|
1 // Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // f32\sfat32\sl_fatcache.cpp |
|
15 // FAT12 and FAT16 cache implementation |
|
16 // |
|
17 // |
|
18 |
|
19 /** |
|
20 @file |
|
21 */ |
|
22 |
|
23 |
|
24 //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
25 //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
26 //!! |
|
27 //!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it |
|
28 //!! |
|
29 //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
30 //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
31 |
|
32 #include "sl_std.h" |
|
33 #include "sl_fatcache.h" |
|
34 |
|
35 |
|
36 //################################################################################################################################# |
|
37 // CFatCacheBase implementation |
|
38 // Base class for all types of FAT cache |
|
39 //################################################################################################################################# |
|
40 |
|
41 CFatCacheBase::~CFatCacheBase() |
|
42 { |
|
43 Close(ETrue); //-- deallocate cache's memory discarding any dirty data |
|
44 } |
|
45 |
|
46 CFatCacheBase::CFatCacheBase() |
|
47 { |
|
48 iCurrentFatNo = KInvalidFatNo; |
|
49 SetDirty(EFalse); |
|
50 } |
|
51 |
|
52 |
|
53 /** |
|
54 FAT cache initialisation. |
|
55 |
|
56 @param aOwner pointer to the owning FAT mount |
|
57 */ |
|
58 void CFatCacheBase::InitialiseL(CFatMountCB* aOwner) |
|
59 { |
|
60 ASSERT(aOwner); |
|
61 |
|
62 Close(ETrue); //-- deallocate cache's memory discarding any dirty data |
|
63 |
|
64 //-- populate parameters from the owning mount |
|
65 iFatType = aOwner->FatType(); |
|
66 __ASSERT_ALWAYS((iFatType == EFat12 || iFatType == EFat16 || iFatType == EFat32), User::Leave(KErrCorrupt)); |
|
67 |
|
68 ipDrive = &aOwner->DriveInterface(); |
|
69 iFatStartPos = aOwner->FirstFatSector() << aOwner->SectorSizeLog2(); |
|
70 iFatSize = aOwner->FatSizeInBytes(); |
|
71 iNumFATs = (TUint16)aOwner->NumberOfFats(); |
|
72 iFatSecSzLog2 = (TUint16)aOwner->SectorSizeLog2(); |
|
73 iFatClustSzLog2 = (TUint16)aOwner->ClusterSizeLog2(); |
|
74 |
|
75 __ASSERT_ALWAYS(iNumFATs >=1, User::Leave(KErrCorrupt)); |
|
76 |
|
77 __PRINT3(_L("#-CFatCacheBase::InitialiseL() FatStart:%u, FatSz:%d, drv:%d"),iFatStartPos, iFatSize, aOwner->DriveNumber()); |
|
78 } |
|
79 |
|
80 //----------------------------------------------------------------------------- |
|
81 /** |
|
82 This method shall be called to check if we are allowed to invalidate dirty cache, i.e. discard non-flushed data. |
|
83 The behaviour is hardcoded (see KAllowInvalidateDirtyCache constant) |
|
84 |
|
85 @return ETrue if invalidating dirty cache is allowed. Otherwise panics the current thread |
|
86 */ |
|
87 TBool CFatCacheBase::CheckInvalidatingDirtyCache() const |
|
88 { |
|
89 |
|
90 //-- If not EFalse, invalidating dirty cache (pages) is allowed. This shall be OK, because |
|
91 //-- invalidating the cache is required only after direct media writes to the FAT by RawWrite, which can corrupt it anyway. |
|
92 TBool KAllowInvalidateDirtyCache = ETrue; |
|
93 |
|
94 if(!IsDirty()) |
|
95 return KAllowInvalidateDirtyCache; |
|
96 |
|
97 __PRINT(_L("#-CFatCacheBase::Invalidating dirty cache !")); |
|
98 |
|
99 if(!KAllowInvalidateDirtyCache) |
|
100 { |
|
101 __ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
102 } |
|
103 |
|
104 return KAllowInvalidateDirtyCache; |
|
105 } |
|
106 |
|
107 //----------------------------------------------------------------------------- |
|
108 |
|
109 /** |
|
110 Read portion of raw data from 1st FAT copy. |
|
111 |
|
112 @param aPos media position in the _FIRST_ FAT to start reading with |
|
113 @param aLen number of bytes to read |
|
114 @param aData data descriptor |
|
115 |
|
116 @return standard error code. |
|
117 */ |
|
118 TInt CFatCacheBase::ReadFatData(TUint32 aPos, TUint32 aLen, TDes8& aData) const |
|
119 { |
|
120 //__PRINT2(_L("#-CFatCacheNew::ReadFatData() pos:%u, Len:%d"), aPos, aLen); |
|
121 |
|
122 //-- this method can pick up data corresponding to invalid FAT entries, like FAT[0], FAT[1] and |
|
123 //-- the last portion beyond FAT because of read granularity. This isn't a problem, because the data there |
|
124 //-- won't be written on disk. |
|
125 ASSERT(aPos >= FatStartPos()); |
|
126 |
|
127 return ipDrive->ReadNonCritical(aPos, aLen, aData); |
|
128 } |
|
129 |
|
130 //----------------------------------------------------------------------------- |
|
131 |
|
132 /** |
|
133 Writes data to the FAT table, which number is set in iCurrentFatNo member variable. |
|
134 @param aPos data media position in the _FIRST_ FAT copy |
|
135 @param aData data descriptor |
|
136 @return standard error code. |
|
137 */ |
|
138 TInt CFatCacheBase::WriteFatData(TUint32 aPos, const TDesC8& aData) const |
|
139 { |
|
140 //__PRINT3(_L("#-CFatCacheBase::WriteFatData() pos:%u, Len:%d, FAT:%d"), aPos, aData.Length(), iCurrentFatNo); |
|
141 |
|
142 #ifdef _DEBUG |
|
143 //-- FAT[0] and FAT[1] entries are reserved and we must not write data there. It's up to the caller of this method to |
