--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/brdbootldr/ubootldr/inflate2.cpp Thu Dec 17 09:24:54 2009 +0200
@@ -0,0 +1,894 @@
+// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// base\omap_hrp\h4_bootloader\inflate2.cpp
+// For inflate image which is compressed by Deflate algortihm instead of ZIP
+// (The ROM header un-compressed, the rest part of the image is compressed.)
+//
+//
+
+#define FILE_ID 0x4C5A4955
+
+#include <e32def.h>
+#include <e32def_private.h>
+#include <e32cmn.h>
+#include <e32rom.h>
+
+#include "inflate2.h"
+
+#include <e32std.h>
+#include <e32std_private.h>
+#include "bootldr.h"
+#include "unzip.h"
+
+#include <f32file.h>
+#include <e32svr.h>
+
+
+#define PTRADD(T,p,x) ((T*)((char*)(p)+(x)))
+#define MIN(a,b) (((a)<(b))?(a):(b))
+
+
+// bit-stream input class
+inline TUint reverse(TUint aVal)
+//
+// Reverse the byte-order of a 32 bit value
+// This generates optimal ARM code (4 instructions)
+//
+ {
+ TUint v=(aVal<<16)|(aVal>>16);
+ v^=aVal;
+ v&=0xff00ffff;
+ aVal=(aVal>>8)|(aVal<<24);
+ return aVal^(v>>8);
+ }
+
+
+
+void HexDump(TUint8 * aStartAddress, TUint aLength)
+ {
+ TUint index;
+ for( index = 0; index != aLength; ++index)
+ {
+ if( index % 16 == 0)
+ {
+ PrintToScreen(_L("\r\n0x%08x: "),aStartAddress + index);
+ }
+
+ PrintToScreen(_L("%02x "), *(aStartAddress+index));
+
+ }
+ PrintToScreen(_L("\r\n\r\n"));
+ }
+
+
+
+/******************************************************************************************************
+ Bit input Stream code
+ *****************************************************************************************************/
+
+
+
+/** Construct a bit stream input object
+
+ Following construction the bit stream is ready for reading bits, but will
+ immediately call UnderflowL() as the input buffer is empty.
+*/
+TBitInput::TBitInput()
+ :iCount(0)
+ ,iRemain(0)
+ {}
+
+/** Construct a bit stream input object over a buffer
+
+ Following construction the bit stream is ready for reading bits from
+ the specified buffer.
+
+ @param aPtr The address of the buffer containing the bit stream
+ @param aLength The length of the bitstream in bits
+ @param aOffset The bit offset from the start of the buffer to the bit stream (defaults to zero)
+*/
+TBitInput::TBitInput(const TUint8* aPtr, TInt aLength, TInt aOffset)
+ {
+ Set(aPtr,aLength,aOffset);
+ }
+
+/** Set the memory buffer to use for input
+
+ Bits will be read from this buffer until it is empty, at which point
+ UnderflowL() will be called.
+
+ @param aPtr The address of the buffer containing the bit stream
+ @param aLength The length of the bitstream in bits
+ @param aOffset The bit offset from the start of the buffer to the bit stream (defaults to zero)
+*/
+void TBitInput::Set(const TUint8* aPtr, TInt aLength, TInt aOffset)
+ {
+ TUint p=(TUint)aPtr;
+ p+=aOffset>>3; // nearest byte to the specified bit offset
+ aOffset&=7; // bit offset within the byte
+ const TUint32* ptr=(const TUint32*)(p&~3); // word containing this byte
+ aOffset+=(p&3)<<3; // bit offset within the word
+ if (aLength==0)
+ iCount=0;
+ else
+ {
+ // read the first few bits of the stream
+ iBits=reverse(*ptr++)<<aOffset;
+ aOffset=32-aOffset;
+ aLength-=aOffset;
+ if (aLength<0)
+ aOffset+=aLength;
+ iCount=aOffset;
+ }
+ iRemain=aLength;
+ iPtr=ptr;
+ }
+
+//#define __HUFFMAN_MACHINE_CODED__
+
+#ifndef __HUFFMAN_MACHINE_CODED__
+/** Read a single bit from the input
+
+ Return the next bit in the input stream. This will call UnderflowL() if
+ there are no more bits available.
