kerneltest/e32test/iic/t_iic.cpp
changeset 43 96e5fb8b040d
child 33 0173bcd7697c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32test/iic/t_iic.cpp	Thu Dec 17 09:24:54 2009 +0200
@@ -0,0 +1,1618 @@
+// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32test/iic/t_iic.cpp
+//
+
+// This file interacts with test-specific LDD to instigate tests of functionality
+// that would normally be invoked by kernel-side device driver clients of the IIC.
+#include <e32test.h>
+#include <e32cmn.h>
+#include <e32cmn_private.h>
+#include <e32def.h>
+#include <e32def_private.h>
+#include "t_iic.h"
+
+//for memory leak checking
+#include <e32svr.h>
+#include <u32hal.h>
+
+_LIT(testName,"t_iic");
+
+_LIT(KIicProxyFileNameCtrlLess, "iic_client_ctrless.ldd");		// Kernel-side proxy LDD acting as a client of the IIC
+_LIT(KIicProxyFileNameRootCtrlLess, "iic_client_ctrless");
+_LIT(KIicProxySlaveFileNameCtrlLess, "iic_slaveclient_ctrless.ldd");	// Kernel-side proxy LDD acting as a slave client of the IIC
+_LIT(KIicProxySlaveFileNameRootCtrlLess, "iic_slaveclient_ctrless");
+_LIT(KIicProxyFileName, "iic_client.ldd");		// Kernel-side proxy LDD acting as a client of the IIC
+_LIT(KIicProxyFileNameRoot, "iic_client");
+_LIT(KIicProxySlaveFileName, "iic_slaveclient.ldd");	// Kernel-side proxy LDD acting as a slave client of the IIC
+_LIT(KIicProxySlaveFileNameRoot, "iic_slaveclient");
+
+#ifdef IIC_SIMULATED_PSL
+_LIT(KSpiFileNameCtrlLess, "spi_ctrless.pdd");	// Simulated PSL bus implementation
+_LIT(KI2cFileNameCtrlLess, "i2c_ctrless.pdd");	// Simulated PSL bus implementation
+_LIT(KIicPslFileName, "iic_testpsl.pdd");	// Simulated PSL implementation
+_LIT(KSpiFileName, "spi.pdd");	// Simulated PSL bus implementation
+_LIT(KI2cFileName, "i2c.pdd");	// Simulated PSL bus implementation
+#endif
+
+_LIT(KIicPslFileNameRoot, "iic.pdd");
+
+// Specify a stand-alone channel
+GLDEF_D TBool aStandAloneChan;
+
+GLDEF_D RTest gTest(testName);
+
+
+// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
+GLDEF_D RBusDevIicClient gChanMasterSpi;
+GLDEF_D RBusDevIicClient gChanSlaveSpi;
+
+// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
+// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
+// I2C has Master channel number 10 and Slave channel number 11 if built with both MASTER_MODE and SLAVE_MODE
+GLDEF_D RBusDevIicClient gChanMasterI2c;
+GLDEF_D RBusDevIicClient gChanSlaveI2c;
+
+LOCAL_C TInt CreateSingleUserSideTransfer(TUsideTferDesc*& aTfer, TInt8 aType, TInt8 aBufGran, TDes8* aBuf, TUsideTferDesc* aNext)
+// Utility function to create a single transfer
+	{
+	aTfer = new TUsideTferDesc();
+	if(aTfer==NULL)
+		return KErrNoMemory;
+	aTfer->iType=aType;
+	aTfer->iBufGranularity=aBufGran;
+	aTfer->iBuffer = aBuf;
+	aTfer->iNext = aNext;
+	return KErrNone;
+	}
+
+LOCAL_C TInt CreateSingleUserSideTransaction(TUsideTracnDesc*& aTracn, TBusType aType, TDes8* aHdr, TUsideTferDesc* aHalfDupTrans, TUsideTferDesc* aFullDupTrans, TUint8 aFlags, TAny* aPreambleArg, TAny* aMultiTranscArg)
+// Utility function to create a single transaction
+	{
+	aTracn = new TUsideTracnDesc();
+	if(aTracn==NULL)
+		return KErrNoMemory;
+	aTracn->iType=aType;
+	aTracn->iHeader=aHdr;
+	aTracn->iHalfDuplexTrans=aHalfDupTrans;
+	aTracn->iFullDuplexTrans=aFullDupTrans;
+	aTracn->iFlags=aFlags;
+	aTracn->iPreambleArg = aPreambleArg;
+	aTracn->iMultiTranscArg = aMultiTranscArg;
+	return KErrNone;
+	}
+
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2402
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case test the Master channel basic functionality
+//! @SYMTestActions     0) Create a transaction and invoke the synchronous Queue Transaction API
+//!
+//!						1) Re-use the transaction and invoke asynchronous Queue Transaction API. Wait for
+//|						   the TRequestStatus to be completed.
+//!
+//!						2) Instruct the Kernel-side proxy client to instigate testing of priority queuing.
+//!						   The proxy uses controlIO to block the transaction queue, then queues 5 transactions in reverse
+//!						   priority order. The proxy then uses controlIO to unblock the transaction queue and checks that
+//!						   the transactions complete in priority order.
+//!
+//!						3) Attempt to cancel a previously-completed asynchronous request for a queued transaction
+//!
+//!						4) Use controlio to block request completion. Issue two asynchronous Queue Transaction requests.
+//!						   Request cancellation of the second transaction. Wait for completion of the TRequestStatus for
+//!						   the second request. Attempt to de-register the channel. Use controlio to unblock request completion.
+//!						   Wait for completion of the TRequestStatus for the first request.
+//!
+//!						5) Attempt to de-register a channel that is not busy.
+//!
+//!						6) Attempt to queue a transaction on an invalid (de-registered) channel
+//!
+//!						7) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction.
+//!
+//!						8) Instruct the Kernel-side proxy client to instigate construction of a invalid full duplex transaction,
+//!						   where both transfer in same direction
+//!
+//!						9) Instruct the Kernel-side proxy client to instigate construction of a invalid full duplex transaction,
+//!						   where with different node length (not the number of node on opposite linklist ) at the same
+//!						   position on the opposite transfer linklist
+//!
+//!						10) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction,
+//!						   with different size for the last node
+//!
+//!						11) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction,
+//!						   with different number of transfer
+//!
+//!
+//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						1) Kernel-side proxy client should return with KErrNone, exits otherwise. TRequestStatus should
+//!						   be set to KErrNone, exits otherwise.
+//!						2) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						3) Kernel-side proxy client should return with KErrNone, exits otherwise.TRequestStatus should
+//!						   be set to KErrNone, exits otherwise.
+//!						4) The TRequestStatus for the cancelled request should be set to KErrCancel, exits otherwise.
+//!						   The attempt to de-register the channel should return KErrInUse, exits otherwise. The
+//!						   TRequestStatus for the first request should be set to KErrNone, exits otherwise.
+//!						5) Kernel-side proxy client should return with KErrNone or KErrArgument, exits otherwise.
+//!						6) Kernel-side proxy client should return with KErrArgument, exits otherwise.
+//!						7) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						8) Kernel-side proxy client should return with KErrNotSupported, exits otherwise.
+//!						9) Kernel-side proxy client should return with KErrNotSupported, exits otherwise.