|
144 //-- calculate correct data position in FAT |
|
145 TInt reserved_Entries_Offset=0; |
|
146 switch(iFatType) |
|
147 { |
|
148 case EFat32: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat32Entry); break; //-- FAT32 |
|
149 case EFat16: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat16Entry); break; //-- FAT16 |
|
150 case EFat12: reserved_Entries_Offset = 3; break; //-- FAT12 |
|
151 default: ASSERT(0); break; |
|
152 } |
|
153 ASSERT(aPos >= FatStartPos()+reserved_Entries_Offset); |
|
154 ASSERT((aPos+aData.Length()) <= FatStartPos()+FatSize()); |
|
155 ASSERT(iCurrentFatNo < iNumFATs); |
|
156 #endif |
|
157 |
|
158 //-- goto the required FAT copy. iCurrentFatNo shall contain FAT number we are writing to. |
|
159 aPos+=iCurrentFatNo*FatSize(); |
|
160 |
|
161 return ipDrive->WriteCritical(aPos, aData); |
|
162 } |
|
163 |
|
164 //----------------------------------------------------------------------------- |
|
165 /** |
|
166 get a pointer to the CFatBitCache interface. |
|
167 @return NULL because it is not present here |
|
168 */ |
|
169 CFatBitCache* CFatCacheBase::BitCacheInterface() |
|
170 { |
|
171 return NULL; |
|
172 } |
|
173 |
|
174 |
|
175 //################################################################################################################################# |
|
176 // CFatPagedCacheBase implementation |
|
177 // Base class for all paged FAT caches |
|
178 //################################################################################################################################# |
|
179 |
|
180 CFatPagedCacheBase::CFatPagedCacheBase() |
|
181 :CFatCacheBase() |
|
182 { |
|
183 } |
|
184 |
|
185 |
|
186 //################################################################################################################################# |
|
187 // CFatCachePageBase implementation |
|
188 // Base class for FAT cache pages (FAT16 fixed and FAT32 LRU) |
|
189 //################################################################################################################################# |
|
190 |
|
191 CFatCachePageBase::CFatCachePageBase(CFatPagedCacheBase& aCache) |
|
192 :iCache(aCache) |
|
193 { |
|
194 ASSERT(IsPowerOf2(aCache.PageSize())); |
|
195 iStartIndexInFAT = KMaxTUint; |
|
196 |
|
197 //-- calculate number of FAT entries in the page, it depends on FAT type |
|
198 switch(aCache.FatType()) |
|
199 { |
|
200 case EFat32: |
|
201 iFatEntriesInPage = PageSize() >> KFat32EntrySzLog2; |
|
202 break; |
|
203 |
|
204 case EFat16: |
|
205 iFatEntriesInPage = PageSize() >> KFat16EntrySzLog2; |
|
206 break; |
|
207 |
|
208 default: |
|
209 ASSERT(0); |
|
210 Fault(EFatCache_BadFatType); |
|
211 break; |
|
212 |
|
213 }; |
|
214 |
|
215 SetState(EInvalid); |
|
216 } |
|
217 |
|
218 CFatCachePageBase::~CFatCachePageBase() |
|
219 { |
|
220 iData.Close(); |
|
221 } |
|
222 |
|
223 //----------------------------------------------------------------------------- |
|
224 /** |
|
225 Mark the page as "invalid". I.e containing inalid data. |
|
226 On the first read/write access to such page it will be re-read from the media |
|
227 |
|
228 @param aIgnoreDirtyData if ETrue, it is allowed to ignore the fact that the page contains dirty (not flushed) data. |
|
229 */ |
|
230 void CFatCachePageBase::Invalidate(TBool aIgnoreDirtyData /*= EFalse*/) |
|
231 { |
|
232 if(!aIgnoreDirtyData && IsDirty()) |
|
233 { |
|
234 __PRINT1(_L("#-CFatCachePageBase::Invalidate() dirty page! FAT idx:%d"), iStartIndexInFAT); |
|
235 __ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
236 } |
|
237 |
|
238 iDirtySectors.Clear(); //-- clear dirty sectors bitmap |
|
239 SetState(EInvalid); |
|
240 } |
|
241 |
|
242 //----------------------------------------------------------------------------- |
|
243 /** |
|
244 Flush all dirty page sectors to the media and mark the page as "clean" if required. |
|
245 If the page is "clean" i.e doesn't contain changed data, does nothing. |
|
246 |
|
247 @param aKeepDirty if ETrue, the "dirty" flag isn't reset after page flushing. |
|
248 */ |
|
249 void CFatCachePageBase::FlushL(TBool aKeepDirty) |
|
250 { |
|
251 if(!IsDirty()) |
|
252 return; |
|
253 |
|
254 if(!IsValid()) |
|
255 { |
|
256 __PRINT1(_L("#-CFatCachePageBase::FlushL() Invalid page! FAT idx:%d"), iStartIndexInFAT); |
|
257 ASSERT(0); |
|
258 User::Leave(KErrCorrupt); |
|
259 return; |
|
260 } |
|
261 |
|
262 //__PRINT1(_L("#-CFatCachePageBase::FlushL() FAT idx:%d"), iStartIndexInFAT); |
|
263 |
|
264 //-- write dirty FAT sectors to the media one by one. |
|
265 //-- merging adjacent dirty subsectors into larger clusters and writing them at once looks like a good idea, but |
|
266 //-- in reality it showed FAT performance degradation, at least on MMC/SD media. |
|
267 |
|
268 const TInt MaxSectors = iCache.SectorsInPage(); |
|
269 |
|
270 for(TInt i=0; i<MaxSectors; ++i) |
|
271 { |
|
272 if(iDirtySectors[i]) |
|
273 { |
|
274 DoWriteSectorL(i); |
|
275 } |
|
276 } |
|
277 |
|
278 //-- All data flushed; mark page as clean if it isn't required not to do. |
