kerneltest/e32utils/nistsecurerng/src/genutils.cpp
changeset 152 657f875b013e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32utils/nistsecurerng/src/genutils.cpp	Fri Jun 11 15:02:23 2010 +0300
@@ -0,0 +1,693 @@
+/*
+* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description: 
+* The original NIST Statistical Test Suite code is placed in public domain.
+* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) 
+* 
+* This software was developed at the National Institute of Standards and Technology by 
+* employees of the Federal Government in the course of their official duties. Pursuant
+* to title 17 Section 105 of the United States Code this software is not subject to 
+* copyright protection and is in the public domain. The NIST Statistical Test Suite is
+* an experimental system. NIST assumes no responsibility whatsoever for its use by other 
+* parties, and makes no guarantees, expressed or implied, about its quality, reliability, 
+* or any other characteristic. We would appreciate acknowledgment if the software is used.
+*/
+
+/*
+ * file: mp.c
+ *
+ * DESCRIPTION
+ *
+ * These functions comprise a multi-precision integer arithmetic
+ * and discrete function package.
+ */
+
+#include	"../include/genutils.h"
+
+#define	MAXPLEN		384
+
+
+/*****************************************
+** greater - Test if x > y               *
+**                                       *
+** Returns TRUE (1) if x greater than y, *
+** otherwise FALSE (0).                  *
+**                                       *
+** Parameters:                           *
+**                                       *
+**  x      Address of array x            *
+**  y      Address of array y            *
+**  l      Length both x and y in bytes  *
+**                                       *
+******************************************/ 
+int greater(BYTE *x, BYTE *y, int l)
+{
+	int		i;
+
+	for ( i=0; i<l; i++ )
+		if ( x[i] != y[i] )
+			break;
+
+	if ( i == l )
+		return 0;
+
+	if ( x[i] > y[i] )
+		return 1;
+
+	return 0;
+}
+
+
+/*****************************************
+** less - Test if x < y                  *
+**                                       *
+** Returns TRUE (1) if x less than y,    *
+** otherwise FALSE (0).                  *
+**                                       *
+** Parameters:                           *
+**                                       *
+**  x      Address of array x            *
+**  y      Address of array y            *
+**  l      Length both x and y in bytes  *
+**                                       *
+******************************************/ 
+int less(BYTE *x, BYTE *y, int l)
+{
+	int		i;
+
+	for ( i=0; i<l; i++ )
+		if ( x[i] != y[i] )
+			break;
+
+	if ( i == l ) {
+		return 0;
+	}
+
+	if ( x[i] < y[i] ) {
+		return 1;
+	}
+
+	return 0;
+}
+
+
+/*****************************************
+** bshl - shifts array left              *
+**                  by one bit.          *
+**                                       *	
+** x = x * 2                             *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  x      Address of array x            *
+**  l      Length array x in bytes       *
+**                                       *
+******************************************/ 
