 h->Reset(); |
|
1117 DoTest2(h); |
|
1118 h->Reset(); |
|
1119 DoTest3(h); |
|
1120 h->Reset(); |
|
1121 DoTest4(h); |
|
1122 h->Close(); |
|
1123 h = UserHeap::ChunkHeap(&KNullDesC(), 0x3000, 0x100000, 0x3000, 4); |
|
1124 test(h != NULL); |
|
1125 DoTest1(h); |
|
1126 h->Reset(); |
|
1127 DoTest2(h); |
|
1128 h->Reset(); |
|
1129 DoTest3(h); |
|
1130 h->Reset(); |
|
1131 DoTest4(h); |
|
1132 h->Close(); |
|
1133 } |
|
1134 |
|
1135 struct SHeapStress |
|
1136 { |
|
1137 RThread iThread; |
|
1138 volatile TBool iStop; |
|
1139 TInt iAllocs; |
|
1140 TInt iFailedAllocs; |
|
1141 TInt iFrees; |
|
1142 TInt iReAllocs; |
|
1143 TInt iFailedReAllocs; |
|
1144 TInt iChecks; |
|
1145 TUint32 iSeed; |
|
1146 RAllocator* iAllocator; |
|
1147 |
|
1148 TUint32 Random(); |
|
1149 }; |
|
1150 |
|
1151 TUint32 SHeapStress::Random() |
|
1152 { |
|
1153 iSeed *= 69069; |
|
1154 iSeed += 41; |
|
1155 return iSeed; |
|
1156 } |
|
1157 |
|
1158 TInt RandomLength(TUint32 aRandom) |
|
1159 { |
|
1160 TUint8 x = (TUint8)aRandom; |
|
1161 if (x & 0x80) |
|
1162 return (x & 0x7f) << 7; |
|
1163 return x & 0x7f; |
|
1164 } |
|
1165 |
|
1166 TInt HeapStress(TAny* aPtr) |
|
1167 { |
|
1168 SHeapStress& hs = *(SHeapStress*)aPtr; |
|
1169 RTestHeap* h = (RTestHeap*)&User::Allocator(); |
|
1170 TUint8* cell[256]; |
|
1171 TInt len[256]; |
|
1172 |
|
1173 Mem::FillZ(cell, sizeof(cell)); |
|
1174 Mem::FillZ(len, sizeof(len)); |
|
1175 |
|
1176 RThread::Rendezvous(KErrNone); |
|
1177 while (!hs.iStop) |
|
1178 { |
|
1179 // allocate all cells |
|
1180 TInt i; |
|
1181 for (i=0; i<256; ++i) |
|
1182 { |
|
1183 if (!cell[i]) |
|
1184 { |
|
1185 ++hs.iAllocs; |
|
1186 cell[i] = (TUint8*)h->TestAlloc(RandomLength(hs.Random())); |
|
1187 if (cell[i]) |
|
1188 len[i] = h->AllocLen(cell[i]); |
|
1189 else |
|
1190 ++hs.iFailedAllocs; |
|
1191 } |
|
1192 } |
|
1193 |
|
1194 // free some cells |
|
1195 TInt n = 64 + (hs.Random() & 127); |
|
1196 while (--n) |
|
1197 { |
|
1198 i = hs.Random() & 0xff; |
|
1199 if (cell[i]) |
|
1200 { |
|
1201 test(h->AllocLen(cell[i]) == len[i]); |
|
1202 h->TestFree(cell[i]); |
|
1203 cell[i] = NULL; |
|
1204 len[i] = 0; |
|
1205 ++hs.iFrees; |
|
1206 } |
|
1207 } |
|
1208 |
|
1209 // realloc some cells |
|
1210 n = 64 + (hs.Random() & 127); |
|
1211 while (--n) |
|
1212 { |
|
1213 TUint32 rn = hs.Random(); |
|
1214 i = (rn >> 8) & 0xff; |
|
1215 TInt new_len = RandomLength(rn); |
|
1216 if (cell[i]) |
|
1217 { |
|
1218 test(h->AllocLen(cell[i]) == len[i]); |
|
1219 ++hs.iReAllocs; |
|
1220 TUint8* p = (TUint8*)h->TestReAlloc(cell[i], new_len, rn >> 16); |
|
1221 if (p) |
|
1222 { |
|
1223 cell[i] = p; |
|
1224 len[i] = h->AllocLen(p); |
|
1225 } |
|
1226 else |
|
1227 ++hs.iFailedReAllocs; |
|
1228 } |
|
1229 } |
|
1230 |
|
1231 // check the heap |
|
1232 h->Check(); |
|
1233 ++hs.iChecks; |
|
1234 } |
|
1235 return 0; |
|
1236 } |
|
1237 |
|
1238 void CreateStressThread(SHeapStress& aInfo) |
|
1239 { |
|
1240 Mem::FillZ(&aInfo, _FOFF(SHeapStress, iSeed)); |
|
1241 RThread& t = aInfo.iThread; |
|
1242 TInt r = t.Create(KNullDesC(), &HeapStress, 0x2000, aInfo.iAllocator, &aInfo); |
|
1243 test(r==KErrNone); |
|
1244 t.SetPriority(EPriorityLess); |
|
1245 TRequestStatus s; |
|
1246 t.Rendezvous(s); |
|
1247 test(s == KRequestPending); |
|
1248 t.Resume(); |
|
1249 User::WaitForRequest(s); |
|
1250 test(s == KErrNone); |
|