|
279 if(!aKeepDirty) |
|
280 SetClean(); |
|
281 |
|
282 } |
|
283 |
|
284 |
|
285 //################################################################################################################################# |
|
286 // CFat16FixedCache implementation |
|
287 // Fixed cache (caches all FAT16) but organised as an array of pages |
|
288 //################################################################################################################################# |
|
289 |
|
290 CFat16FixedCache::CFat16FixedCache() |
|
291 :CFatPagedCacheBase(),iPages(1) //-- array granularity is 1 |
|
292 { |
|
293 } |
|
294 |
|
295 //----------------------------------------------------------------------------- |
|
296 /** |
|
297 FAT16 fixed cache factory function. |
|
298 @param aOwner pointer to the owning FAT mount |
|
299 @param aFatSize size of the FAT table in bytes |
|
300 @param aRdGranularityLog2 Log2(read granularity) |
|
301 @param aWrGranularityLog2 Log2(write granularity) |
|
302 |
|
303 @return pointer to the constructed object. |
|
304 */ |
|
305 CFat16FixedCache* CFat16FixedCache::NewL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2) |
|
306 { |
|
307 __PRINT(_L("#-CFat16FixedCache::NewL()")); |
|
308 |
|
309 CFat16FixedCache* pSelf = NULL; |
|
310 pSelf = new (ELeave) CFat16FixedCache; |
|
311 |
|
312 CleanupStack::PushL(pSelf); |
|
313 pSelf->InitialiseL(aOwner, aFatSize, aRdGranularityLog2, aWrGranularityLog2); |
|
314 CleanupStack::Pop(); |
|
315 |
|
316 return pSelf; |
|
317 } |
|
318 |
|
319 //----------------------------------------------------------------------------- |
|
320 /** |
|
321 FAT16 fixed cache initialisation. |
|
322 @param aOwner pointer to the owning FAT mount |
|
323 @param aFatSize size of the FAT table in bytes |
|
324 @param aRdGranularityLog2 Log2(read granularity) |
|
325 @param aWrGranularityLog2 Log2(write granularity) |
|
326 */ |
|
327 void CFat16FixedCache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2) |
|
328 { |
|
329 const TUint32 ReadGranularity = Pow2(aRdGranularityLog2); |
|
330 const TUint32 WriteGranularity = Pow2(aWrGranularityLog2); |
|
331 |
|
332 __PRINT3(_L("#-CFat16FixedCache::InitialiseL FatSz:%u, RdGr:%d, WrGr:%d"),aFatSize, ReadGranularity, WriteGranularity); |
|
333 (void)ReadGranularity; |
|
334 (void)WriteGranularity; |
|
335 |
|
336 TBool bParamsValid = (aRdGranularityLog2 >= aWrGranularityLog2) && (aWrGranularityLog2 >= KDefSectorSzLog2); |
|
337 __ASSERT_ALWAYS(bParamsValid, Fault(EFatCache_BadGranularity)); |
|
338 |
|
339 CFatPagedCacheBase::InitialiseL(aOwner); |
|
340 |
|
341 ASSERT(FatType() == EFat16); |
|
342 |
|
343 //-- See FAT specs, and round up the limit to the FAT sector boundary |
|
344 const TUint32 KMaxFat16Size = ((65524*sizeof(TFat16Entry)+FAT_SectorSz()-1) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2(); |
|
345 const TUint32 KMinFat16Size = 4086*sizeof(TFat16Entry); //-- See FAT specs |
|
346 |
|
347 bParamsValid = aFatSize >= KMinFat16Size && aFatSize <= KMaxFat16Size; |
|
348 __ASSERT_ALWAYS(bParamsValid, User::Leave(KErrCorrupt)); |
|
349 |
|
350 //-- cache page size is (2^aRdGranularityLog2) bytes and consists of 2^(aRdGranularityLog2-aWrGranularity) sectors. |
|
351 iPageSizeLog2 = aRdGranularityLog2; |
|
352 iSectorSizeLog2 = aWrGranularityLog2; //-- Log2(number of sectors in cache page) |
|
353 |
|
354 __ASSERT_ALWAYS(SectorsInPage() < KMaxSectorsInPage, Fault(EFatCache_BadGranularity)); |
|
355 |
|
356 const TUint numPages = (aFatSize+(PageSize()-1)) >> iPageSizeLog2; |
|
357 __PRINT1(_L("#-CFat16FixedCache Num Pages:%d"), numPages); |
|
358 |
|
359 //-- prepare pointer array for pages. NULL entry in the array means that the page at this index isn't allocated. |
|
360 for(TUint i=0; i<numPages; ++i) |
|
361 iPages.Append(NULL); |
|
362 |
|
363 } |
|
364 |
|
365 |
|
366 //----------------------------------------------------------------------------- |
|
367 /** |
|
368 Close the cache and deallocate its memory. |
|
369 @param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache. |
|
370 */ |
|
371 void CFat16FixedCache::Close(TBool aDiscardDirtyData) |
|
372 { |
|
373 __PRINT1(_L("#-CFat16FixedCache::Close(%d)"), aDiscardDirtyData); |
|
374 |
|
375 TInt cnt = iPages.Count(); |
|
376 while(cnt--) |
|
377 {//-- delete pages |
|
378 CFat16FixedCachePage *pPage = iPages[cnt]; |
|
379 if(pPage && (pPage->IsDirty())) |
|
380 {//-- trying to destroy the cache that has dirty pages |
|
381 __PRINT1(_L("#-CFat16FixedCache::Close() The page is dirty! Start idx:%d"), pPage->StartFatIndex()); |
|
382 if(!aDiscardDirtyData) |
|
383 { |
|
384 __ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
385 } |
|
386 //-- ignore this fact if requested. |
|
387 } |
|
388 |
|
389 delete pPage; |
|
390 } |
|
391 |
|
392 iPages.Close(); |
|
393 SetDirty(EFalse); |
|
394 } |
|
395 |
|
396 //----------------------------------------------------------------------------- |
|
397 /** |
|
398 Read FAT entry from the cache. |
|
399 |
|
400 @param aIndex FAT entry index to read |