+//!						10) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						11) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt MasterBasicTests()
+//
+//	Exercise the Master Channel API with trivial data
+//
+	{
+	gTest.Printf(_L("\n\nStarting MasterBasicTests\n"));
+
+	TInt r=KErrNone;
+
+	TUint32 busIdSpi = 0;
+
+	// Use the SPI bus
+	// SPI uses channel numbers 1,2,3 and 4
+	SET_BUS_TYPE(busIdSpi,ESpi);
+	SET_CHAN_NUM(busIdSpi,2);
+	TConfigSpiBufV01* spiBuf = NULL;
+	// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
+	r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000, ESpiPolarityLowRisingEdge, 100 ,ELittleEndian, EMsbFirst, 10, ESpiCSPinActiveLow);
+	gTest(r==KErrNone);
+
+	// Use a single transfer
+	_LIT(halfDuplexText,"Half Duplex Text");
+	TBuf8<17> halfDuplexBuf_8;
+	halfDuplexBuf_8.Copy(halfDuplexText);
+	TUsideTferDesc* tfer = NULL;
+	r = CreateSingleUserSideTransfer(tfer, EMasterWrite, 8, &halfDuplexBuf_8, NULL);
+	gTest(r==KErrNone);
+
+	// Create the transaction object
+	TUsideTracnDesc* tracn = NULL;
+	r = CreateSingleUserSideTransaction(tracn, ESpi, spiBuf, tfer, NULL, 0, NULL, NULL);
+	gTest(r==KErrNone);
+
+	// Test basic queueing operations
+	// inline TInt QueueTransaction(TInt aBusId, TUsideTracnDesc* aTransaction)
+	gTest.Printf(_L("\n\nStarting synchronous QueueTransaction \n"));
+	r = gChanMasterSpi.QueueTransaction(busIdSpi, tracn);
+	gTest.Printf(_L("Synchronous QueueTransaction returned = %d\n"),r);
+	gTest(r==KErrNone); 
+    // inline void QueueTransaction(TRequestStatus& aStatus, TInt aBusId, TUsideTracnDesc* aTransaction)
+	gTest.Printf(_L("\n\nStarting asynchronous QueueTransaction \n"));
+	TRequestStatus status;
+
+	gChanMasterSpi.QueueTransaction(status, busIdSpi, tracn);
+	User::WaitForRequest(status);
+	if(status != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after queue = %d\n"), status.Int());
+		gTest(EFalse);
+		}
+
+	// Test message with priorities
+	gTest.Printf(_L("\n\nStarting test for message with priorities\n\n"),r);
+	r = gChanMasterSpi.TestPriority(busIdSpi);
+	gTest(r==KErrNone);
+
+	// Test cancel operation (on previously completed request)
+
+	// inline void CancelAsyncOperation(TRequestStatus* aStatus, TInt aBusId)	{TInt* parms[2]; parms[0]=(TInt*)aStatus; parms[1]=(TInt*)aBusId;DoCancel((TInt)&parms[0]);}
+	gTest.Printf(_L("\n\nStarting CancelAsyncOperation \n"));
+	gChanMasterSpi.CancelAsyncOperation(&status, busIdSpi);
+	if(status == KRequestPending)
+		User::WaitForRequest(status);
+	if(status != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after (belated) cancel = %d\n"), status.Int());
+		gTest(EFalse);
+		}
+
+	// Test cancel operation (on pending request)
+	// Also test that a channel with a transaction queued can not be de-registered.
+	// For this:
+	// (1) create a second transaction object
+	// (2) use controlio/StaticExtension to block request completion
+	// (3) use asynchronous queue transaction for the two transaction objects
+	// (4) request cancellation of the second request
+	// (5) check that the TRequestStatus object associated with the second request is completed with KErrCancel
+	// (6) check that attempt to de-register the channel fails with KErrInUse
+	// (7) use controlio/StaticExtension to unblock request completion
+	// (8) check that the TRequestStatus object associated with the first request is completed with KErrNone
+	//
+	gTest.Printf(_L("\n\nStarting (successful) cancellation test\n\n"),r);
+	_LIT(halfDuplexText2,"2 Half Duplex Text 2");
+	TBuf8<21> halfDuplexBuf2_8;
+	halfDuplexBuf2_8.Copy(halfDuplexText2);
+	TUsideTferDesc* tfer2 = NULL;
+	r = CreateSingleUserSideTransfer(tfer2, EMasterRead, 16, &halfDuplexBuf2_8, NULL);
+	gTest(r == KErrNone);
+
+	TUsideTracnDesc* tracn2 = NULL;
+	delete spiBuf;
+	spiBuf = NULL;
+
+	// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
+	r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000, ESpiPolarityLowRisingEdge, 100 ,ELittleEndian, EMsbFirst, 10, ESpiCSPinActiveLow);
+	gTest(r == KErrNone);
+
+	r = CreateSingleUserSideTransaction(tracn2, ESpi, spiBuf, tfer2, NULL, 0, NULL, NULL);
+	gTest(r == KErrNone);
+
+	//
+	gTest.Printf(_L("Invoking BlockReqCompletion\n"));
+	r = gChanMasterSpi.BlockReqCompletion(busIdSpi);
+	gTest.Printf(_L("BlockReqCompletion returned = %d\n"),r);
+	gTest(r == KErrNone);
+
+	//
+	gTest.Printf(_L("Queueing first transaction \n"));
+	gChanMasterSpi.QueueTransaction(status, busIdSpi, tracn);
+	TRequestStatus status2;
+
+	gTest.Printf(_L("Queueing second transaction \n"));
+	gChanMasterSpi.QueueTransaction(status2, busIdSpi, tracn2);
+	//
+	User::After(50000);
+	//
+	gTest.Printf(_L("Issuing Cancel for second transaction\n"));
+	gChanMasterSpi.CancelAsyncOperation(&status2, busIdSpi);
+	gTest.Printf(_L("Returned from Cancel for second transaction\n"));
+	if(status2 == KRequestPending)
+		User::WaitForRequest(status2);
+	if(status2 != KErrCancel)
+		{
+		gTest.Printf(_L("TRequestStatus (2) value after cancel = %d\n"), status2.Int());
+		gTest(EFalse);
+		}
+
+	// If it is stand-alone channel, the client is reponsible for channel creation.
+	// So the RegisterChan and DeRegisterChan are not needed.
+	if (aStandAloneChan == 0)
+		{
+		gTest.Printf(_L("Invoking DeRegisterChan\n"));
+		r = gChanMasterSpi.DeRegisterChan(busIdSpi);
+
+		gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
+		gTest(r==KErrInUse);
+		}
+	//
+	gTest.Printf(_L("Invoking UnlockReqCompletion\n"));
+	r = gChanMasterSpi.UnblockReqCompletion(busIdSpi);
+	gTest.Printf(_L("UnblockReqCompletion returned = %d\n"),r);
+	//
+	User::After(50000);
+	//
+	User::WaitForRequest(status);
+	if(status != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after queue = %d\n"), status.Int());
+		gTest(EFalse);
+		}
+
+	// Clean up
+	delete spiBuf;
+	delete tfer;
+	delete tracn;
+	delete tfer2;
+	delete tracn2;
+
+	gTest.Printf(_L("\n\nStarting full duplex transaction creation test\n\n"),r);
+
+	TUint32 busIdSpiFd = 0;
+
+	// Use the SPI bus
+	// SPI uses channel numbers 1,2,3 and 4
+	SET_BUS_TYPE(busIdSpi,ESpi);
+	SET_CHAN_NUM(busIdSpi,4);
+
+	// Test creating a valid full duplex transaction
+	gTest.Printf(_L("\n\nStarting valid full duplex transaction test\n\n"),r);
+	r = gChanMasterSpi.TestValidFullDuplexTrans(busIdSpiFd);
+	gTest(r==KErrNone);
+
+	// Test creating a full duplex transaction with both transfer in same direction (invalid)
+	gTest.Printf(_L("\n\nStarting invalid direction full duplex transaction test\n\n"),r);
+	r = gChanMasterSpi.TestInvalidFullDuplexTrans1(busIdSpiFd);
+	gTest.Printf(_L("Full duplex transaction with invalid direction returned = %d\n"),r);
+	gTest(r==KErrNotSupported);
+
+	// Test creating a full duplex transaction with different node length (not the number of node on opposite linklist )
+	// at the same position on the opposite transfer linklist
+	gTest.Printf(_L("\n\nStarting invalid transfer length full duplex transaction test\n\n"),r);
+	r = gChanMasterSpi.TestInvalidFullDuplexTrans2(busIdSpiFd);
+	gTest(r==KErrNotSupported);
+
+	// Test creating a valid full duplex transaction with different size for the last node
+	gTest.Printf(_L("\n\nStarting valid full duplex transaction test with diff size last node\n\n"),r);
+	r = gChanMasterSpi.TestLastNodeFullDuplexTrans(busIdSpiFd);
+	gTest(r==KErrNone);
+
+	// Test creating a valid full duplex transaction with different number of transfer
+	gTest.Printf(_L("\n\nStarting valid full duplex transaction test with diff number of transfer\n\n"),r);
+	r = gChanMasterSpi.TestDiffNodeNumFullDuplexTrans(busIdSpiFd);
+	gTest(r==KErrNone);
+
+	return KErrNone;
+	}
+
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2403
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case tests the Master channel data handling for transactions
+//! @SYMTestActions     0) Instruct the kernel-side proxy to construct a transaction of pre-defined data
+//!						   and inform the simulated bus to expect to receive this data. Then the proxy invokes
+//!						   the synchronous Queue Transaction API. On receipt of the transaction, the simulated bus
+//!						   checks the header and transafer content of the transaction to confirm that it is correct.