+BYTE bshl(BYTE *x, int l)
+{
+	BYTE	*p;
+	int		c1, c2;
+
+	p = x + l - 1;
+	c1 = 0;
+	c2 = 0;
+	while ( p != x ) {
+		if ( *p & 0x80 )
+			c2 = 1;
+		*p <<= 1;  /* shift the word left once (ls bit = 0) */
+		if ( c1 )
+			*p |= 1;
+		c1 = c2;
+		c2 = 0;
+		p--;
+	}
+
+	if ( *p & 0x80 )
+		c2 = 1;
+	*p <<= 1;  /* shift the word left once (ls bit = 0) */
+	if ( c1 )
+		*p |= (DIGIT)1;
+
+	return (BYTE)c2;
+}
+
+
+/*****************************************
+** bshr - shifts array right             *
+**                   by one bit.         *
+**                                       *	
+** x = x / 2                             *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  x      Address of array x            *
+**  l      Length array x in bytes       *	
+**                                       *
+******************************************/
+void bshr(BYTE *x, int l)	
+{
+	BYTE	*p;
+	int		c1,c2;
+
+	p = x;
+	c1 = 0;
+	c2 = 0;
+	while ( p != x+l-1 ) {
+		if ( *p & 0x01 )
+			c2 = 1;
+		*p >>= 1;  /* shift the word right once (ms bit = 0) */
+		if ( c1 )
+			*p |= 0x80;
+		c1 = c2;
+		c2 = 0;
+		p++;
+	}
+
+	*p >>= 1;  /* shift the word right once (ms bit = 0) */
+	if ( c1 )
+		*p |= 0x80;
+}
+
+
+/*****************************************
+** Mult - Multiply two integers          *
+**                                       *
+** A = B * C                             *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  A      Address of the result         *
+**  B      Address of the multiplier     *
+**  C      Address of the multiplicand   *
+**  LB      Length of B in bytes         *
+**  LC      Length of C in bytes         *
+**                                       *
+**  NOTE:  A MUST be LB+LC in length     *
+**                                       *
+******************************************/
+int Mult(BYTE *A, BYTE *B, int LB, BYTE *C, int LC)
+{
+	int    i, j;
+	int    k = 0;
+	DIGIT	result;
+
+
+	for ( i=LB-1; i>=0; i-- ) {
+		result = 0;
+		for ( j=LC-1; j>=0; j-- ) {
+			k = i+j+1;
+			result = (DIGIT)((DIGIT)A[k] + ((DIGIT)(B[i] * C[j])) + (result >> 8));
+			A[k] = (BYTE)result;
+			}
+		A[--k] = (BYTE)(result >> 8);
+	}
+
+	return 0;
+}
+
+
+void ModSqr(BYTE *A, BYTE *B, int LB, BYTE *M, int LM)
+{
+
+	Square(A, B, LB);
+	Mod(A, 2*LB, M, LM);
+}
+
+void ModMult(BYTE *A, BYTE *B, int LB, BYTE *C, int LC, BYTE *M, int LM)
+{
+	Mult(A, B, LB, C, LC);
+	Mod(A, (LB+LC), M, LM);
+}
+
+
+/*****************************************
+** smult - Multiply array by a scalar.   *
+**                                       *
+** A = b * C                             *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  A      Address of the result         *
+**  b      Scalar (1 BYTE)               *
+**  C      Address of the multiplicand   *
+**  L      Length of C in bytes          *
+**                                       *
+**  NOTE:  A MUST be L+1 in length       *
+**                                       *
+******************************************/
+void smult(BYTE *A, BYTE b, BYTE *C, int L)
+{
+	int		i;
+	DIGIT	result;
+
+	result = 0;
+	for ( i=L-1; i>0; i-- ) {
+		result = (DIGIT)(A[i] + ((DIGIT)b * C[i]) + (result >> 8));
+		A[i] = (BYTE)(result & 0xff);
+		A[i-1] = (BYTE)(result >> 8);
+	}
+}
+