1251 test(t.ExitType() == EExitPending); |
|
1252 t.SetPriority(EPriorityMuchLess); |
|
1253 } |
|
1254 |
|
1255 void StopStressThread(SHeapStress& aInfo) |
|
1256 { |
|
1257 RThread& t = aInfo.iThread; |
|
1258 TRequestStatus s; |
|
1259 t.Logon(s); |
|
1260 aInfo.iStop = ETrue; |
|
1261 User::WaitForRequest(s); |
|
1262 const TDesC& exitCat = t.ExitCategory(); |
|
1263 TInt exitReason = t.ExitReason(); |
|
1264 TInt exitType = t.ExitType(); |
|
1265 test.Printf(_L("Exit type %d,%d,%S\n"), exitType, exitReason, &exitCat); |
|
1266 test(exitType == EExitKill); |
|
1267 test(exitReason == KErrNone); |
|
1268 test(s == KErrNone); |
|
1269 test.Printf(_L("Total Allocs : %d\n"), aInfo.iAllocs); |
|
1270 test.Printf(_L("Failed Allocs : %d\n"), aInfo.iFailedAllocs); |
|
1271 test.Printf(_L("Total Frees : %d\n"), aInfo.iFrees); |
|
1272 test.Printf(_L("Total ReAllocs : %d\n"), aInfo.iReAllocs); |
|
1273 test.Printf(_L("Failed ReAllocs : %d\n"), aInfo.iFailedReAllocs); |
|
1274 test.Printf(_L("Heap checks : %d\n"), aInfo.iChecks); |
|
1275 } |
|
1276 |
|
1277 void DoStressTest1(RAllocator* aAllocator) |
|
1278 { |
|
1279 RTestHeap* h = (RTestHeap*)aAllocator; |
|
1280 test.Printf(_L("Test Stress 1: min=%x max=%x align=%d growby=%d\n"), |
|
1281 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
1282 SHeapStress hs; |
|
1283 hs.iSeed = 0xb504f334; |
|
1284 hs.iAllocator = aAllocator; |
|
1285 CreateStressThread(hs); |
|
1286 User::After(10*1000000); |
|
1287 StopStressThread(hs); |
|
1288 CLOSE_AND_WAIT(hs.iThread); |
|
1289 h->FullCheck(); |
|
1290 } |
|
1291 |
|
1292 void DoStressTest2(RAllocator* aAllocator) |
|
1293 { |
|
1294 RTestHeap* h = (RTestHeap*)aAllocator; |
|
1295 test.Printf(_L("Test Stress 2: min=%x max=%x align=%d growby=%d\n"), |
|
1296 h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy()); |
|
1297 SHeapStress hs1; |
|
1298 SHeapStress hs2; |
|
1299 hs1.iSeed = 0xb504f334; |
|
1300 hs1.iAllocator = aAllocator; |
|
1301 hs2.iSeed = 0xddb3d743; |
|
1302 hs2.iAllocator = aAllocator; |
|
1303 CreateStressThread(hs1); |
|
1304 CreateStressThread(hs2); |
|
1305 User::After(20*1000000); |
|
1306 StopStressThread(hs1); |
|
1307 StopStressThread(hs2); |
|
1308 CLOSE_AND_WAIT(hs1.iThread); |
|
1309 CLOSE_AND_WAIT(hs2.iThread); |
|
1310 h->FullCheck(); |
|
1311 } |
|
1312 |
|
1313 void StressTests() |
|
1314 { |
|
1315 RHeap* h; |
|
1316 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4); |
|
1317 test(h != NULL); |
|
1318 DoStressTest1(h); |
|
1319 h->Reset(); |
|
1320 DoStressTest2(h); |
|
1321 h->Close(); |
|
1322 h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8); |
|
1323 test(h != NULL); |
|
1324 DoStressTest1(h); |
|
1325 h->Reset(); |
|
1326 DoStressTest2(h); |
|
1327 h->Close(); |
|
1328 } |
|
1329 |
|
1330 TInt TestHeapGrowInPlace(TInt aMode) |
|
1331 { |
|
1332 TBool reAllocs=EFalse; |
|
1333 TBool heapGrew=EFalse; |
|
1334 |
|
1335 RHeap* myHeap; |
|
1336 |
|
1337 myHeap = UserHeap::ChunkHeap(NULL,0x1000,0x4000,0x1000); |
|
1338 |
|
1339 TAny *testBuffer,*testBuffer2; |
|
1340 // Start size chosen so that 1st realloc will use up exactly all the heap. |
|
1341 // Later iterations wont, and there will be a free cell at the end of the heap. |
|
1342 TInt currentSize = ((0x800) - sizeof(RHeap)) - RHeap::EAllocCellSize; |
|
1343 TInt growBy = 0x800; |
|
1344 TInt newSpace, space; |
|
1345 |
|