+//!
+//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt MasterTransactionTests()
+//
+//	Exercise the Master Channel API with trivial data
+//
+	{
+	gTest.Printf(_L("\n\nStarting MasterTransactionTests\n"));
+
+	TInt r = KErrNone;
+
+	// Prove that the simulated bus can access the transfer data contained within a transaction
+	// Do this by instructing the proxy client to:
+	// (1) Inform the bus of the test about to be informed
+	// (2) Send a transaction with a known number of transfers with known data
+	// (3) Check the result announced by the bus.
+	//
+	// Use the SPI bus
+	// SPI uses channel numbers 1,2,3 and 4
+	TUint32 busIdSpi = 0;
+	SET_BUS_TYPE(busIdSpi,ESpi);
+	SET_CHAN_NUM(busIdSpi,4);	// Master, Full-duplex - required by TestBufferReUse
+	r = gChanMasterSpi.TestTracnOne(busIdSpi);
+	gTest.Printf(_L("TestTracnOne returned = %d\n"),r);
+	gTest(r==KErrNone);
+
+	// Test that transfer and transaction buffers can be modifed for re-use
+	// This test modifies the content of a full-duplex transaction - so a full-duplex channel must be used
+	TRequestStatus status;
+	gChanMasterSpi.TestBufferReUse(busIdSpi, status);
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after CaptureChannel = %d\n"),r);
+		gTest(r==KErrCompletion);
+		}
+
+	return KErrNone;
+	}
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2401
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case test the Master channel preamble and multi-transaction functionality.
+//! @SYMTestActions     0) Create a transaction that requires preamble support, and queue it for processing
+//!
+//!						1) If the test has been invoked for preamble testing, wait for the preamble-specific
+//!						   TRequestStatus to be completed.
+//!
+//!						2) If the test has been invoked for multi-transaction testing, wait for the multi-transaction
+//!						   -specific TRequestStatus to be completed.
+//!
+//!
+//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						1) If waiting on the preamble-specific TRequestStatus, it should be set to KErrNone, exists otherwise.
+//!						2) If waiting on the multi-transaction-specific TRequestStatus, it should be set to KErrNone, exists otherwise.
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt MasterExtTests(TUint8 aFlags)
+//
+//	Exercise the Master Channel API for Preamble functionality
+//
+
+//  For the multi-transaction test, a bus Master might not know 
+//  how much data to write to a Slave until it performs a single read on it. 
+//  However, specifying a read separately from the subsequent write 
+//  introduces the risk of allowing another transaction to go ahead of the 
+//  following write and thus invalidating it. The multi-transaction feature of IIC
+//  allows a callback to be called(in the context of the bus channel) after 
+//  the transfers of a preliminary transaction have taken place 
+//  (could be a single read), without completing the overall transaction,
+//  then extend the delayed transaction by inserting more transfers
+//
+	{
+	gTest.Printf(_L("\n\nStarting MasterExtTests\n"));
+
+	TInt r = KErrNone;
+
+	// Create a transaction that requires preamble support
+	// To prove required operation has executed, make callback complete a TRequestStatus object
+	TRequestStatus preamblestatus;
+	TRequestStatus multitranscstatus;
+
+	// Use the SPI bus
+	// SPI uses channel numbers 1,2,3 and 4
+	TUint32 busIdSpi = 0;
+	SET_BUS_TYPE(busIdSpi, ESpi);
+	SET_CHAN_NUM(busIdSpi, 1);
+	TConfigSpiBufV01* spiBuf = NULL;
+	// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
+	r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000,
+	        ESpiPolarityLowRisingEdge, 100, ELittleEndian, EMsbFirst, 10,
+	        ESpiCSPinActiveLow);
+	if (r != KErrNone)
+		return r;
+
+	// Use a single transfer
+	_LIT(extText, "Ext Text");
+	TBuf8<14> extBuf_8;
+	extBuf_8.Copy(extText);
+	TUsideTferDesc* tfer = NULL;
+	r = CreateSingleUserSideTransfer(tfer, EMasterRead, 8, &extBuf_8, NULL);
+	if (r != KErrNone)
+		{
+		delete spiBuf;
+		return r;
+		}
+
+	// Create the transaction object
+	TUsideTracnDesc* tracn = NULL;
+	r = CreateSingleUserSideTransaction(tracn, ESpi, spiBuf, tfer, NULL,
+	        aFlags, (TAny*) &preamblestatus, (TAny*) &multitranscstatus);
+
+	if (r != KErrNone)
+		{
+		delete spiBuf;
+		delete tfer;
+		return r;
+		}
+
+	// Send the transaction to the kernel-side proxy
+	// inline TInt QueueTransaction(TInt aBusId, TUsideTracnDesc* aTransaction)
+	gTest.Printf(_L("\nInvoke synchronous QueueTransaction for preamble test %x\n"), tracn);
+
+	r = gChanMasterSpi.QueueTransaction(busIdSpi, tracn);
+	gTest.Printf(_L("synchronous QueueTransaction returned = %d\n"), r);
+
+	if (r == KErrNone)
+		{
+		// ... and wait for the TRequestStatus object to be completed
+		if (aFlags & KTransactionWithPreamble)
+			{
+			User::WaitForRequest(preamblestatus);
+			r = preamblestatus.Int();
+			if (r != KErrNone)
+				{
+				gTest.Printf(_L("MasterPreambleTests: TRequestStatus completed with = %d\n"), r);
+				}
+			}
+
+
+		if (aFlags & KTransactionWithMultiTransc)
+			{
+			User::WaitForRequest(multitranscstatus);
+			if (r != KErrNone)
+				{
+				gTest.Printf(_L("MasterMultiTranscTests: TRequestStatus completed with = %d\n"), r);
+				}
+			}
+		}
+
+	delete spiBuf;
+	delete tfer;
+	delete tracn;
+
+	return r;
+	}
+
+#ifdef SLAVE_MODE
+LOCAL_C TInt CreateSlaveChanI2cConfig(TConfigI2cBufV01*& aI2cBuf, TUint32& aBusIdI2c, TUint8 aChanNum)
+	{
+	// Initialise TConfigI2cBufV01 and the Bus Realisation Config for gChanSlaveI2c.
+	// Customised:
+	// - token containing the bus realisation variability.