+
+ @return The next bit in the stream
+
+ @leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
+ to get more data
+*/
+TUint TBitInput::ReadL()
+ {
+ TInt c=iCount;
+ TUint bits=iBits;
+ if (--c<0)
+ return ReadL(1);
+ iCount=c;
+ iBits=bits<<1;
+ return bits>>31;
+ }
+
+/** Read a multi-bit value from the input
+
+ Return the next few bits as an unsigned integer. The last bit read is
+ the least significant bit of the returned value, and the value is
+ zero extended to return a 32-bit result.
+
+ A read of zero bits will always reaturn zero.
+
+ This will call UnderflowL() if there are not enough bits available.
+
+ @param aSize The number of bits to read
+
+ @return The bits read from the stream
+
+ @leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
+ to get more data
+*/
+TUint TBitInput::ReadL(TInt aSize)
+ {
+ if (!aSize)
+ return 0;
+ TUint val=0;
+ TUint bits=iBits;
+ iCount-=aSize;
+ while (iCount<0)
+ {
+ // need more bits
+ val|=bits>>(32-(iCount+aSize))<<(-iCount); // scrub low order bits
+
+ aSize=-iCount; // bits still required
+ if (iRemain>0)
+ {
+ bits=reverse(*iPtr++);
+ iCount+=32;
+ iRemain-=32;
+ if (iRemain<0)
+ iCount+=iRemain;
+ }
+ else
+ {
+ UnderflowL();
+ bits=iBits;
+ iCount-=aSize;
+ }
+ }
+//#ifdef __CPU_X86
+ // X86 does not allow shift-by-32
+// iBits=aSize==32?0:bits<<aSize;
+//#else
+ iBits=bits<<aSize;
+//#endif
+ return val|(bits>>(32-aSize));
+ }
+
+/** Read and decode a Huffman Code
+
+ Interpret the next bits in the input as a Huffman code in the specified
+ decoding. The decoding tree should be the output from Huffman::Decoding().
+
+ @param aTree The huffman decoding tree
+
+ @return The symbol that was decoded
+
+ @leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
+ to get more data
+*/
+TUint TBitInput::HuffmanL(const TUint32* aTree)
+ {
+ TUint huff=0;
+ do
+ {
+ aTree=PTRADD(TUint32,aTree,huff>>16);
+ huff=*aTree;
+ if (ReadL()==0)
+ huff<<=16;
+ } while ((huff&0x10000u)==0);
+ return huff>>17;
+ }
+
+#endif
+
+
+/** Handle an empty input buffer
+
+ This virtual function is called when the input buffer is empty and
+ more bits are required. It should reset the input buffer with more
+ data using Set().
+
+ A derived class can replace this to read the data from a file
+ (for example) before reseting the input buffer.
+
+ @leave KErrUnderflow The default implementation leaves
+*/
+void TBitInput::UnderflowL()
+ {
+
+ }
+
+
+
+/******************************************************************************************************
+ Huffman Code
+ *****************************************************************************************************/
+
+TUint32* HuffmanSubTree(TUint32* aPtr,const TUint32* aValue,TUint32** aLevel)
+//
+// write the subtree below aPtr and return the head
+//
+ {
+ TUint32* l=*aLevel++;
+ if (l>aValue)
+ {
+ TUint32* sub0=HuffmanSubTree(aPtr,aValue,aLevel); // 0-tree first
+ aPtr=HuffmanSubTree(sub0,aValue-(aPtr-sub0)-1,aLevel); // 1-tree
+ TInt branch0=(TUint8*)sub0-(TUint8*)(aPtr-1);
+ *--aPtr=KBranch1|branch0;
+ }
+ else if (l==aValue)
+ {
+ TUint term0=*aValue--; // 0-term
+ aPtr=HuffmanSubTree(aPtr,aValue,aLevel); // 1-tree
+ *--aPtr=KBranch1|(term0>>16);
+ }
+ else // l<iNext
+ {
+ TUint term0=*aValue--; // 0-term
+ TUint term1=*aValue--;
+ *--aPtr=(term1>>16<<16)|(term0>>16);
+ }
+ return aPtr;
+ }
+
+
+
+/** Create a canonical Huffman decoding tree
+
+ This generates the huffman decoding tree used by TBitInput::HuffmanL() to read huffman
+ encoded data. The input is table of code lengths, as generated by Huffman::HuffmanL()
+ and must represent a valid huffman code.