|
401 @return FAT entry value at the index "aIndex" |
|
402 */ |
|
403 TUint32 CFat16FixedCache::ReadEntryL(TUint32 aIndex) |
|
404 { |
|
405 //__PRINT1(_L("#-CFat16FixedCache::ReadEntryL() FAT idx:%d"), aIndex); |
|
406 ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
407 |
|
408 //-- calculate page index in the array |
|
409 const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
410 CFat16FixedCachePage *pPage = iPages[pgIdx]; |
|
411 |
|
412 TUint32 entry = KMaxTUint; |
|
413 |
|
414 if(!pPage) |
|
415 {//-- page at this position isn't allocated yet |
|
416 pPage = CFat16FixedCachePage::NewL(*this); |
|
417 iPages[pgIdx] = pPage; |
|
418 |
|
419 //-- read the page from media |
|
420 entry = pPage->ReadFromMediaL(aIndex); |
|
421 } |
|
422 else |
|
423 {//-- get cached entry from the page |
|
424 TBool bRes = pPage->ReadCachedEntryL(aIndex, entry); |
|
425 ASSERT(bRes); |
|
426 (void)bRes; |
|
427 } |
|
428 |
|
429 return entry; |
|
430 } |
|
431 |
|
432 //----------------------------------------------------------------------------- |
|
433 /** |
|
434 Write FAT entry to the cache. |
|
435 Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media. |
|
436 |
|
437 @param aIndex FAT entry index |
|
438 @param aEntry FAT entry value |
|
439 */ |
|
440 void CFat16FixedCache::WriteEntryL(TUint32 aIndex, TUint32 aEntry) |
|
441 { |
|
442 //__PRINT2(_L("#-CFat16FixedCache::WriteEntryL() FAT idx:%d, val:%d"), aIndex, aEntry); |
|
443 |
|
444 ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
445 |
|
446 SetDirty(ETrue); |
|
447 |
|
448 //-- calculate page index in the array |
|
449 const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
450 CFat16FixedCachePage *pPage = iPages[pgIdx]; |
|
451 |
|
452 if(!pPage) |
|
453 {//-- page at this position isn't allocated yet |
|
454 pPage = CFat16FixedCachePage::NewL(*this); |
|
455 iPages[pgIdx] = pPage; |
|
456 |
|
457 //-- read the page from media |
|
458 pPage->ReadFromMediaL(aIndex); |
|
459 } |
|
460 |
|
461 //-- overwrite entry in cache |
|
462 TBool bRes = pPage->WriteCachedEntryL(aIndex, aEntry); |
|
463 ASSERT(bRes); |
|
464 (void)bRes; |
|
465 } |
|
466 |
|
467 /** |
|
468 A debug method that asserts that the cache is really clean |
|
469 */ |
|
470 void CFat16FixedCache::AssertCacheReallyClean() const |
|
471 { |
|
472 #ifdef _DEBUG |
|
473 for(TUint i=0; i<NumPages(); ++i) |
|
474 { |
|
475 CFat16FixedCachePage* pPage = iPages[i]; |
|
476 if(pPage && pPage->IsDirty()) |
|
477 { |
|
478 __PRINT(_L("#-CFat16FixedCache::AssertCacheReallyClean()")); |
|
479 ASSERT(0); |
|
480 } |
|
481 } |
|
482 #endif |
|
483 } |
|
484 |
|
485 |
|
486 //----------------------------------------------------------------------------- |
|
487 /** |
|
488 Flushes all dirty data to the media. |
|
489 */ |
|
490 void CFat16FixedCache::FlushL() |
|
491 { |
|
492 if(!IsDirty()) |
|
493 { |
|
494 AssertCacheReallyClean(); |
|
495 return; |
|
496 } |
|
497 |
|
498 |
|
499 //-- flush dirty data to all copies of FAT |
|
500 for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo) |
|
501 { |
|
502 const TInt nPages = NumPages(); |
|
503 for(TInt i=0; i<nPages; ++i) |
|
504 { |
|
505 const TBool keepDirty = iCurrentFatNo < (NumFATs() - 1); |
|
506 |
|
507 CFat16FixedCachePage* pPage = iPages[i]; |
|
508 if(pPage) |
|
509 pPage->FlushL(keepDirty); |
|
510 } |
|
511 |
|
512 } |
|
513 |
|
514 iCurrentFatNo = KInvalidFatNo; |
|
515 SetDirty(EFalse); |
|
516 } |
|
517 |
|
518 //----------------------------------------------------------------------------- |
|
519 /** |
|
520 Invalidate whole cache. All pages will be marked as invalid and will be re-read from the media on first access to them. |
|
521 @return always KErrNone |
|
522 */ |
|
523 TInt CFat16FixedCache::Invalidate() |
|
524 { |
|
525 __PRINT(_L("#-CFat16FixedCache::Invalidate()")); |
|
526 const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache(); |
|
527 |
|
528 //-- iterate through the array of pages marking invalidating every page |
|
529 TInt cnt = iPages.Count(); |
|
530 while(cnt--) |
|
531 {//-- delete pages |
|
532 CFat16FixedCachePage *pPage = iPages[cnt]; |
|
533 if(pPage) |
|
534 pPage->Invalidate(bIgnoreDirtyData); |
|
535 } |
|
536 |
|
537 |
|
538 SetDirty(EFalse); |
|
539 |
|
540 return KErrNone; |
|
541 } |
|
542 |
|
543 //----------------------------------------------------------------------------- |
|
544 /** |
|
545 Invalidate FAT cache pages that contain FAT entries from aStartIndex to (aStartIndex+aNumEntries) |
|
546 These pages will be marked as invalid and will be re-read from the media on first access to them. |
|
547 |
|
548 @param aStartIndex FAT start index of the region being invalidated |
|
549 @param aNumEntries number of entries to invalidate |
|
550 @return always KErrNone |
|
551 */ |
|
552 TInt CFat16FixedCache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries) |
|
553 { |
|
554 __PRINT2(_L("#-CFat16FixedCache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries); |
|
555 ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
556 |
|