+	// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
+	// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be
+	//   used by this client
+	aBusIdI2c = 0;
+	SET_BUS_TYPE(aBusIdI2c,EI2c);
+	SET_CHAN_NUM(aBusIdI2c,aChanNum);
+	//
+	// clock speed=36Hz, aTimeoutPeriod=100 - arbitrary parameter
+	TInt r=CreateI2cBuf(aI2cBuf, EI2cAddr7Bit, 36, ELittleEndian, 100);
+	return r;
+	}
+
+LOCAL_C TInt SyncCaptureGChanSlaveI2c(TInt& aChanId, TConfigI2cBufV01* aI2cBuf, TUint32 aBusIdI2c)
+	{
+	// Synchronous capture of a Slave channel. Need to provide:
+	// - token containing the bus realisation variability.
+	// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
+	// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be used by this client
+	gTest.Printf(_L("\n\nStarting synchronous CaptureChannel \n"));
+	TInt r = gChanSlaveI2c.CaptureChannel(aBusIdI2c, aI2cBuf, aChanId );
+	gTest.Printf(_L("Synchronous CaptureChannel returned = %d, aChanId=0x%x\n"),r,aChanId);
+	return r;
+	}
+
+
+LOCAL_C TInt AsyncCaptureGChanSlaveI2c(TInt& aChanId, TConfigI2cBufV01* aI2cBuf, TUint32 aBusIdI2c)
+	{
+	// Asynchronous capture of a Slave channel. Need to provide:
+	// - token containing the bus realisation variability.
+	// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
+	// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be used by this client
+	// - pointer to TRequestStatus used to indicate operation completion
+	gTest.Printf(_L("\n\nStarting asynchronous CaptureChannel \n"));
+	TRequestStatus status;
+	TInt r = gChanSlaveI2c.CaptureChannel(aBusIdI2c, aI2cBuf, aChanId, status );
+	gTest(r==KErrNone);
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrCompletion)
+		{
+		gTest.Printf(_L("TRequestStatus value after CaptureChannel = %d\n"),r);
+		gTest(r==KErrCompletion);
+		}
+	gTest.Printf(_L("Asynchronous CaptureChannel gave aChanId=0x%x\n"),aChanId);
+	return KErrNone;
+	}
+#endif
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2399
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case tests Slave channel capture and release APIs.
+//! @SYMTestActions     0) Perform synchronous capture of a channel
+//!
+//!						1) Release the channel
+//!
+//!						2) Perform asynchronous capture of a channel
+//!
+//!						3) Attempt synchronous capture of a channel that is already captured
+//!
+//!						4) Attempt asynchronous capture of a channel that is already captured
+//!
+//!						5) Release the channel
+//!
+//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrCompletion, exits otherwise.
+//!						1) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						2) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						3) Kernel-side proxy client should return with KErrInUse, exits otherwise.
+//!						4) Kernel-side proxy client should return with KErrNone, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrInUse, exits otherwise.
+//!						5) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt SlaveChannelCaptureReleaseTests()
+//
+//	Exercise the Slave Channel API for channel capture and release
+//
+	{
+	gTest.Printf(_L("\n\nStarting SlaveChannelCaptureReleaseTests\n"));
+	TInt r=KErrNone;
+#ifdef SLAVE_MODE
+
+	// Create a I2C configuration buffer and the configuration data for use in capturing gChanSlaveI2c
+	TUint32 busIdI2c = 0;
+	TConfigI2cBufV01* i2cBuf=NULL;
+	r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 11);	// 11 is the Slave channel number
+	gTest(r==KErrNone);
+
+	// Synchronous capture of a Slave channel.
+	TInt chanId = 0; // Initialise to zero to silence compiler ...
+	r=SyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
+	gTest(r==KErrNone);
+	//
+	// Release the channel
+	gTest.Printf(_L("\n\nInvoke ReleaseChannel for chanId=0x%x \n"),chanId);
+	r = gChanSlaveI2c.ReleaseChannel( chanId );
+	gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
+	gTest(r==KErrNone);
+	//
+	// Asynchronous capture of a Slave channel.
+	chanId = 0; // Re-initialise to zero to silence compiler ...
+	r=AsyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
+	gTest(r==KErrNone);
+
+	// Try capturing a slave channel that is already captured
+	//
+	// Create another instance of a client, and use to attempt duplicated capture
+	TInt dumChanId = 0; // Initialise to zero to silence compiler ...
+	RBusDevIicClient tempChanSlaveI2c;
+	TBufC<24> proxySlaveName;
+	if(aStandAloneChan == 0)
+		proxySlaveName = KIicProxySlaveFileNameRoot;
+	else
+		proxySlaveName = KIicProxySlaveFileNameRootCtrlLess;
+	r = tempChanSlaveI2c.Open(proxySlaveName);
+	gTest(r==KErrNone);
+	r = tempChanSlaveI2c.InitSlaveClient();
+	gTest(r==KErrNone);
+	//
+	// Synchronous capture
+	gTest.Printf(_L("\n\nStarting attempted synchronous CaptureChannel of previously-captured channel\n"));
+	r = tempChanSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, dumChanId );
+	gTest.Printf(_L("Synchronous CaptureChannel returned = %d, dumChanId=0x%x\n"),r,dumChanId);
+	gTest(r==KErrInUse);
+	//
+	// Asynchronous capture
+	dumChanId = 0;
+	gTest.Printf(_L("\n\nStarting attempted asynchronous CaptureChannel of previously-captured channel\n"));
+	TRequestStatus status;
+	r = tempChanSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, dumChanId, status );
+	gTest(r==KErrNone);
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrInUse)
+		{
+		gTest.Printf(_L("TRequestStatus value after attempted CaptureChannel of previously-captured channel = %d\n"),r);
+		gTest(r==KErrInUse);
+		}
+	gTest.Printf(_L("Asynchronous CaptureChannel gave dumChanId=0x%x\n"),dumChanId);
+
+	tempChanSlaveI2c.Close();
+	//
+	// Clean up, release the channel
+	r = gChanSlaveI2c.ReleaseChannel( chanId );
+	gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
+	gTest(r==KErrNone);
+
+	delete i2cBuf;
+#else
+	gTest.Printf(_L("\nSlaveChannelCaptureReleaseTests only supported when SLAVE_MODE is defined\n"));
+#endif
+	return r;
+	}
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2400
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case tests Slave channel capture operation for receive and transmit of data
+//! @SYMTestActions     0) Check that the timeout threshold values can be updated
+//!
+//!						1) Check that an Rx Buffer can be registered, and that a replacement buffer can be registered in its place
+//!						   if a notification has not been requested.
+//!
+//!						2) Specify a notification trigger for Rx events
+//!
+//!						3) Attempt to register a replacement Rx buffer
+//!
+//!						4) Use controlIO to instruct the simulated bus to indicate that it has received the required number of words
+//!						   and wait for the TRequestStatus to be completed.
+//!
+//!						5) Specify a notification trigger for Rx events, use controlIO to instruct the simulated bus to indicate that
+//!						   it has received less than the required number of words and wait for the TRequestStatus to be completed.
+//!
+//!						6) Specify a notification trigger for Rx events, use controlIO to instruct the simulated bus to indicate that
+//!						   it has received more than the required number of words and wait for the TRequestStatus to be completed.
+//!
+//!						7) Repeat steps 1-6, but for Tx
+//!
+//!						8) Specify a notification trigger for Rx and Tx events. Use controlIO to instruct the simulated bus to indicate that
+//!						   it has received the required number of words, then that it has transmitted the required number of words, and wait
+//!						   for the TRequestStatus to be completed.
+//!
+//!						9) Repeat step 8, but simulate Tx, then Rx.
+//!
+//!						10) Specify a notification trigger for bus error events. Use controlIO to instruct the simulated bus to indicate that
+//!						    it has encountered a bus error, and wait for the TRequestStatus to be completed.