+
+ @param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
+ @param aNumCodes The number of codes in the table
+ @param aDecodeTree The space for the decoding tree. This must be the same
+ size as the code-length table, and can safely be the same memory
+ @param aSymbolBase the base value for the output 'symbols' from the decoding tree, by default
+ this is zero.
+
+ @panic "USER ???" If the provided code is not a valid Huffman coding
+
+ @see IsValid()
+ @see HuffmanL()
+*/
+void Huffman::Decoding(const TUint32 aHuffman[],TInt aNumCodes,TUint32 aDecodeTree[],TInt aSymbolBase)
+ {
+#ifdef _DEBUG
+ if(!IsValid(aHuffman,aNumCodes))
+ {
+#ifdef __LED__
+ leds(0xBAD00006);
+#endif
+
+ }
+#endif
+ TInt counts[KMaxCodeLength];
+ memset1(counts, 0, (sizeof(TInt)*KMaxCodeLength));
+
+ TInt codes=0;
+ TInt ii;
+ for (ii=0;ii<aNumCodes;++ii)
+ {
+ TInt len=aHuffman[ii];
+ aDecodeTree[ii]=len;
+ if (--len>=0)
+ {
+ ++counts[len];
+ ++codes;
+ }
+ }
+
+ TUint32* level[KMaxCodeLength];
+
+ TUint32* lit=aDecodeTree+codes;
+ for (ii=0;ii<KMaxCodeLength;++ii)
+ {
+ level[ii]=lit;
+ lit-=counts[ii];
+ }
+ aSymbolBase=(aSymbolBase<<17)+(KHuffTerminate<<16);
+ for (ii=0;ii<aNumCodes;++ii)
+ {
+ TUint len=TUint8(aDecodeTree[ii]);
+ if (len)
+ *--level[len-1]|=(ii<<17)+aSymbolBase;
+ }
+ if (codes==1) // codes==1 special case: incomplete tree
+ {
+ TUint term=aDecodeTree[0]>>16;
+ aDecodeTree[0]=term|(term<<16); // 0- and 1-terminate at root
+ }
+ else if (codes>1)
+ HuffmanSubTree(aDecodeTree+codes-1,aDecodeTree+codes-1,&level[0]);
+ }
+
+// The decoding tree for the externalised code
+const TUint32 HuffmanDecoding[]=
+ {
+ 0x0004006c,
+ 0x00040064,
+ 0x0004005c,
+ 0x00040050,
+ 0x00040044,
+ 0x0004003c,
+ 0x00040034,
+ 0x00040021,
+ 0x00040023,
+ 0x00040025,
+ 0x00040027,
+ 0x00040029,
+ 0x00040014,
+ 0x0004000c,
+ 0x00040035,
+ 0x00390037,
+ 0x00330031,
+ 0x0004002b,
+ 0x002f002d,
+ 0x001f001d,
+ 0x001b0019,
+ 0x00040013,
+ 0x00170015,
+ 0x0004000d,
+ 0x0011000f,
+ 0x000b0009,
+ 0x00070003,
+ 0x00050001
+ };
+
+/** Restore a canonical huffman encoding from a bit stream
+
+ The encoding must have been stored using Huffman::ExternalizeL(). The resulting
+ code-length table can be used to create an encoding table using Huffman::Encoding()
+ or a decoding tree using Huffman::Decoding().
+
+ @param aInput The input stream with the encoding
+ @param aHuffman The internalized code-length table is placed here
+ @param aNumCodes The number of huffman codes in the table
+
+ @leave TBitInput::HuffmanL()
+
+ @see ExternalizeL()
+*/
+void Huffman::InternalizeL(TBitInput& aInput,TUint32 aHuffman[],TInt aNumCodes)
+// See ExternalizeL for a description of the format
+ {
+
+ // initialise move-to-front list
+ TUint8 list[Huffman::KMetaCodes];
+ for (TInt i=0;i<Huffman::KMetaCodes;++i)
+ list[i]=TUint8(i);
+
+ TInt last=0;
+ // extract codes, reverse rle-0 and mtf encoding in one pass
+ TUint32* p=aHuffman;
+ const TUint32* end=aHuffman+aNumCodes;
+ TInt rl=0;
+ while (p+rl<end)
+ {
+ TInt c=aInput.HuffmanL(HuffmanDecoding);
+ if (c<2)
+ {
+ // one of the zero codes used by RLE-0
+ // update he run-length
+ rl+=rl+c+1;
+ }
+ else
+ {
+ while (rl>0)
+ {
+ *p++=last;
+ --rl;
+ }
+ --c;
+ list[0]=TUint8(last);
+ last=list[c];
+ memcpy1(&list[1],&list[0],c);
+ *p++=last;
+ }
+ }
+ while (rl>0)
+ {
+ *p++=last;
+ --rl;
+ }
+ }
+
+
+
+
+/** Validate a Huffman encoding
+
+ This verifies that a Huffman coding described by the code lengths is valid.