557 if(!aNumEntries) |
|
558 { |
|
559 ASSERT(0); |
|
560 return KErrNone; |
|
561 } |
|
562 |
|
563 const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache(); |
|
564 const TUint startPgIdx = aStartIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
565 const TUint nPagesToInv = 1+(aNumEntries >> (PageSizeLog2()-KFat16EntrySzLog2)); |
|
566 |
|
567 TUint i; |
|
568 //-- invalidate pages that contain [aStartIndex ... aStartIndex+aNumEntries] entries |
|
569 for(i=0; i<nPagesToInv; ++i) |
|
570 { |
|
571 const TUint pageIdx = i+startPgIdx; |
|
572 if(pageIdx >= NumPages()) |
|
573 break; |
|
574 |
|
575 CFat16FixedCachePage* pPage = iPages[pageIdx]; |
|
576 if(pPage) |
|
577 pPage->Invalidate(bIgnoreDirtyData); |
|
578 } |
|
579 |
|
580 SetDirty(EFalse); |
|
581 |
|
582 //-- check if the cache still has dirty pages |
|
583 for(i=0; i<NumPages(); ++i) |
|
584 { |
|
585 CFat16FixedCachePage* pPage = iPages[i]; |
|
586 if(pPage && pPage->IsDirty()) |
|
587 { |
|
588 SetDirty(ETrue); |
|
589 break; |
|
590 } |
|
591 } |
|
592 |
|
593 return KErrNone; |
|
594 } |
|
595 |
|
596 //################################################################################################################################# |
|
597 // CFat16FixedCachePage implementation |
|
598 // Page for the FAT16 fixed cache |
|
599 //################################################################################################################################# |
|
600 |
|
601 //----------------------------------------------------------------------------- |
|
602 |
|
603 CFat16FixedCachePage::CFat16FixedCachePage(CFatPagedCacheBase& aCache) |
|
604 :CFatCachePageBase(aCache) |
|
605 { |
|
606 ASSERT(IsPowerOf2(EntriesInPage())); |
|
607 } |
|
608 |
|
609 |
|
610 /** |
|
611 Factory function. |
|
612 @param aCache reference to the owning cache. |
|
613 @return pointer to the constructed object or NULL on error |
|
614 */ |
|
615 CFat16FixedCachePage* CFat16FixedCachePage::NewL(CFatPagedCacheBase& aCache) |
|
616 { |
|
617 CFat16FixedCachePage* pSelf = NULL; |
|
618 pSelf = new (ELeave) CFat16FixedCachePage(aCache); |
|
619 |
|
620 CleanupStack::PushL(pSelf); |
|
621 |
|
622 pSelf->iData.CreateMaxL(aCache.PageSize()); //-- allocate memory for the page |
|
623 |
|
624 CleanupStack::Pop(); |
|
625 |
|
626 return pSelf; |
|
627 } |
|
628 |
|
629 |
|
630 //----------------------------------------------------------------------------- |
|
631 /** |
|
632 Read FAT16 entry from the cache. |
|
633 |
|
634 1. If page's data are valid, just extracts data from the page buffer. |
|
635 2. If page's data are invalid firstly reads data from the media and goto 1 |
|
636 |
|
637 @param aFatIndex entry's absolute FAT index (from the FAT start) |
|
638 @param aResult on sucess there will be FAT16 entry value |
|
639 @return ETrue, because FAT16 cache pages never get eviched. |
|
640 */ |
|
641 TBool CFat16FixedCachePage::ReadCachedEntryL (TUint32 aFatIndex, TUint32& aResult) |
|
642 { |
|
643 if(IsValid()) |
|
644 {//-- read entry directly from page buffer, the cached data are valid |
|
645 aResult = (*GetEntryPtr(aFatIndex)) & KFat16EntryMask; |
|
646 } |
|
647 else |
|
648 {//-- aFatIndex belongs to this page, but the page is invalid and needs to be read from the media |
|
649 //__PRINT(_L("#-CFat16FixedCachePage::ReadCachedEntry() The page is invalid, reading from the media")); |
|
650 aResult = ReadFromMediaL(aFatIndex); |
|
651 } |
|
652 |
|
653 return ETrue; |
|
654 } |
|
655 |
|
656 //----------------------------------------------------------------------------- |
|
657 |
|
658 /** |
|
659 Writes FAT cache page sector to the media (to all copies of the FAT) |
|
660 @param aSector sector number winthin this page |
|
661 */ |
|
662 void CFat16FixedCachePage::DoWriteSectorL(TUint32 aSector) |
|
663 { |
|
664 //__PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorL() startSec:%d, cnt:%d"), aSector); |
|
665 |
|
666 ASSERT(aSector < iCache.SectorsInPage()); |
|
667 |
|
668 TInt offset = 0; |
|
669 |
|
670 if(iStartIndexInFAT == 0 && aSector == 0) |
|
671 {//-- this is the very beginning of FAT16. We must skip FAT[0] & FAT[1] entries and do not write them to media. |
|
672 offset = KFatFirstSearchCluster << KFat16EntrySzLog2; |
|
673 } |
|
674 |
|
675 const TUint8* pData = iData.Ptr()+offset+(aSector << iCache.SectorSizeLog2()); |
|
676 |
|
677 TUint32 dataLen = (1 << iCache.SectorSizeLog2()) - offset; |
|
678 |
|
679 const TUint32 mediaPosStart = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2) + (aSector << iCache.SectorSizeLog2()) + offset; |
|
680 const TUint32 mediaPosEnd = mediaPosStart + dataLen; |
|
681 |
|
682 //-- check if we are going to write beyond FAT. It can happen if the write granularity is bigger that the sector size. |
|
683 const TUint32 posFatEnd = iCache.FatStartPos() + iCache.FatSize(); |
|
684 if(mediaPosEnd > posFatEnd) |
|
685 {//-- correct the leength of the data to write. |
|
686 dataLen -= (mediaPosEnd-posFatEnd); |
|
687 } |
|
688 |
|
689 TPtrC8 ptrData(pData, dataLen); //-- source data descriptor |