+/*****************************************
+** Square() - Square an integer          *
+**                                       *
+** A = B^2                               *
+**                                       *
+** Parameters:                           *
+**                                       *
+**  A      Address of the result         *
+**  B      Address of the operand        *
+**  L      Length of B in bytes          *
+**                                       *
+**  NOTE:  A MUST be 2*L in length       *
+**                                       *
+******************************************/
+void Square(BYTE *A, BYTE *B, int L)
+{
+	Mult(A, B, L, B, L);
+}
+
+/*****************************************
+** ModExp - Modular Exponentiation       *
+**                                       *
+** A = B ** C (MOD M)                    *
+**                                       *	
+** Parameters:                           *	
+**                                       *
+**  A      Address of result             *
+**  B      Address of mantissa           *
+**  C      Address of exponent           *
+**  M      Address of modulus            *
+**  LB     Length of B in bytes          *
+**  LC     Length of C in bytes          *
+**  LM     Length of M in bytes          *
+**                                       *
+**  NOTE: The integer B must be less     *
+**        than the modulus M.      	 *
+**  NOTE: A must be at least 3*LM        *
+**        bytes long.  However, the      *
+**        result stored in A will be     *
+**        only LM bytes long.            *
+******************************************/
+void ModExp(BYTE *A, BYTE *B, int LB, BYTE *C, int LC, BYTE *M, int LM)
+{
+	BYTE	wmask;
+	int		bits;
+
+	bits = LC*8;
+	wmask = 0x80;
+
+	A[LM-1] = 1;
+
+	while ( !sniff_bit(C,wmask) ) {
+		wmask >>= 1;
+		bits--;
+		if ( !wmask ) {
+			wmask = 0x80;
+			C++;
+		}
+	}
+
+	while ( bits-- ) {
+		memset(A+LM, 0x00, LM*2);
+
+		/* temp = A*A (MOD M) */
+		ModSqr(A+LM, A,LM,  M,LM);
+
+		/* A = lower L bytes of temp */
+		memcpy(A, A+LM*2, LM);
+		memset(A+LM, 0x00, 2*LM);
+
+		if ( sniff_bit(C,wmask) ) {
+			memset(A+LM, 0x00, (LM+LB));
+			ModMult(A+LM, B,LB, A,LM,  M,LM);       /* temp = B * A (MOD M) */
+			memcpy(A, A+LM+(LM+LB)-LM, LM);  /* A = lower LM bytes of temp */
+			memset(A+LM, 0x00, 2*LM);
+		}
+ 
+		wmask >>= 1;
+		if ( !wmask ) {
+			wmask = 0x80;
+			C++;
+		}
+	}
+}
+
+
+/* DivMod:
+ *
+ *   computes:
+ *         quot = x / n
+ *         rem = x % n
+ *   returns:
+ *         length of "quot"
+ *
+ *  len of rem is lenx+1
+ */
+int DivMod(BYTE *x, int lenx, BYTE *n, int lenn, BYTE *quot, BYTE *rem)
+{
+	BYTE	*tx, *tn, *ttx, *ts, bmult[1];
+	int		i, shift, lgth_x, lgth_n, t_len, lenq;
+	DIGIT	tMSn, mult;
+	ULONG	tMSx;
+	int		underflow;
+
+	tx = x;
+	tn = n;
+	
+	/* point to the MSD of n  */
+	for ( i=0, lgth_n=lenn; i<lenn; i++, lgth_n-- ) {
+		if ( *tn )
+			break;
+		tn++;
+	}
+	if ( !lgth_n )
+		return 0;
+	
+	/* point to the MSD of x  */
+	for ( i=0, lgth_x=lenx; i<lenx; i++, lgth_x-- ) {
+		if ( *tx )
+			break;
+		tx++;
+	}
+	if ( !lgth_x )
+		return 0;
+
+	if ( lgth_x < lgth_n )
+		lenq = 1;
+	else
+		lenq = lgth_x - lgth_n + 1;
+	memset(quot, 0x00, lenq);
+	
+	/* Loop while x > n,  WATCH OUT if lgth_x == lgth_n */