+//!
+//!						11) Use controlIO to instruct the simulated bus to block Master response. Specify a notification trigger for bus error
+//!						    events. Use controlIO to instruct the simulated bus to indicate that it has received more than the required number
+//!						    of words. Wait for the TRequestStatus to be completed (with KErrNone). Specify a notification trigger for Tx and
+//!							Tx Overrun, then use controlIO to instruct the simulated bus to unblock Master responses.Wait for the TRequestStatus
+//!							to be completed.
+//!
+//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						1) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						2) Kernel-side proxy client should return with KErrNone, exits otherwise.
+//!						3) Kernel-side proxy client should return with KErrAlreadyExists, exits otherwise.
+//!						4) Kernel-side proxy client should return with KErrNone, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						5) Kernel-side proxy client should return with KErrNone for both API calls, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						6) Kernel-side proxy client should return with KErrNone for both API calls, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						7) Results should be the same as for steps 1-6.
+//!						8) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						9) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						10) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone, exits otherwise.
+//!						11) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
+//!						   TRequestStatus should be set to KErrNone in both cases, exits otherwise.
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+
+LOCAL_C TInt SlaveRxTxNotificationTests()
+//
+//	Exercise the Slave channel operation for receive and transmit of data
+//
+
+// The means to supply a buffer to be filled with data received from the Master, and the number of words expected.
+// It is only after the reception of the number of words specified that the notification should be issued
+// (or on under-run/overrun/timeout/bus specific error).
+//
+// The means to supply a buffer with data to be transmitted to the Master, and the number of words to transmit.
+// It is only after the transmission of the number of words specified that the notification should be issued
+// (or under-run/overrun/timeout/bus specific error).
+//
+// The means to enable and disable the events which will trigger the notification callback. These events are:
+// 1)	the complete reception of the number of words specified,
+// 2)	the complete transmission of the number of words specified,
+// 3)	errors: receive buffer under-run (the Master terminates the transaction or reverts the direction of
+//		transfer before all expected data has been received), receive buffer overrun
+//		(Master attempts to write more data than this channel expected to receive), transmit buffer overrun
+//		(Master attempts to read more data than supplied by client), transmit buffer under-run
+//		(the Master terminates the transaction or reverts the direction of transfer before all expected data
+//		has been transmitted to it), access timeout(1) error, or bus specific error (e.g. collision, framing).
+  {
+	gTest.Printf(_L("\n\nStarting SlaveRxTxNotificationTests\n"));
+	TInt r=KErrNone;
+#ifdef SLAVE_MODE
+
+	//Configure and capture a channel
+	gTest.Printf(_L("Create and capture channel\n"));
+	TUint32 busIdI2c;
+	TConfigI2cBufV01* i2cBuf=NULL;
+	r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 11);	// 11 is the Slave channel number
+	gTest(r==KErrNone);
+
+	TInt chanId = 0; // Initialise to zero to silence compiler ...
+	r=SyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
+	gTest(r==KErrNone);
+
+	//		Update wait times for Master and Client
+	// Delegate the operation of this test to the proxy client (iic_client). The proxy will read, modify, and reinstate
+	// the timeout values.
+	gTest.Printf(_L("Starting UpdateTimeoutValues\n"));
+	r=gChanSlaveI2c.UpdateTimeoutValues(busIdI2c, chanId);
+	gTest(r==KErrNone);
+
+
+	// Receive and transmit buffers must be created by the client in Kernel heap and remain in their ownership throughout.
+	// Therefore, the kernel-side proxy will provide the buffer
+	// The buffers are of size KRxBufSizeInBytes and KRxBufSizeInBytes (currently 64)
+
+	//
+	//		Rx tests
+	//
+
+	// For Rx, specify buffer granularity=4 (32-bit words), 8 words to receive, offset of 16 bytes
+	// 64 bytes as 16 words: words 0-3 offset, words 4-11 data, words 12-15 unused
+	gTest.Printf(_L("Starting RegisterRxBuffer\n"));
+	r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
+	gTest(r==KErrNone);
+	//
+	// If a buffer is already registered but a notification has not yet been requested the API should return KErrNone
+	gTest.Printf(_L("Starting (repeated) RegisterRxBuffer\n"));
+	r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
+	gTest(r==KErrNone);
+	//
+	// Now set the notification trigger
+	TRequestStatus status;
+	TInt triggerMask=ERxAllBytes;
+	gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes\n"));
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	//
+	// If a buffer is registered and a notification has been requested the API should return KErrAlreadyExists
+	gTest.Printf(_L("Starting RegisterRxBuffer (to be rejected)\n"));
+	r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
+	gTest(r==KErrAlreadyExists);
+	//
+	// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
+	gTest.Printf(_L("Starting SimulateRxNWords\n"));
+	r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Starting Rx test completed OK\n"));
+	//
+	// Repeat for each error condition. Re-use the buffer previously registered.
+	//
+	//
+	triggerMask=ERxAllBytes|ERxUnderrun;
+	gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes\n"));
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent the bus master transmitting less words than anticipated (Rx Underrun)
+	gTest.Printf(_L("Starting SimulateRxNWords for Underrun\n"));
+	r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 6);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Rx Underrun test completed OK\n"));
+	// Re-set the notification trigger
+	triggerMask=ERxAllBytes|ERxOverrun;
+	gTest.Printf(_L("Starting SetNotificationTrigger\n"));
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent the bus master attempting to transmit more words than
+	// anticipated (Rx Overrun)
+	gTest.Printf(_L("Starting SimulateRxNWords for Overrun\n"));
+	r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 10);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Rx Overrun test completed OK\n"));
+
+	//
+	//		Tx tests
+	//
+
+	// For Tx, specify buffer granularity=4 (32-bit words), 12 words to transmit, offset of 8 bytes
+	// 64 bytes as 16 words: words 0-1 offset, words 2-13 data, words 14-15 unused
+	gTest.Printf(_L("\nStarting RegisterTxBuffer\n"));
+	r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
+	gTest(r==KErrNone);
+	//
+	// If a buffer is already registered but a notification has not yet been requested the API should return KErrNone
+	gTest.Printf(_L("Starting (repeated) RegisterTxBuffer\n"));
+	r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
+	gTest(r==KErrNone);
+	//
+
+	// Re-set the notification trigger
+	// Now set the notification trigger
+	gTest.Printf(_L("Starting SetNotificationTrigger\n"));
+	triggerMask=ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	//
+	// If a buffer is already registered, a subsequent request to do the same should return KErrAlreadyExists
+	gTest.Printf(_L("Starting RegisterTxBuffer (to be rejected)\n"));
+	r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
+	gTest(r==KErrAlreadyExists);
+	//
+	// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
+	gTest.Printf(_L("Starting SimulateTxNWords (to be rejected)\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Tx test completed OK\n"));
+	//
+	// Repeat for each error condition. Re-use the buffer previously registered
+	//
+	// Re-set the notification trigger
+	gTest.Printf(_L("Starting SetNotificationTrigger\n"));
+	triggerMask=ETxAllBytes|ETxOverrun;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent transmission of less than the required number of words
+	// to the bus master (Tx Overrun)
+	gTest.Printf(_L("Starting SimulateTxNWords for Tx Overrun\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 10);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Tx Overrun test completed OK\n"));
+	// Re-set the notification trigger
+	triggerMask=ETxAllBytes|ETxUnderrun;
+	gTest.Printf(_L("Starting SetNotificationTrigger\n"));
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent the bus master attempting to read more words than
+	// anticipated (Tx Underrun)
+	gTest.Printf(_L("Starting SimulateTxNWords for Tx Underrun\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 14);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Tx Underrun test completed OK\n"));
+
+	//
+	//		Simultaneous Rx,Tx tests
+	//
+	// For these tests, the proxy client (iic_slaveclient) will check that the expected results are witnessed
+	// in the required order, and will complete the TRequestStatus when the sequence is complete (or error occurs).