+ In particular, it ensures that no code exceeds the maximum length and
+ that it is possible to generate a canonical coding for the specified lengths.
+
+ @param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
+ @param aNumCodes The number of codes in the table
+
+ @return True if the code is valid, otherwise false
+*/
+TBool Huffman::IsValid(const TUint32 aHuffman[],TInt aNumCodes)
+ {
+ // The code is valid if one of the following holds:
+ // (a) the code exactly fills the 'code space'
+ // (b) there is only a single symbol with code length 1
+ // (c) there are no encoded symbols
+ //
+ TUint remain=1<<KMaxCodeLength;
+ TInt totlen=0;
+ for (const TUint32* p=aHuffman+aNumCodes; p>aHuffman;)
+ {
+ TInt len=*--p;
+ if (len>0)
+ {
+ totlen+=len;
+ if (len>KMaxCodeLength)
+ return 0;
+ TUint c=1<<(KMaxCodeLength-len);
+ if (c>remain)
+ return 0;
+ remain-=c;
+ }
+ }
+
+ return remain==0 || totlen<=1;
+ }
+
+
+
+TInt Inflater::Inflate(TBitInput& aBits, TUint8* aBuffer, TInt aSize)
+ {
+ TEncoding encoding;
+ TInt r = Init(aBits, encoding);
+ if (r==KErrNone)
+ r = DoInflate(aBits, encoding, aBuffer, aSize);
+ return r;
+ }
+
+TInt Inflater::Init(TBitInput& aBits, TEncoding& aEncoding)
+ {
+// read the encoding
+ Huffman::InternalizeL(aBits,aEncoding.iLitLen,KDeflationCodes);
+// validate the encoding
+ if (!Huffman::IsValid(aEncoding.iLitLen,TEncoding::ELitLens) ||
+ !Huffman::IsValid(aEncoding.iDistance,TEncoding::EDistances))
+ return KErrCorrupt;
+// convert the length tables into huffman decoding trees
+ Huffman::Decoding(aEncoding.iLitLen,TEncoding::ELitLens,aEncoding.iLitLen);
+ Huffman::Decoding(aEncoding.iDistance,TEncoding::EDistances,aEncoding.iDistance);
+ return KErrNone;
+ }
+
+
+
+TInt Inflater::DoInflate(TBitInput& aBits, TEncoding& aEncoding, TUint8* aBuffer, TInt aSize)
+ {
+ TUint8* out=aBuffer;
+ TUint8* const end=out+aSize;
+//
+ while (out<end)
+ {
+ // get a huffman code
+ TInt code=aBits.HuffmanL(aEncoding.iLitLen)-TEncoding::ELiterals;
+ if (code<0)
+ {
+ *out++=TUint8(code);
+ continue; // another literal/length combo
+ }
+ if (code==TEncoding::EEos-TEncoding::ELiterals)
+ { // eos marker. we're done
+ break;
+ }
+ // get the extra bits for the length code
+ if (code>=8)
+ {
+ TInt xtra=(code>>2)-1;
+ code-=xtra<<2;
+ code<<=xtra;
+ code|=aBits.ReadL(xtra);
+ }
+ TInt len=code+KDeflateMinLength;