1346 testBuffer2 = myHeap->Alloc(currentSize); |
|
1347 |
|
1348 newSpace = myHeap->Size(); |
|
1349 do |
|
1350 { |
|
1351 space = newSpace; |
|
1352 testBuffer = testBuffer2; |
|
1353 currentSize+=growBy; |
|
1354 testBuffer2 = myHeap->ReAlloc(testBuffer,currentSize,aMode); |
|
1355 |
|
1356 newSpace = myHeap->Size(); |
|
1357 |
|
1358 if (testBuffer2) |
|
1359 { |
|
1360 |
|
1361 if (testBuffer!=testBuffer2) |
|
1362 reAllocs = ETrue; |
|
1363 |
|
1364 if (newSpace>space) |
|
1365 heapGrew = ETrue; |
|
1366 } |
|
1367 growBy-=16; |
|
1368 } while (testBuffer2); |
|
1369 currentSize-=growBy; |
|
1370 |
|
1371 myHeap->Free(testBuffer); |
|
1372 myHeap->Close(); |
|
1373 |
|
1374 // How did we do? |
|
1375 if (reAllocs) |
|
1376 { |
|
1377 test.Printf(_L("Failure - Memory was moved!\n")); |
|
1378 return -100; |
|
1379 } |
|
1380 if (!heapGrew) |
|
1381 { |
|
1382 test.Printf(_L("Failure - Heap Never Grew!\n")); |
|
1383 return -200; |
|
1384 } |
|
1385 if (currentSize<= 0x3000) |
|
1386 { |
|
1387 test.Printf(_L("Failed to grow by a reasonable amount!\n")); |
|
1388 return -300; |
|
1389 } |
|
1390 |
|
1391 return KErrNone; |
|
1392 } |
|
1393 |
|
1394 void ReAllocTests() |
|
1395 { |
|
1396 test.Next(_L("Testing Grow In Place")); |
|
1397 test(TestHeapGrowInPlace(0)==KErrNone); |
|
1398 test(TestHeapGrowInPlace(RHeap::ENeverMove)==KErrNone); |
|
1399 } |
|
1400 |
|
1401 RHeap* TestDEF078391Heap = 0; |
|
1402 |
|
1403 TInt TestDEF078391ThreadFunction(TAny*) |
|
1404 { |
|
1405 TestDEF078391Heap = UserHeap::ChunkHeap(NULL,0x1000,0x100000,KMinHeapGrowBy,0,EFalse); |
|
1406 return TestDEF078391Heap ? KErrNone : KErrGeneral; |
|
1407 } |
|
1408 |
|
1409 void TestDEF078391() |
|
1410 { |
|
1411 // Test that creating a multithreaded heap with UserHeap::ChunkHeap |
|
1412 // doesn't create any reference counts on the creating thread. |
|
1413 // This is done by creating a heap in a named thread, then exiting |
|
1414 // the thread and re-creating it with the same name. |
|
1415 // This will fail with KErrAlreadyExists if the orinal thread has |
|
1416 // not died because of an unclosed reference count. |
|
1417 test.Next(_L("Test that creating a multithreaded heap doesn't open references of creator")); |
|
1418 _LIT(KThreadName,"ThreadName"); |
|
1419 RThread t; |
|
1420 TInt r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL); |
|
1421 test(r==KErrNone); |
|
1422 TRequestStatus status; |
|
1423 t.Logon(status); |
|
1424 t.Resume(); |
|
1425 User::WaitForRequest(status); |
|
1426 test(status==KErrNone); |
|
1427 test(t.ExitType()==EExitKill); |
|
1428 test(t.ExitReason()==KErrNone); |
|
1429 CLOSE_AND_WAIT(t); |
|
1430 test(TestDEF078391Heap!=0); |
|
1431 User::After(1000000); // give more opportunity for thread cleanup to happen |
|
1432 |
|
1433 // create thread a second time |
|
1434 r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL); |
|
1435 test(r==KErrNone); |
|
1436 t.Kill(0); |
|
1437 CLOSE_AND_WAIT(t); |
|
1438 |
|
1439 // close the heap that got created earlier |
|
1440 TestDEF078391Heap->Close(); |
|
1441 } |
|
1442 |
|
1443 TInt E32Main() |
|
1444 { |
|
1445 test.Title(); |
|
1446 __KHEAP_MARK; |
|
1447 test.Start(_L("Testing heaps")); |
|
1448 TestDEF078391(); |
|
1449 Test1(); |
|
1450 StressTests(); |
|
1451 ReAllocTests(); |
|
1452 test.End(); |
|
1453 __KHEAP_MARKEND; |
|
1454 return 0; |
|
1455 } |