bsptemplate/asspandvariant/template_assp/iic/iic_master.cpp
changeset 0 a41df078684a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bsptemplate/asspandvariant/template_assp/iic/iic_master.cpp	Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,789 @@
+/*
+* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of the License "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description:
+*
+*/
+
+
+#include <drivers/iic.h>
+// #include <gpio.h>	// Include if using GPIO functionality
+#include "iic_psl.h"
+#include "iic_master.h"
+
+
+// Method called when transmission activity is ended. The method is used to indicate
+// the success or failure reported in the first parameter
+//
+// All timers are cancelled, relevant interrupts are disabled and the transaction
+// request is completed by calling the relevant PIL method.
+//
+void DIicBusChannelMasterPsl::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
+
+	// Disable interrupts for the channel
+	// with something similar to the following lines:
+	//		Interrupt::Disable(iRxInterruptId);
+	//		Interrupt::Disable(iTxInterruptId);
+
+	// Cancel timers and DFCs..
+	CancelTimeOut();
+	iHwGuardTimer.Cancel();
+	iTransferEndDfc.Cancel();
+
+	// Change the channel state to EIdle so that subsequent transaction requests can be accepted
+	// once the current one has been completed
+	iState = EIdle;
+
+	// Call the PIL method to complete the request
+	if(aComplete)
+		{
+		CompleteRequest(aErr);
+		}
+	}
+
+// Callback function for the iHwGuardTimer timer. 
+//
+// Called in ISR context if the iHwGuardTimer expires. Sets iTransactionStatus to KErrTimedOut
+//
+void DIicBusChannelMasterPsl::TimeoutCallback(TAny* aPtr)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TimeoutCallback"));
+	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
+	a->iTransactionStatus = KErrTimedOut;
+	}
+
+// HandleSlaveTimeout
+//
+// This method is called by the PIL in the case of expiry of a timer started by the PSL. It is
+// specificaly intended to guard against the Slave not responding within an expected time
+//
+// The PIL method StartSlaveTimeoutTimer is available for the PSL to start the timer (this is 
+// called from ProcessNextTransfers, below).
+// The PIL method CancelTimeOut is available for the PSL to cancel the same timer (this is called
+// from ExitComplete, above)
+//
+// The PIL will call CompleteRequest() after this function returns, so the PSL needs only to clean-up
+//
+TInt DIicBusChannelMasterPsl::HandleSlaveTimeout()
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("HandleSlaveTimeout"));
+
+	// Ensure that the hardware has ceased transfers, with something similar to the following line:
+	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
+	//		GPIO::SetPinMode(aPinId, GPIO::EDisabled);
+
+	// Stop the PSL's operation, and inform the PIL of the timeout
+	ExitComplete(KErrTimedOut, EFalse);
+
+	// Perform any further hardware manipulation necessary
+	//
+
+	return KErrTimedOut;
+	}
+
+
+// DFC 
+//
+// For execution when a Rx buffer has been filled or a Tx buffer has been emptied
+//
+void DIicBusChannelMasterPsl::TransferEndDfc(TAny* aPtr)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc"));
+	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
+
+	//	Start of optional processing - not necessary for all implementations
+	//
+	// When operating full-duplex transfers, one of the Rx and Tx operations may have caused an interrupt
+	// before the other has completed. For the example here, the Tx is assumed to have completed before the Rx
+	// and a timer is used to ensure that the outstanding Rx operation completes within an expected time.
+	//
+	// If there has been no error so far, may want to check if we are still receiving the data
+	if(a->iTransactionStatus == KErrNone)
+		{
+		// Use an active wait since this is likely to be a brief check.
+		// Start the guard timer (which will update iTransactionStatus with KErrTimedOut if it expires)
+		// while also polling the hardware to check if transmission has ceased.
+		// 
+		// Polling the hardware would be something like the line below
+		//		(AsspRegister::Read32(a->aRegisterSetBaseAddress + KStatusRegisterOffset) & KTransmissionActive));
+		// but for the template port will use a dummy condition (value of 1)
+		//
+		a->iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
+		while((a->iTransactionStatus == KErrNone) && 1);	// Replace 1 with a register read
+		}
+	//
+	// Now the timer has expired, deactivate the slave select until the current state has been processed, but only
+	// if this is not an extended transaction, in which case we want to leave the bus alone so that the multiple
+	// transactions making up the extended transaction become one big transaction as far as the bus is concerned.