|
690 |
|
691 TInt nRes = iCache.WriteFatData(mediaPosStart, ptrData); |
|
692 |
|
693 if(nRes != KErrNone) |
|
694 { |
|
695 __PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorsL() failed! code:%d"), nRes); |
|
696 User::Leave(nRes); |
|
697 } |
|
698 |
|
699 } |
|
700 |
|
701 //----------------------------------------------------------------------------- |
|
702 /** |
|
703 Write FAT16 entry at aFatIndex to the cache. Note that the data are not written to the media, only to the cache page. |
|
704 Corresponding page sector is marked as dirty and will be flushed on FlushL() call later. |
|
705 |
|
706 1. If page's data are valid, copies data to the page buffer and marks sector as dirty. |
|
707 2. If page's data are invalid, firstly reads data from the media and goto 1 |
|
708 |
|
709 @param aFatIndex entry's absolute FAT index (from the FAT start) |
|
710 @param aFatEntry FAT16 entry value |
|
711 @return ETrue because FAT16 cache pages never get eviched. |
|
712 */ |
|
713 TBool CFat16FixedCachePage::WriteCachedEntryL(TUint32 aFatIndex, TUint32 aFatEntry) |
|
714 { |
|
715 |
|
716 ASSERT(IsEntryCached(aFatIndex)); |
|
717 |
|
718 if(!IsValid()) |
|
719 {//-- we are trying to write data to the page that has invalid data. //-- read the data from the media first. |
|
720 ReadFromMediaL(aFatIndex); |
|
721 } |
|
722 |
|
723 TFat16Entry* pEntry = GetEntryPtr(aFatIndex); |
|
724 |
|
725 const TFat16Entry orgEntry = *pEntry; |
|
726 *pEntry = (TFat16Entry)((orgEntry & ~KFat16EntryMask) | (aFatEntry & KFat16EntryMask)); |
|
727 |
|
728 //-- mark corresponding sector of the cache page as dirty |
|
729 const TUint entryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2 |
|
730 const TUint dirtySectorNum = entryIndexInPage >> (iCache.SectorSizeLog2() - KFat16EntrySzLog2); |
|
731 |
|
732 ASSERT(dirtySectorNum < iCache.SectorsInPage()); |
|
733 |
|
734 iDirtySectors.SetBit(dirtySectorNum); |
|
735 SetState(EDirty); //-- mark page as dirty. |
|
736 |
|
737 return ETrue; |
|
738 } |
|
739 |
|
740 //----------------------------------------------------------------------------- |
|
741 |
|
742 /** |
|
743 Get a pointer to the FAT16 entry in the page buffer. |
|
744 The page 's data shall be valid and the entry shall belong to this page. |
|
745 |
|
746 @param aFatIndex absolute FAT index (from the FAT start) of the entry |
|
747 @return pointer to the FAT16 entry in the page buffer. |
|
748 */ |
|
749 TFat16Entry* CFat16FixedCachePage::GetEntryPtr(TUint32 aFatIndex) const |
|
750 { |
|
751 ASSERT(IsValid() && IsEntryCached(aFatIndex)); |
|
752 |
|
753 const TUint KEntryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2 |
|
754 TFat16Entry* pEntry = ((TFat16Entry*)iData.Ptr()) + KEntryIndexInPage; |
|
755 |
|
756 return pEntry; |
|
757 } |
|
758 |
|
759 //----------------------------------------------------------------------------- |
|
760 /** |
|
761 Read the FAT16 cache page from the media and returns required FAT16 entry. |
|
762 |
|
763 @param aFatIndex entry's absolute FAT index (from the FAT start) |
|
764 @return entry value at aFatIndex. |
|
765 */ |
|
766 TUint32 CFat16FixedCachePage::ReadFromMediaL(TUint32 aFatIndex) |
|
767 { |
|
768 //__PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() FAT idx:%d"), aFatIndex); |
|
769 const TUint KFat16EntriesInPageLog2 = iCache.PageSizeLog2()-KFat16EntrySzLog2; //-- number of FAT16 entries in page is always a power of 2 |
|
770 |
|
771 //-- find out index in FAT this page starts from |
|
772 iStartIndexInFAT = (aFatIndex >> KFat16EntriesInPageLog2) << KFat16EntriesInPageLog2; |
|
773 SetState(EInvalid); //-- mark the page as invalid just in case if the read fails. |
|
774 |
|
775 //-- read page from the media |
|
776 const TUint32 pageStartPos = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2); |
|
777 |
|
778 TInt nRes = iCache.ReadFatData(pageStartPos, iCache.PageSize(), iData); |
|
779 if(nRes != KErrNone) |
|
780 { |
|
781 __PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() failed! code:%d"), nRes); |
|
782 User::Leave(nRes); |
|
783 } |
|
784 |
|
785 SetClean(); //-- mark this page as clean |
|
786 |
|
787 const TFat16Entry entry = (TFat16Entry)((*GetEntryPtr(aFatIndex)) & KFat16EntryMask); |
|
788 |
|
789 return entry; |
|
790 } |
|
791 |
|
792 |
|
793 //----------------------------------------------------------------------------- |
|
794 |
|
795 //################################################################################################################################# |
|
796 // CFat12Cache implementation |
|
797 // FAT12 non-paged fixed cache. This cache consists from only 1 page, logically divided up to 32 sectors (write granularity unit) |
|
798 //################################################################################################################################# |
|
799 |
|
800 CFat12Cache::CFat12Cache() |
|
801 :CFatCacheBase() |
|
802 { |
|
803 } |
|
804 |
|
805 //----------------------------------------------------------------------------- |
|
806 /** |
|
807 FAT12 fixed cache factory function. |