+ // get the distance code
+ code=aBits.HuffmanL(aEncoding.iDistance);
+ if (code>=8)
+ {
+ TInt xtra=(code>>2)-1;
+ code-=xtra<<2;
+ code<<=xtra;
+ code|=aBits.ReadL(xtra);
+ }
+ TUint8* dptr = out-(code+1);
+ TInt wlen = MIN(end-out,len);
+ for(TInt i=0;i<wlen;i++) //this byte by byte copy is required in stead of a memcpy as over lap required. memcopy does
+ {
+ *out++=*dptr++; //not do much better as the length of copies are short ie over the 16 byte threshold
+ }
+
+ };
+ return out-aBuffer;
+ }
+
+
+TFileInput::TFileInput(TInt aBlockLen, TInt aFileSize)
+ :iReadBuf(iBuf1)
+ ,iPtr(iBuf1,KBufSize)
+ ,iBlockLen(aBlockLen)
+ ,iFileSize(aFileSize)
+ ,iImageReadProgress(0)
+ {
+ // Avoid buffer overrrun
+ if( aBlockLen > KBufSize)
+ iBlockLen = KBufSize;
+
+ // issue first read
+ iState=ReadInputData(iReadBuf,iBlockLen);
+ iImageReadProgress += iBlockLen;
+ }
+
+void TFileInput::Init()
+ {
+ Set(iReadBuf, iBlockLen*8);
+ InitProgressBar(0,(TUint)iFileSize,_L("LOAD"));
+ }
+
+void TFileInput::UnderflowL()
+ {
+ TUint8* b=iReadBuf;
+ ASSERT(b!=NULL);
+ Set(b, iBlockLen*8);
+
+ // start reading to the next buffer
+ b = iBuf1;
+ iState=ReadInputData(b,iBlockLen);
+ Set(b, iBlockLen*8);
+ iReadBuf=b;
+
+ // Update progress
+ iImageReadProgress += iBlockLen;
+ UpdateProgressBar(0,(TUint)iImageReadProgress);
+
+#ifdef __SUPPORT_FLASH_REPRO__
+ NotifyDataAvailable(iImageReadProgress);
+#endif
+ }
+
+
+void memcpy1(TAny* aTrg, const TAny* aSrc, unsigned int aLength)
+//
+// Copy from the aSrc to aTrg for aLength bytes.
+//
+ {
+ TInt aLen32=0;
+ TUint32* pT32=(TUint32*)aTrg;
+ const TUint32* pS32=(TUint32 *)aSrc;
+ TInt aLen8;
+ TUint32* pE32;
+ TUint8* pT;
+ TUint8* pE;
+ TUint8* pS;
+
+ if (aLength==0)
+ return;//((TUint8*)aTrg);
+
+ if (((TInt)pT32&3)==0 && ((TInt)pS32&3)==0)
+ aLen32=aLength>>2;
+ aLen8=aLength-(aLen32<<2);
+ pE32=pT32+aLen32;
+ if (aTrg<aSrc)
+ {
+ pS32=(TUint32*)aSrc;
+ while (pT32<pE32)
+ *pT32++=(*pS32++);
+ pT=(TUint8*)pT32;
+ pS=(TUint8*)pS32;
+ pE=(TUint8*)aTrg+aLength;
+ while (pT<pE)
+ *pT++=(*pS++);
+ }
+ else if (aTrg>aSrc)
+ {
+ pT=(TUint8*)(pT32+aLen32);
+ pE=pT+aLen8;
+ pS=(TUint8*)aSrc+aLength;
+ while (pE>pT)
+ *--pE=(*--pS);
+ pS32=(TUint32*)pS;
+ while (pE32>pT32)
+ *--pE32=(*--pS32);
+ }
+ }
+
+
+void memset1(void* aTrg, int aValue, unsigned int aLength)
+//
+// Fill memory with aLength aChars.