+	//
+	// Set the notification trigger for both Rx and Tx
+	triggerMask=ERxAllBytes|ETxAllBytes;
+	gTest.Printf(_L("\nStarting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
+	gTest.Printf(_L("Starting SimulateRxNWords\n"));
+	r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
+	gTest.Printf(_L("Starting SimulateTxNWords\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Rx, Tx test completed OK\n"));
+	//
+	// Set the notification trigger for both Rx and Tx
+	gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
+	triggerMask=ERxAllBytes|ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
+	gTest.Printf(_L("Starting SimulateTxNWords\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
+	gTest.Printf(_L("Starting SimulateRxNWords\n"));
+	r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Tx, Rx test completed OK\n"));
+	//
+	// Set the notification trigger for both Rx and Tx
+	gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
+	triggerMask=ERxAllBytes|ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent simultaneous transmission of the required number of words (12)
+	// to the bus master and receipt of the required number of words (8) from the bus master
+	gTest.Printf(_L("Starting SimulateRxTxNWords\n"));
+	r=gChanSlaveI2c.SimulateRxTxNWords(busIdI2c, chanId, 8, 12);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Tx with Rx test completed OK\n"));
+
+	// Clear the trigger mask - this is just invoking SetNotificationTrigger with a zero trigger
+	// so that no subsequent triggers are expected (and so no TRequestStatus is provided)
+	gTest.Printf(_L("Starting SetNotificationTrigger with 0\n"));
+	triggerMask=0;
+	r=gChanSlaveI2c.SetNotifNoTrigger(chanId,triggerMask);
+	gTest(r==KErrNone);
+
+	//
+	//		Rx Overrun and Tx Underrun when both Rx and Tx notifications are requested
+	//
+	gTest.Printf(_L("Starting RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests\n"));
+	gChanSlaveI2c.TestOverrunUnderrun(busIdI2c,chanId,status);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests= %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests test completed OK\n"));
+
+
+	//
+	//		Bus Error tests
+	//
+
+	// Simulate a bus error
+	// A bus error will cause all pending bus activity to be aborted.
+	// Request a notification, then simulate a bus error
+	triggerMask=ERxAllBytes|ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	gTest.Printf(_L("Starting SimulateBusErr\n"));
+	r = gChanSlaveI2c.SimulateBusErr(busIdI2c,chanId);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Bus error test completed OK\n"));
+
+	// Clear the trigger mask and prepare for the next test
+	// This is unnecessary if the SetNotificationTrigger for the following test
+	// is called within the timeout period applied for Client responses ...
+	// but it represents a Client ending a transaction cleanly, and so is
+	// left here as an example
+	gTest.Printf(_L("\nStarting SetNotificationTrigger with 0\n"));
+	triggerMask=0;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+
+	// Simulate Master timeout
+	// Do this by:
+	// - Requesting a trigger for Tx
+	// - simulating the Master performing a read (ie the PSL indicates a Tx event) to start the transaction
+	// - provide a buffer for Tx, and request notification of Tx events, ie wait for Master response
+	// - block the PSL Tx notification to the PIL, so that the PIL timeout timer expires when a simulated Tx event
+	//   is next requested
+	//
+	// Indicate the test to be performed
+	gTest.Printf(_L("\nStarting BlockNotification\n"));
+	// Register a buffer for Tx, then set the notification trigger
+	gTest.Printf(_L("RegisterTxBuffer - for Master to start the transaction\n"));
+	r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
+	gTest(r==KErrNone);
+	gTest.Printf(_L("SetNotificationTrigger - for Master to start the transaction\n"));
+	triggerMask=ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to simulate the Master reading the expected number of words
+	gTest.Printf(_L("Starting SimulateTxNWords\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
+	gTest(r==KErrNone);
+	// Wait for the notification
+	User::WaitForRequest(status);
+	gTest.Printf(_L("Status request completed\n"));
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	// Client is now expected to perform its part of the transaction - so pretend we need another Tx
+	//  - but block completion of the Tx so that we generate  a bus error
+	gTest.Printf(_L("SetNotificationTrigger - for second part of the transaction\n"));
+	triggerMask=ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	gTest.Printf(_L("BlockNotification\n"));
+	r=gChanSlaveI2c.BlockNotification(busIdI2c, chanId);
+	gTest(r==KErrNone);
+	// Now instruct the bus implementation to represent the bus master attempting to read the required number of words
+	gTest.Printf(_L("\nStarting SimulateTxNWords\n"));
+	r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("Blocked notification test completed OK\n"));
+	// Re-set the notification trigger - for the 'blocked' Tx
+	// This is required because, in the event of a bus error, the set of requested Rx,Tx
+	// flags are cleared
+	gTest.Printf(_L("Starting SetNotificationTrigger with ETxAllBytes\n"));
+	triggerMask=ETxAllBytes;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+	// Remove the block
+	gTest.Printf(_L("Starting UnblockNotification\n"));
+	r=gChanSlaveI2c.UnblockNotification(busIdI2c, chanId);
+	gTest(r==KErrNone);
+	//
+	// Wait for the notification
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrNone)
+		{
+		gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
+		gTest(r==KErrNone);
+		}
+	gTest.Printf(_L("UnBlocked notification test completed OK\n"));
+	// Clear the trigger mask
+	gTest.Printf(_L("Starting SetNotificationTrigger with 0\n"));
+	triggerMask=0;
+	r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
+	gTest(r==KErrNone);
+
+	// Release the channel
+	r = gChanSlaveI2c.ReleaseChannel( chanId );
+	gTest(r==KErrNone);
+
+	delete i2cBuf;
+#else
+	gTest.Printf(_L("\nSlaveRxTxNotificationTests only supported when SLAVE_MODE is defined\n"));
+#endif
+
+	return r;
+	}
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2404
+//! @SYMTestType        UT
+//! @SYMPREQ            PREQ2128,2129
+//! @SYMTestCaseDesc    This test case tests that MasterSlave channels can only be used in one mode at a time, and that
+//!						if captured for Slave operation or with transactions queued for Master operation the channel can
+//!						not be de-registered.
+//! @SYMTestActions     0) 	Capture the channel for Slave operation. Attempt to synchronously queue a transaction
+//!							on the channel. Attempt to asynchronously queue a transaction on the channel. Attempt
+//!						    to de-register the channel.Release the Slave channel
+//!
+//!						1) Use controlio to block completion of queued transactions. Request asynchronous queue
+//!						   transaction. Attempt to capture the channel for Slave operation. Attempt to de-register
+//!						   the channel. Unblock completion of transactions and wait for the TRequestStatus for the
+//!						   transaction to be completed.
+//!
+//! @SYMTestExpectedResults 0) 	Once captured for Slave operation, attempts to queue a transaction or de-register the channel
+//!							    return KErrInUse, exits otherwise.
+//!						1) With a transaction queued, attempt to capture the channel returns KErrInUse, exits otherwise.
+//!						   Attempt to de-register channel returns KErrInUse, exits otherwise. The TRequestStatus should
+//!						   be set to KErrTimedOut, exits otherwise.
+//!
+//!