|
808 @param aOwner pointer to the owning FAT mount |
|
809 @param aFatSize size of the FAT table in bytes |
|
810 |
|
811 @return pointer to the constructed object. |
|
812 */ |
|
813 CFat12Cache* CFat12Cache::NewL(CFatMountCB* aOwner, TUint32 aFatSize) |
|
814 { |
|
815 __PRINT(_L("#-CFat12Cache::NewL()")); |
|
816 CFat12Cache* pSelf = NULL; |
|
817 pSelf = new (ELeave) CFat12Cache; |
|
818 |
|
819 CleanupStack::PushL(pSelf); |
|
820 pSelf->InitialiseL(aOwner, aFatSize); |
|
821 CleanupStack::Pop(); |
|
822 |
|
823 return pSelf; |
|
824 } |
|
825 |
|
826 //----------------------------------------------------------------------------- |
|
827 /** |
|
828 FAT16 fixed cache initialisation. |
|
829 @param aOwner pointer to the owning FAT mount |
|
830 @param aFatSize size of the FAT table in bytes |
|
831 */ |
|
832 void CFat12Cache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize) |
|
833 { |
|
834 __PRINT1(_L("#-CFat12Cache::InitialiseL FatSz:%u"),aFatSize); |
|
835 |
|
836 CFatCacheBase::InitialiseL(aOwner); |
|
837 ASSERT(FatType() == EFat12); |
|
838 |
|
839 //-- see FAT specs; 4084 is a max. number of clusters, fat12 entry is 1.5 bytes; but we need to round up FAT12 size to the sector size |
|
840 const TUint32 KMaxFat12Size = ( ((TUint32)(4084*1.5+FAT_SectorSz()-1)) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2(); |
|
841 const TUint32 KMinFat12Size = FAT_SectorSz(); //-- 1 FAT sector |
|
842 __ASSERT_ALWAYS(aFatSize >= KMinFat12Size && aFatSize <= KMaxFat12Size, User::Leave(KErrCorrupt)); |
|
843 (void)KMaxFat12Size; |
|
844 (void)KMinFat12Size; |
|
845 |
|
846 //-- as soon as FAT12 max size is 4084 entries or 6126 bytes, the cache is contiguous and divided |
|
847 //-- to logical sectors (write granularity). |
|
848 |
|
849 //-- calculate number write cache sector in the cache |
|
850 iSectorsInCache = (aFatSize + (FAT_SectorSz()-1)) >> FAT_SectorSzLog2(); |
|
851 __ASSERT_ALWAYS(NumSectors() <= KMaxSectorsInCache, Fault(EFatCache_BadGranularity)); |
|
852 |
|
853 //-- round up cache size to write granularity (sector size) |
|
854 const TUint32 cacheSize = NumSectors() << FAT_SectorSzLog2(); |
|
855 |
|
856 //-- create buffer for the whole FAT12 |
|
857 iData.CreateMaxL(cacheSize); |
|
858 |
|
859 //-- this will read whole FAT into the cache |
|
860 User::LeaveIfError(Invalidate()); |
|
861 } |
|
862 |
|
863 //----------------------------------------------------------------------------- |
|
864 /** |
|
865 Close the cache and deallocate its memory. |
|
866 @param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache. |
|
867 */ |
|
868 void CFat12Cache::Close(TBool aDiscardDirtyData) |
|
869 { |
|
870 __PRINT1(_L("#-CFat12Cache::Close(%d)"), aDiscardDirtyData); |
|
871 |
|
872 for(TUint32 i=0; i<NumSectors(); ++i) |
|
873 { |
|
874 if(iDirtySectors[i]) |
|
875 {//-- trying to destroy the cache that has dirty sectors |
|
876 __PRINT1(_L("#-CFat12Cache::Close() The cache is dirty! cache sector:%d"), i); |
|
877 if(!aDiscardDirtyData) |
|
878 { |
|
879 __ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
880 } |
|
881 //-- ignore this fact if requested. |
|
882 } |
|
883 } |
|
884 |
|
885 iData.Close(); |
|
886 SetDirty(EFalse); |
|
887 } |
|
888 |
|
889 //----------------------------------------------------------------------------- |
|
890 /** |
|
891 Read FAT entry from the cache. |
|
892 |
|
893 @param aIndex FAT entry index to read |
|
894 @return FAT entry value at the index "aIndex" |
|
895 */ |
|
896 TUint32 CFat12Cache::ReadEntryL(TUint32 aIndex) |
|
897 { |
|
898 //__PRINT1(_L("#-CFat12Cache::ReadEntryL() FAT idx:%d"), aIndex); |
|
899 ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
900 |
|
901 TUint32 entry; |
|
902 |
|
903 if(aIndex & 0x01) |
|
904 {//-- odd index |
|
905 --aIndex; |
|
906 const TUint32 byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5 |
|
907 Mem::Copy(&entry, iData.Ptr()+byteIdx, 2); |
|
908 entry >>= 4; |
|
909 } |
|
910 else |
|
911 {//-- even index |
|
912 const TUint32 byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5 |
|
913 Mem::Copy(&entry, iData.Ptr()+byteIdx, 2); |
|
914 } |
|
915 |
|
916 entry &= KFat12EntryMask; |
|
917 |
|
918 return entry; |
|
919 } |
|
920 |
|
921 //----------------------------------------------------------------------------- |
|
922 /** |
|
923 Write FAT entry to the cache. |
|
924 Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media. |
|
925 |
|
926 @param aIndex FAT entry index |
|
927 @param aEntry FAT entry value |
|
928 */ |
|
929 void CFat12Cache::WriteEntryL(TUint32 aIndex, TUint32 aEntry) |
|
930 { |
|
931 //__PRINT2(_L("#-CFat12Cache::WriteEntryL() FAT idx:%d, entry:%u"), aIndex, aEntry); |
|
932 ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
933 |
|
934 aEntry &= KFat12EntryMask; |
|
935 |
|
936 TUint32 byteIdx = 0; |
|
937 TUint8 tmp; |
|
938 |
|
939 if(aIndex & 0x01) |
|
940 {//-- odd index |
|
941 --aIndex; |
|
942 byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5 |
|
943 tmp = (TUint8)(iData[byteIdx] & 0x0F); //-- we modifying a higher nibble |