+	while ( (lgth_x > lgth_n) || ((lgth_x == lgth_n) && !less(tx, tn, lgth_n)) ) {
+		shift = 1;
+		if ( lgth_n == 1 ) {
+			if ( *tx < *tn ) {
+				tMSx = (DIGIT) (((*tx) << 8) | *(tx+1));
+				tMSn = *tn;
+				shift = 0;
+			}
+			else {
+				tMSx = *tx;
+				tMSn = *tn;
+			}
+		}
+		else if ( lgth_n > 1 ) {
+			tMSx = (DIGIT) (((*tx) << 8) | *(tx+1));
+			tMSn = (DIGIT) (((*tn) << 8) | *(tn+1));
+			if ( (tMSx < tMSn) || ((tMSx == tMSn) && less(tx, tn, lgth_n)) ) {
+				tMSx = (tMSx << 8) | *(tx+2);
+				shift = 0;
+			}
+		}
+		else {
+			tMSx = (DIGIT) (((*tx) << 8) | *(tx+1));
+			tMSn = *tn;
+			shift = 0;
+		}
+
+		mult = (DIGIT) (tMSx / tMSn);
+		if ( mult > 0xff )
+			mult = 0xff;
+		bmult[0] = (BYTE)(mult & 0xff);
+
+		ts = rem;
+		do {
+			memset(ts, 0x00, lgth_x+1);
+			Mult(ts, tn, lgth_n, bmult, 1);
+
+			underflow = 0;
+			if ( shift ) {
+				if ( ts[0] != 0 )
+					underflow = 1;
+				else {
+					for ( i=0; i<lgth_x; i++ )
+						ts[i] = ts[i+1];
+					ts[lgth_x] = 0x00;
+				}
+			}
+			if ( greater(ts, tx, lgth_x) || underflow ) {
+				bmult[0]--;
+				underflow = 1;
+			}
+			else
+				underflow = 0;
+		} while ( underflow );
+		sub(tx, lgth_x, ts, lgth_x);
+		if ( shift )
+			quot[lenq - (lgth_x - lgth_n) - 1] = bmult[0];
+		else
+			quot[lenq - (lgth_x - lgth_n)] = bmult[0];
+		
+		ttx = tx;
+		t_len = lgth_x;
+		for ( i=0, lgth_x=t_len; i<t_len; i++, lgth_x-- ) {
+			if ( *ttx )
+				break;
+			ttx++;
+		}
+		tx = ttx;
+	}
+	memset(rem, 0x00, lenn);
+	if ( lgth_x )
+		memcpy(rem+lenn-lgth_x, tx, lgth_x);
+
+	return lenq;
+}
+
+
+/* 
+ * Mod - Computes an integer modulo another integer
+ *
+ * x = x (mod n)
+ *
+ */
+void Mod(BYTE *x, int lenx, BYTE *n, int lenn)
+{
+	BYTE	quot[MAXPLEN+1], rem[2*MAXPLEN+1];
+
+	memset(quot, 0x00, sizeof(quot));
+	memset(rem, 0x00, sizeof(rem));
+	if ( DivMod(x, lenx, n, lenn, quot, rem) ) {
+		memset(x, 0x00, lenx);
+		memcpy(x+lenx-lenn, rem, lenn);
+	}
+}
+
+/* 
+ * Div - Computes the integer division of two numbers
+ *
+ * x = x / n
+ *
+ */
+void Div(BYTE *x, int lenx, BYTE *n, int lenn)
+{
+	BYTE	quot[MAXPLEN+1], rem[2*MAXPLEN+1];
+	int		lenq;
+
+	memset(quot, 0x00, sizeof(quot));
+	memset(rem, 0x00, sizeof(rem));
+	if ( (lenq = DivMod(x, lenx, n, lenn, quot, rem)) != 0 ) {
+		memset(x, 0x00, lenx);
+		memcpy(x+lenx-lenq, quot, lenq);
+	}
+}
+
+
+/*****************************************
+** sub - Subtract two integers           *
+**                                       *
+** A = A - B                             *
+**                                       *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  A      Address of subtrahend integer *
+**  B      Address of subtractor integer *
+**  L      Length of A and B in bytes    *
+**                                       *
+**  NOTE: In order to save RAM, B is     *
+**        two's complemented twice,      *
+**        rather than using a copy of B  *
+**                                       *
+******************************************/
+void sub(BYTE *A, int LA, BYTE *B, int LB)
+{
+	BYTE	*tb;
+
+	tb = (BYTE *)calloc(LA, 1);
+	memcpy(tb, B, LB);
+	negate(tb, LB);
+	add(A, LA, tb, LA);
+
+	FREE(tb);
+}
+
+
+/*****************************************
+** negate - Negate an integer            *