+//! @SYMTestPriority        High
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt MasterSlaveAcquisitionTests()
+//
+//	Test to check that:
+//	(1) A Master-Slave channel that has been captured for use in Slave mode will not allow requests for
+//		queing transactions to be accepted
+//	(2) A Master-Slave channel that has been captured for use in Slave mode can not be de-registered
+//	(3) A Master-Slave channel that has one or more transactions queued in its Master channel transaction queue
+//		can not be captured for use in Slave Made
+//	(4) A Master-Slave channel that has one or more transactions queued in its Master channel transaction queue
+//		can not be de-registered
+//
+	{
+	gTest.Printf(_L("\n\nStarting MasterSlaveAcquisitionTests\n"));
+	TInt r=KErrNone;
+
+#if defined(MASTER_MODE) && defined(SLAVE_MODE)
+	//	Create a Master-Slave channel
+	RBusDevIicClient chanMasterSlaveI2c;
+	TBufC<18> proxyName;
+	if(!aStandAloneChan)
+		proxyName = KIicProxyFileNameRoot;
+	else
+		proxyName = KIicProxyFileNameRootCtrlLess;
+	r = chanMasterSlaveI2c.Open(proxyName);
+	gTest(r==KErrNone);
+	r = chanMasterSlaveI2c.InitSlaveClient();	// Initialise callback used for Slave processing
+	gTest(r==KErrNone);
+	//
+	//	Capture the channel for Slave operation
+	//  Attempt to synchronously queue a transaction on the channel - expect KErrInUse as a response
+	//  Attempt to asynchronously queue a transaction on the channel - expect KErrInUse as a response
+	//  Attempt to de-register the channel - expect KErrInUse as a response
+	//  Release the Slave channel
+	//
+	// Create a I2C configuration buffer and the configuration data for use in capturing gChanSlaveI2c
+	TUint32 busIdI2c = 0;
+	TConfigI2cBufV01* i2cBuf=NULL;
+	r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 12);	// 12 is the MasterSlave channel number
+	gTest(r==KErrNone);
+	TInt chanId;
+
+	gTest.Printf(_L("\nStarting synchronous CaptureChannel \n"));
+	r = chanMasterSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, chanId );
+	gTest.Printf(_L("Synchronous CaptureChannel returned = %d, chanId=0x%x\n"),r,chanId);
+	gTest(r==KErrNone);
+	//
+	_LIT(halfDuplexText,"Half Duplex Text");
+	TBuf8<17> halfDuplexBuf_8;
+	halfDuplexBuf_8.Copy(halfDuplexText);
+	TUsideTferDesc* tfer = NULL;
+	r=CreateSingleUserSideTransfer(tfer, EMasterWrite, 8, &halfDuplexBuf_8, NULL);
+	if(r!=KErrNone)
+		return r;
+	if(tfer==NULL)
+		return KErrGeneral;
+	//
+	TUsideTracnDesc* tracn = NULL;
+	r = CreateSingleUserSideTransaction(tracn, EI2c, i2cBuf, tfer, NULL, 0, NULL, NULL);
+	if(r!=KErrNone)
+		return r;
+	if(tracn==NULL)
+		return KErrGeneral;
+
+
+	gTest.Printf(_L("\nStarting synchronous QueueTransaction \n"));
+	r = chanMasterSlaveI2c.QueueTransaction(busIdI2c, tracn);
+	gTest.Printf(_L("Synchronous QueueTransaction returned = %d\n"),r);
+	gTest(r==KErrInUse);
+	gTest.Printf(_L("\nStarting asynchronous QueueTransaction \n"));
+	TRequestStatus status;
+	chanMasterSlaveI2c.QueueTransaction(status, busIdI2c, tracn);
+	User::WaitForRequest(status);
+	if(status != KErrInUse)
+		{
+		gTest.Printf(_L("TRequestStatus value after queue = %d\n"),status.Int());
+		gTest(r==KErrInUse);
+		}
+//
+//	// If it is stand-alone channel, the client is responsible for channel creation.
+//	// So the RegisterChan and DeRegisterChan are not needed.
+	if(aStandAloneChan == 0)
+		{
+		gTest.Printf(_L("\nStarting deregistration of captured channel\n"));
+		r = chanMasterSlaveI2c.DeRegisterChan(busIdI2c);
+		gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
+		gTest(r==KErrInUse);
+		}
+
+	gTest.Printf(_L("\nInvoke ReleaseChannel for chanId=0x%x \n"),chanId);
+	r = chanMasterSlaveI2c.ReleaseChannel( chanId );
+	gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
+	gTest(r==KErrNone);
+
+	//
+	//	Use ControlIO/StaticExtension to block transactions on the Master Channel
+	//  Queue an asynchronous transaction on the channel
+	//  Attempt to capture the channel for Slave operation - expect KErrInUse as a response
+	//  Attempt to de-register the channel - expect KErrInUse as a response
+	//  Unblock the channel
+	//  Check for (timed out) completion of the transaction
+	//
+	gTest.Printf(_L("Invoking BlockReqCompletion\n"));
+	r = chanMasterSlaveI2c.BlockReqCompletion(busIdI2c);
+	gTest.Printf(_L("BlockReqCompletion returned = %d\n"),r);
+	//
+	gTest.Printf(_L("Queueing first transaction \n"));
+	chanMasterSlaveI2c.QueueTransaction(status, busIdI2c, tracn);
+	//
+	User::After(50000);
+	//
+	gTest.Printf(_L("\nStarting synchronous CaptureChannel \n"));
+	r = chanMasterSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, chanId );
+	gTest.Printf(_L("Synchronous CaptureChannel returned = %d, chanId=0x%x\n"),r,chanId);
+	gTest(r==KErrInUse);
+
+	// If it is stand-alone channel, the client is responsible for channel creation.
+	// So the RegisterChan and DeRegisterChan are not needed.
+	if(aStandAloneChan == 0)
+		{
+		gTest.Printf(_L("\nStarting deregistration of channel\n"));
+		r = chanMasterSlaveI2c.DeRegisterChan(busIdI2c);
+		gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
+		gTest(r==KErrInUse);
+		}
+	gTest.Printf(_L("Invoking UnlockReqCompletion\n"));
+	r = chanMasterSlaveI2c.UnblockReqCompletion(busIdI2c);
+	gTest.Printf(_L("UnblockReqCompletion returned = %d\n"),r);
+	//
+	User::After(50000);
+	//
+	User::WaitForRequest(status);
+	r=status.Int();
+	if(r != KErrTimedOut)
+		{
+		gTest.Printf(_L("TRequestStatus value after queue = %d\n"),r);
+		gTest(r==KErrTimedOut);
+		}
+	r=KErrNone; // Ensure error code is not propagated
+
+	delete i2cBuf;
+	delete tfer;
+	delete tracn;
+	chanMasterSlaveI2c.Close();
+#else
+	gTest.Printf(_L("\nMasterSlaveAcquisitionTests only supported when both MASTER_MODE and SLAVE_MODE are defined\n"));
+#endif
+
+	return r;
+	}
+
+//----------------------------------------------------------------------------------------------
+//! @SYMTestCaseID      KBASE-T_IIC-2404
+//! @SYMTestType        UT
+//! @SYMDEF             DEF141732
+//! @SYMTestCaseDesc    This test case tests the inline functions of DIicBusChannel interface.
+//! @SYMTestActions     Call Kernel-side proxy client function to perform interface tests.
+//! @SYMTestExpectedResults Kernel-side proxy client should return with KErrNone.