|
944 tmp |= (TUint8) ((aEntry & 0x0F)<<4); |
|
945 iData[byteIdx] = tmp; |
|
946 |
|
947 iData[byteIdx+1] = (TUint8)(aEntry >> 4); |
|
948 } |
|
949 else |
|
950 {//-- even index |
|
951 byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5 |
|
952 iData[byteIdx] = (TUint8)aEntry; |
|
953 |
|
954 const TUint32 nextIdx = byteIdx+1; |
|
955 tmp = (TUint8)(iData[nextIdx] & 0xF0); //-- we modifying a lower nibble |
|
956 tmp |= (TUint8)((aEntry >> 8) & 0x0F); |
|
957 iData[nextIdx] = tmp; |
|
958 |
|
959 } |
|
960 |
|
961 //-- mark changed sectors dirty. We modified 2 bytes at [byteIdx] and [byteIdx+1] |
|
962 iDirtySectors.SetBit(byteIdx >> FAT_SectorSzLog2()); |
|
963 iDirtySectors.SetBit((byteIdx+1) >> FAT_SectorSzLog2()); |
|
964 |
|
965 SetDirty(ETrue); |
|
966 } |
|
967 |
|
968 //----------------------------------------------------------------------------- |
|
969 /** |
|
970 A debug method that asserts that the cache is really clean |
|
971 */ |
|
972 void CFat12Cache::AssertCacheReallyClean() const |
|
973 { |
|
974 #ifdef _DEBUG |
|
975 if(iDirtySectors.HasBitsSet()) |
|
976 { |
|
977 __PRINT(_L("#-CFat12Cache::AssertCacheReallyClean()")); |
|
978 ASSERT(0); |
|
979 } |
|
980 |
|
981 #endif |
|
982 } |
|
983 |
|
984 //----------------------------------------------------------------------------- |
|
985 /** |
|
986 Flushes all dirty data to the media. |
|
987 Walks through all sectors in this cache and flushes dirty ones. |
|
988 */ |
|
989 void CFat12Cache::FlushL() |
|
990 { |
|
991 if(!IsDirty()) |
|
992 { |
|
993 AssertCacheReallyClean(); |
|
994 return; |
|
995 } |
|
996 |
|
997 //-- write all dirty sectors to the media (into all copies of FAT) |
|
998 for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo) |
|
999 { |
|
1000 for(TUint secNo=0; secNo<NumSectors(); ++secNo) |
|
1001 { |
|
1002 if(iDirtySectors[secNo]) |
|
1003 {//-- this sector is dirty, write it to the media |
|
1004 |
|
1005 TInt offset = 0; |
|
1006 if(secNo == 0) |
|
1007 {//-- this is a first sector in FAT. We must skip FAT[0] & FAT[1] entries and do not write them to the media. |
|
1008 offset = 3; //-- 2 FAT12 entries |
|
1009 } |
|
1010 |
|
1011 const TUint32 secPos = secNo << FAT_SectorSzLog2(); //-- relative sector position in FAT |
|
1012 const TUint8* pData = iData.Ptr()+offset+secPos; //-- pointer to the data in cache buffer |
|
1013 const TUint32 len = FAT_SectorSz() - offset; |
|
1014 TPtrC8 ptrData(pData, len); //-- source data descriptor |
|
1015 const TUint32 mediaPos = FatStartPos() + secPos + offset; |
|
1016 |
|
1017 TInt nRes = WriteFatData(mediaPos, ptrData); |
|
1018 |
|
1019 if(nRes != KErrNone) |
|
1020 { |
|
1021 __PRINT1(_L("#-CFat12Cache::FlushL() failed! code:%d"), nRes); |
|
1022 User::Leave(nRes); |
|
1023 } |
|
1024 |
|
1025 }//if(iDirtySectors[secNo]) |
|
1026 } |
|
1027 |
|
1028 } |
|
1029 |
|
1030 iCurrentFatNo = KInvalidFatNo; |
|
1031 |
|
1032 //-- mark the cache as clean |
|
1033 iDirtySectors.Clear(); |
|
1034 SetDirty(EFalse); |
|
1035 |
|
1036 } |
|
1037 |
|
1038 //----------------------------------------------------------------------------- |
|
1039 /** |
|
1040 Invalidates whole cache. Because FAT12 is tiny, just re-reads data from the media to the cache |
|
1041 @return Media read result code. |
|
1042 */ |
|
1043 TInt CFat12Cache::Invalidate() |
|
1044 { |
|
1045 __PRINT(_L("#-CFat12Cache::Invalidate()")); |
|
1046 CheckInvalidatingDirtyCache(); |
|
1047 |
|
1048 //-- read whole cache from the media |
|
1049 const TUint32 posStart = FatStartPos(); |
|
1050 const TUint32 len = NumSectors() << FAT_SectorSzLog2(); |
|
1051 |
|
1052 TInt nRes = ReadFatData(posStart, len, iData); |
|
1053 if(nRes != KErrNone) |
|
1054 return nRes; |
|
1055 |
|
1056 //-- mark the cache as clean |
|
1057 SetDirty(EFalse); |
|
1058 iDirtySectors.Clear(); |
|
1059 |
|
1060 return KErrNone; |
|
1061 } |
|
1062 |
|
1063 //----------------------------------------------------------------------------- |
|
1064 /** |
|
1065 Invalidate wholes cache. Because FAT12 is tiny, just re-reads data from the media to the cache |
|
1066 @param aStartIndex ignored |
|
1067 @param aNumEntries ignored |
|
1068 @return Media read result code. |
|
1069 */ |
|
1070 TInt CFat12Cache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries) |
|
1071 { |
|
1072 __PRINT2(_L("#-CFat12Cache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries); |
|
1073 ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
1074 (void)aStartIndex; |
|
1075 (void)aNumEntries; |
|
1076 |
|
1077 //-- just re-read all FAT12, it is just 6K max and isn't worth calculating invalid sectors |
|
1078 return Invalidate(); |
|
1079 } |
|
1080 |
|
1081 |
|
1082 |
|
1083 |
|
1084 |
|
1085 |
|
1086 |
|
1087 |
|
1088 |
|
1089 |
|
1090 |
|
1091 |
|
1092 |
|
1093 |
|
1094 |
|
1095 |
|
1096 |
|
1097 |
|
1098 |
|
1099 |
|
1100 |
|
1101 |
|
1102 |
|
1103 |
|
1104 |
|
1105 |
|
1106 |
|
1107 |
|
1108 |
|
1109 |
|
1110 |
|
1111 |
|
1112 |
|
1113 |
|
1114 |
|
1115 |
|
1116 |
|
1117 |
|
1118 |
|
1119 |
|
1120 |
|
1121 |
|
1122 |