+//
+ {
+ TInt aLen32=0;
+ TUint32 *pM32=(TUint32 *)aTrg;
+ TUint32 *pE32;
+ TUint c;
+ TUint32 fillChar;
+ TInt aLen8;
+ TUint8 *pM;
+ TUint8 *pE;
+
+ if (((TInt)aTrg&3)==0)
+ {
+ aLen32=aLength>>2;
+ pE32=pM32+aLen32;
+ c = aValue & 0xff;
+ fillChar=c+(c<<8)+(c<<16)+(c<<24);
+ while (pM32<pE32)
+ *pM32++=fillChar;
+ }
+ aLen8=aLength-(aLen32<<2);
+ pM=(TUint8 *)pM32;
+ pE=pM+aLen8;
+ while (pM<pE)
+ *pM++=(TUint8)(aValue);
+ }
+
+
+TInt memcmp1(const TUint8* aTrg, const TUint8* aSrc, TInt aLength)
+//
+// Compare aSrc with aTrg
+//
+ {
+ for (TInt n=0; n<aLength; n++)
+ {
+ if (aTrg[n] != aSrc[n])
+ return -1;
+ }
+ return 0;
+ }
+
+
+#ifdef SYMBIAN_CHECK_ROM_CHECKSUM
+TUint Check(const TUint32* aPtr, TInt aSize)
+ {
+ TUint sum=0;
+ aSize/=4;
+ while (aSize-->0)
+ sum+=*aPtr++;
+ return sum;
+ }
+
+TInt CheckRomChecksum(TRomHeader& aRomHeader)
+ {
+
+ TInt size = aRomHeader.iUnpagedUncompressedSize;
+ const TUint32* addr = (TUint32*) &aRomHeader;
+#ifdef _DEBUG_CORELDR_
+ PrintVal("ROM addr = ", (TUint32) addr);
+ PrintVal("ROM size = ", (TUint32) size);
+#endif
+
+ TUint checkSum = Check(addr, size);
+
+ // modify the checksum because ROMBUILD is broken...
+ checkSum -= (aRomHeader.iRomSize-size)/4; // adjust for missing 0xffffffff
+ checkSum -= aRomHeader.iCompressionType;
+ checkSum -= aRomHeader.iUnpagedCompressedSize;
+ checkSum -= aRomHeader.iUnpagedUncompressedSize;
+
+ TUint expectedChecksum = 0x12345678;
+#ifdef _DEBUG_CORELDR_
+ PrintVal("Checksum = ", checkSum);
+ PrintVal("expectedChecksum = ", expectedChecksum);
+#endif
+
+ return (checkSum==expectedChecksum)?0:-2;
+ }
+#endif
+
+
+int DoDeflateDownload()
+ {
+ // Read ROM Loader Header
+ TInt r = KErrNone;
+ TInt headerSize = TROM_LOADER_HEADER_SIZE;
+
+ if(RomLoaderHeaderExists)
+ {
+ TUint8 romLoaderHeader[TROM_LOADER_HEADER_SIZE];
+ FileSize -= headerSize;
+ r = ReadInputData((TUint8*)&romLoaderHeader, headerSize);
+ if( KErrNone!=r)
+ {
+ PrintToScreen(_L("Unable to read loader header... (size:%d)\r\n"), headerSize);
+ BOOT_FAULT();
+ }
+ }
+
+
+ // Read ROM Header
+ TRomHeader* romHeader;
+ romHeader = (TRomHeader*)DestinationAddress();
+
+ headerSize = sizeof(TRomHeader);
+ r = ReadInputData((TUint8*)romHeader, headerSize);
+ if( KErrNone!=r)
+ {
+ PrintToScreen(_L("Unable to read ROM header... (size:%d)\r\n"), headerSize);
+ BOOT_FAULT();
+ }
+
+ DEBUG_PRINT((_L("headerSize :%d\r\n"), headerSize));
+ DEBUG_PRINT((_L("iRomHeaderSize :0x%08x\r\n"), romHeader->iRomHeaderSize));
+ DEBUG_PRINT((_L("iDebugPort :0x%08x\r\n"), romHeader->iDebugPort));
+ DEBUG_PRINT((_L("iVersion :%d.%d %d\r\n"), romHeader->iVersion.iMajor, romHeader->iVersion.iMinor, romHeader->iVersion.iBuild));
+ DEBUG_PRINT((_L("iCompressionType :0x%08x\r\n"), romHeader->iCompressionType));
+ DEBUG_PRINT((_L("iCompressedSize :0x%08x\r\n"), romHeader->iCompressedSize));
+ DEBUG_PRINT((_L("iUncompressedSize:0x%08x\r\n"), romHeader->iUncompressedSize));
+
+ DEBUG_PRINT((_L("iCompressedUnpagedStart:0x%08x\r\n"), romHeader->iCompressedUnpagedStart));
+ DEBUG_PRINT((_L("iUnpagedCompressedSize:0x%08x\r\n"), romHeader->iUnpagedCompressedSize));