+//! @SYMTestPriority        Medium
+//! @SYMTestStatus          Implemented
+//----------------------------------------------------------------------------------------------
+LOCAL_C TInt IicInterfaceInlineTests()
+    {
+    if(aStandAloneChan == 1)
+        {
+        gTest.Printf(_L("\n\nStarting IicInterfaceInlineTests\n"));
+        TInt r=KErrNone;
+        r = gChanMasterSpi.TestIiicChannelInlineFunc();
+        return r;  
+        }
+    else
+        {
+        gTest.Printf(_L("\nIicInterfaceInlineTests can only be run in Standalone mode\n"));
+        return KErrNone;
+        }
+    }
+
+LOCAL_C TInt RunTests()
+//
+//	Utility method to invoke the separate tests
+//
+	{
+	TInt r =KErrNone;
+	r = IicInterfaceInlineTests();
+    if(r!=KErrNone)
+        return r;
+    
+	r = MasterBasicTests();
+	if(r!=KErrNone)
+		return r;
+
+	r = SlaveRxTxNotificationTests();
+	if(r!=KErrNone)
+		return r;
+
+	r = SlaveChannelCaptureReleaseTests();
+	if(r!=KErrNone)
+		return r;
+
+	r = MasterExtTests(KTransactionWithPreamble);
+	if(r!=KErrNone)
+		return r;
+
+	r = MasterExtTests(KTransactionWithMultiTransc);
+	if(r!=KErrNone)
+		return r;
+
+	r = MasterExtTests(KTransactionWithMultiTransc|KTransactionWithPreamble);
+	if(r!=KErrNone)
+		return r;
+
+	r = MasterTransactionTests();
+	if(r!=KErrNone)
+		return r;
+
+	r = MasterSlaveAcquisitionTests();
+	if(r!=KErrNone)
+		return r;
+
+	return KErrNone;
+	}
+
+GLDEF_C TInt E32Main()
+//
+// Main
+//
+    {
+	gTest.Title();
+	gTest.Start(_L("Test IIC API\n"));
+
+	TInt r = KErrNone;
+
+#ifdef IIC_SIMULATED_PSL
+	gTest.Next(_L("Start the IIC with controller test\n"));
+	aStandAloneChan = 0;
+	gTest.Next(_L("Load Simulated IIC PSL bus driver"));
+	r = User::LoadPhysicalDevice(KIicPslFileName);
+	gTest.Printf(_L("return value r=%d"),r);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load Simulated PSL SPI bus driver"));
+	r = User::LoadPhysicalDevice(KSpiFileName);
+	gTest.Printf(_L("return value r=%d"),r);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load Simulated PSL I2C bus driver"));
+	r = User::LoadPhysicalDevice(KI2cFileName);
+	gTest.Printf(_L("return value r=%d"),r);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load kernel-side proxy IIC client"));
+	r = User::LoadLogicalDevice(KIicProxyFileName);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load kernel-side proxy IIC slave client"));
+	r = User::LoadLogicalDevice(KIicProxySlaveFileName);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	__KHEAP_MARK;
+	// First ascertain what bus options are available.
+
+	// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
+	// Open a Master SPI channel to the kernel side proxy
+	TBufC<30> proxyName(KIicProxyFileNameRoot);
+	r = gChanMasterSpi.Open(proxyName);
+	gTest(r==KErrNone);
+
+	// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
+	// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
+	// I2C has Master channel number 10 and Slave channel numer 11 if built with both MASTER_MODE and SLAVE_MODE
+	// Open a Master I2C channel to the kernel side proxy
+	r = gChanMasterI2c.Open(proxyName);
+	gTest(r==KErrNone);
+	TBufC<15> proxySlaveName(KIicProxySlaveFileNameRoot);
+	r = gChanSlaveI2c.Open(proxySlaveName);
+	gTest(r==KErrNone);
+	r = gChanSlaveI2c.InitSlaveClient();
+	gTest(r==KErrNone);
+
+	// Instigate tests
+	r = RunTests();
+	gTest(r==KErrNone);
+
+	gTest.Printf(_L("Tests completed OK, about to close channel\n"));
+
+	gChanMasterSpi.Close();
+	gChanMasterI2c.Close();
+	gChanSlaveI2c.Close();
+	
+	UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, 0, 0);
+	__KHEAP_MARKEND;
+
+	gTest.Next(_L("Free kernel-side proxy IIC client"));
+	TInt err = User::FreeLogicalDevice(KIicProxyFileNameRoot);
+	gTest(err==KErrNone || err==KErrAlreadyExists);
+
+	gTest.Next(_L("Free kernel-side proxy IIC slave client"));
+	err = User::FreeLogicalDevice(KIicProxySlaveFileNameRoot);
+	gTest(err==KErrNone || err==KErrAlreadyExists);
+
+	gTest.Next(_L("Free Simulated PSL I2C bus driver"));
+	err = User::FreePhysicalDevice(KI2cFileName);
+	gTest(err==KErrNone);
+
+	gTest.Next(_L("Free Simulated PSL SPI bus driver"));
+	err = User::FreePhysicalDevice(KSpiFileName);
+	gTest(err==KErrNone);
+
+	gTest.Next(_L("Free Simulated IIC PSL bus driver"));
+	err = User::FreePhysicalDevice(KIicPslFileNameRoot);
+	gTest(err==KErrNone);
+
+	gTest.Next(_L("Start the controller-less IIC test\n"));
+	aStandAloneChan = 1;
+
+	gTest.Next(_L("Load Simulated PSL SPI bus driver"));
+	r = User::LoadPhysicalDevice(KSpiFileNameCtrlLess);
+	gTest.Printf(_L("return value r=%d"),r);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load Simulated PSL I2C bus driver"));
+	r = User::LoadPhysicalDevice(KI2cFileNameCtrlLess);
+	gTest.Printf(_L("return value r=%d"),r);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load kernel-side proxy IIC client"));
+	r = User::LoadLogicalDevice(KIicProxyFileNameCtrlLess);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	gTest.Next(_L("Load kernel-side proxy IIC slave client"));
+	r = User::LoadLogicalDevice(KIicProxySlaveFileNameCtrlLess);
+	gTest(r==KErrNone || r==KErrAlreadyExists);
+
+	// First ascertain what bus options are available.
+	__KHEAP_MARK;
+	// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
+	// Open a Master SPI channel to the kernel side proxy
+	TBufC<30> proxyNameCtrlLess(KIicProxyFileNameRootCtrlLess);
+	r = gChanMasterSpi.Open(proxyNameCtrlLess);
+	gTest(r==KErrNone);
+
+	// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
+	// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
+	// I2C has Master channel number 10 and Slave channel numer 11 if built with both MASTER_MODE and SLAVE_MODE
+	// Open a Master I2C channel to the kernel side proxy
+	r = gChanMasterI2c.Open(proxyNameCtrlLess);
+
+	gTest(r==KErrNone);
+	TBufC<35> proxySlaveNameCtrlLess(KIicProxySlaveFileNameRootCtrlLess);
+
+	r = gChanSlaveI2c.Open(proxySlaveNameCtrlLess);
+	gTest(r==KErrNone);
+	r = gChanSlaveI2c.InitSlaveClient();
+	gTest(r==KErrNone);
+
+	// Instigate tests
+	r = RunTests();
+	gTest(r==KErrNone);
+
+	gTest.Printf(_L("Tests completed OK, about to close channel\n"));
+
+	gChanMasterSpi.Close();
+	gChanMasterI2c.Close();
+	gChanSlaveI2c.Close();
+
+	UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, 0, 0);
+	__KHEAP_MARKEND;
+
+	gTest.Next(_L("Free kernel-side proxy IIC client"));
+
+	err = User::FreeLogicalDevice(KIicProxyFileNameRootCtrlLess);
+	gTest(err==KErrNone || err==KErrAlreadyExists);
+	gTest.Next(_L("Free kernel-side proxy IIC slave client"));
+	err = User::FreeLogicalDevice(KIicProxySlaveFileNameRootCtrlLess);
+	gTest(err==KErrNone || err==KErrAlreadyExists);
+
+	gTest.Next(_L("Free Simulated PSL I2C bus driver"));
+	err = User::FreePhysicalDevice(KI2cFileNameCtrlLess);
+	gTest(err==KErrNone);
+
+	gTest.Next(_L("Free Simulated PSL SPI bus driver"));
+	err = User::FreePhysicalDevice(KSpiFileNameCtrlLess);
+	gTest(err==KErrNone);
+#else
+	gTest.Printf(_L("Don't do the test if it is not IIC_SIMULATED_PSL"));
+#endif
+	gTest.End();
+	return r;
+    }
+