+**                                       *
+** A = -A                                *
+**                                       *
+**                                       *
+** Parameters:                           *	
+**                                       *
+**  A      Address of integer to negate  *
+**  L      Length of A in bytes          *
+**                                       *
+******************************************/
+int negate(BYTE *A, int L)
+{
+	int		i, tL;
+	DIGIT	accum;
+
+	/* Take one's complement of A */
+	for ( i=0; i<L; i++ )
+		A[i] = (BYTE)(~(A[i]));
+
+	/* Add one to get two's complement of A */
+	accum = 1;
+	tL = L-1;
+	while ( accum && (tL >= 0) ) {
+		accum = (DIGIT)(accum + A[tL]);
+		A[tL--] = (BYTE)(accum & 0xff);
+		accum = (DIGIT)(accum >> 8);
+	}
+
+	return accum;
+}
+
+
+/*
+ * add()
+ *
+ * A = A + B
+ *
+ * LB must be <= LA
+ *
+ */
+BYTE add(BYTE *A, int LA, BYTE *B, int LB)
+{
+	int		i, indexA, indexB;
+	DIGIT	accum;
+
+	indexA = LA - 1; 	/* LSD of result */
+	indexB = LB - 1; 	/* LSD of B */
+
+	accum = 0;
+	for ( i = 0; i < LB; i++ ) {
+		accum = (DIGIT)(accum + A[indexA]);
+		accum = (DIGIT)(accum + B[indexB--]);
+		A[indexA--] = (BYTE)(accum & 0xff);
+		accum = (DIGIT)(accum >> 8);
+	}
+
+	if ( LA > LB )
+		while ( accum  && (indexA >= 0) ) {
+			accum = (DIGIT)(accum + A[indexA]);
+			A[indexA--] = (BYTE)(accum & 0xff);
+			accum = (DIGIT)(accum >> 8);
+		}
+
+	return (BYTE)accum;
+}
+
+
+void prettyprintBstr(char *S, BYTE *A, int L)
+{
+	int		i, extra, ctrb, ctrl;
+
+	if ( L == 0 )
+		printf("%s <empty>", S);
+	else
+		printf("%s\n\t", S);
+	extra = L % 24;
+	if ( extra ) {
+		ctrb = 0;
+		for ( i=0; i<24-extra; i++ ) {
+			printf("  ");
+			if ( ++ctrb == 4) {
+				printf(" ");
+				ctrb = 0;
+			}
+		}
+
+		for ( i=0; i<extra; i++ ) {
+			printf("%02X", A[i]);
+			if ( ++ctrb == 4) {
+				printf(" ");
+				ctrb = 0;
+			}
+		}
+		printf("\n\t");
+	}
+
+	ctrb = ctrl = 0;
+	for ( i=extra; i<L; i++ ) {
+		printf("%02X", A[i]);
+		if ( ++ctrb == 4) {
+			ctrl++;
+			if ( ctrl == 6 ) {
+				printf("\n\t");
+				ctrl = 0;
+			}
+			else
+				printf(" ");
+			ctrb = 0;
+		}
+	}
+	printf("\n\n");
+}
+
+
+/**********************************************************************/
+/*  Performs byte reverse for PC based implementation (little endian) */
+/**********************************************************************/
+void byteReverse(ULONG *buffer, int byteCount)
+{
+	ULONG value;
+	int count;
+
+	byteCount /= sizeof( ULONG );
+	for( count = 0; count < byteCount; count++ ) {
+		value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
+		buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
+	}
+}
+
+void
+ahtopb (char *ascii_hex, BYTE *p_binary, int bin_len)
+{
+	BYTE    nibble;
+	int     i; 
+	
+	for ( i=0; i<bin_len; i++ ) {
+        nibble = ascii_hex[i * 2];
+	    if ( nibble > 'F' )
+	        nibble -= 0x20;   
+	    if ( nibble > '9' )
+	        nibble -= 7;      
+	    nibble -= '0';   
+	    p_binary[i] = (BYTE)(nibble << 4);
+		
+	    nibble = ascii_hex[i * 2 + 1];
+	    if ( nibble > 'F' )
+			nibble -= 0x20;
+        if ( nibble > '9' )
+            nibble -= 7;   
+        nibble -= '0';
+		p_binary[i] = (BYTE)(p_binary[i] + nibble);
+	}
+}