+ DEBUG_PRINT((_L("iUnpagedUncompressedSize:0x%08x\r\n"), romHeader->iUnpagedUncompressedSize));
+
+ if( romHeader->iCompressionType != KUidCompressionDeflate )
+ {
+ PrintToScreen(_L("Not supported compression method:0x%08x\r\n"), romHeader->iCompressionType);
+ BOOT_FAULT();
+ }
+
+ TUint8 * pScr = (TUint8 *)DestinationAddress();
+
+ DEBUG_PRINT((_L("Load address:0x%08x.\r\n"), pScr));
+
+ if( romHeader->iCompressedUnpagedStart > (TUint)headerSize )
+ {
+ // Copy uncompressed un-paged part (bootstrap + Page Index Table) to the proper place if it longer than the romHeader
+ TInt unpagedSize = (romHeader->iCompressedUnpagedStart - headerSize);
+
+ DEBUG_PRINT((_L("Copy uncompressed un-paged part ...\r\n")));
+ DEBUG_PRINT((_L("to :0x%08x.\r\n"),((TUint8 *)DestinationAddress()+headerSize) ));
+ DEBUG_PRINT((_L("len :0x%08x.\r\n"),unpagedSize ));
+
+ r = ReadInputData(((TUint8 *)DestinationAddress()+headerSize), unpagedSize);
+ // Modify header size to include the un-paged part such that the inflate code will not need to be modified
+ headerSize = unpagedSize;
+ if( KErrNone!=r)
+ {
+ PrintToScreen(_L("uncompressed un-paged part... (size:%d)\r\n"), headerSize);
+ BOOT_FAULT();
+ }
+ }
+
+ pScr += (headerSize + romHeader->iUnpagedUncompressedSize);
+ DEBUG_PRINT((_L("Compressed image load address:0x%08x.\r\n"), pScr));
+
+ FileSize = romHeader->iUnpagedCompressedSize;
+
+#ifdef __SUPPORT_FLASH_REPRO__
+ if (LoadToFlash)
+ ImageSize = ((romHeader->iUnpagedUncompressedSize | 0x3ff) + 1); // Round it to 0x400 for flashing
+#endif
+
+ ImageReadProgress=0;
+ TInt block_size = Max(0x1000,FileSize>>8);
+
+ DEBUG_PRINT((_L("Compressed image loaded into the RAM for decompress.\r\n")));
+
+ pScr = (TUint8 *)DestinationAddress();
+ pScr += (headerSize + romHeader->iUnpagedUncompressedSize);
+
+ TFileInput image(block_size, FileSize);
+ image.Init();
+
+#ifdef __SUPPORT_FLASH_REPRO__
+ if (LoadToFlash)
+ {
+
+ DEBUG_PRINT((_L("InitFlashWrite. ImageSize:%d (0x%08x).\r\n"), ImageSize, ImageSize));
+
+ r=InitFlashWrite();
+ if (r!=KErrNone)
+ {
+ PrintToScreen(_L("FAULT due to InitFlashWrite return %d\r\n"), r);
+ BOOT_FAULT();
+ }
+ }
+#endif // __SUPPORT_FLASH_REPRO__
+
+
+ DEBUG_PRINT((_L("(TUint8 *)(DestinationAddress() + headerSize):0x%08x, size:%d.\r\n"),(TUint8 *)(DestinationAddress() + headerSize), romHeader->iUnpagedUncompressedSize));
+
+
+ TUint nChars = Inflater::Inflate(
+ image,
+ (TUint8 *)(DestinationAddress() + headerSize),
+ romHeader->iUnpagedUncompressedSize
+ );
+
+
+ DEBUG_PRINT((_L("Decompressed %d bytes.\r\n"), nChars));
+
+
+ if( 0 > (TInt)nChars)
+ {
+ PrintToScreen(_L("Error in decompression, return code: %d.\r\n"), nChars);
+ BOOT_FAULT();
+ }
+
+#ifdef __SUPPORT_FLASH_REPRO__
+ if (LoadToFlash)
+ {
+
+ DEBUG_PRINT((_L("NotifyDataAvailable. ImageSize:%d (0x%08x).\r\n"), ImageSize, ImageSize));
+
+ NotifyDataAvailable(ImageSize);
+
+ DEBUG_PRINT((_L("NotifyDownloadComplete.\r\n")));
+
+ NotifyDownloadComplete();
+ }
+#else
+
+ DELAY(20000);
+
+#endif // __SUPPORT_FLASH_REPRO__
+
+ return KErrNone;
+ }
+