+	// Do this with something similar to the following line:
+	// if (!(a->iCurrTransaction->Flags() & KTransactionWithMultiTransc))
+	//	{
+	//	GPIO::SetPinMode(aPinId, GPIO::EDisabled);
+	//	}
+	//
+	// Disable the hardware from further transmissions
+	// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
+	//
+	// Check if the guard timer expired
+	if(a->iTransactionStatus != KErrNone)
+		{
+		__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc(): error %d",a->iTransactionStatus));
+		a->ExitComplete(a->iTransactionStatus); // report the error
+		return;
+		}
+	else
+		{
+		// Transfer completed successfully, so just cancel the guard timer
+		a->iHwGuardTimer.Cancel();
+		}
+	//	End of optional processing - not necessary for all implementations
+
+	// At this point, prepare for subsequent transfers by performing any necessary clean-up.
+	// As stated above, for this example, it is assumed that any Rx or Tx transfer has completed - 
+	// the following just checks if an Rx, Tx operation was started, and assumes that they completed.
+
+	if(a->iOperation.iOp.iIsReceiving)
+		{
+		// If the channel has been receiving data, may need to ensure that any FIFO used has been drained
+		// The example here checks if one extra data item remains in the FIFO
+		// To check if data remains in a FIFO, something similar to the following could be used:
+		//		TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxFifoLevel);
+		// Reading data from the FIFO would be achieved with something like the line below
+		//		value = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData);
+		// but for the template port will just use a dummy values (data remains=1, value = 1)
+		//
+		TInt8 dataRemains = 1;	// Would be a check of a Rx FIFO level
+
+		// If data remains in the Rx FIFO and the Rx buffer is not full, copy the data to the buffer
+		if(dataRemains && (a->iRxDataEnd - a->iRxData >= a->iWordSize) )
+			{
+			TUint8 value = 1;			// Would be a read of the Rx FIFO data
+			*a->iRxData = value;		// For this example, assumes one byte of data has been read from the FIFO
+										// but if operating in 16-bit mode, two "values" would be written the buffer
+			a->iRxData += a->iWordSize;	// In this example, 8-bit mode is assumed (iWordSize=1)
+										// but if operating in 16-bit mode a->iRxData would be incremented by 
+										// the number of bytes specified in a->iWordSize
+			}
+		}
+
+	if(a->iOperation.iOp.iIsTransmitting)
+		{
+		// If the channel has been transmitting data, may need to ensure that any FIFO used has been flushed
+		// To check if data remains in a FIFO, something similar to the following could be used:
+		//		TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KTxFifoLevel);
+		// The means to flush the FIFO will be platform specific, and so no example is given here.
+		}
+
+	// Start the next transfer for this transaction, if any remain
+	if(a->iState == EBusy)
+		{
+		TInt err = a->ProcessNextTransfers();
+		if(err != KErrNone)
+			{
+			// If the next transfer could not be started, complete the transaction with
+			// the returned error code
+			a->ExitComplete(err);
+			}
+		}
+	}
+
+
+// ISR Handler
+//
+// If the channel is to be event driven, it will use interrupts that indicate the 
+// hardware has received or transmitted. To support this an ISR is required.
+//
+void DIicBusChannelMasterPsl::IicIsr(TAny* aPtr)
+	{
+	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
+
+	// The processing for Rx and Tx will differ, so must determine the status of the interrupts.
+	// This will be PSL-specific, but is likely to achieved by reading a status register, in a
+	// way similar to this:
+	//		TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
+	//
+	// For the purposes of compiling the template port, just initialise status to zero.
+	TUint32 status = 0;
+
+	if(status & KIicPslTxInterrupt)
+		{
+		// Tx interrupt processing
+
+		// Clear the interrupt source, with something similar to the following line:
+		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslTxInterrupt);
+
+		// Then check whether all the required data has been transmitted.
+		if(a->iTxData == a->iTxDataEnd)
+			{
+			// All data sent, so disable the Tx interrupt and queue a DFC to handle the next steps.
+			//		Interrupt::Disable(a->iTxInterruptId);
+			a->iTransferEndDfc.Add();
+			}
+		else
+			{
+			if(a->iOperation.iOp.iIsTransmitting)
+				{
+				// Data remaining - copy the next value to send to the Tx register
+
+				// TUint8 nextTxValue = *a->iTxData;	// For this example, assumes one byte of data is to be transmitted
+														// but if operating in 16-bit mode, bytes may need arranging for
+														// endianness
+
+				// Write to the Tx register with something similar to the following:
+				//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
+
+				a->iTxData += a->iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
+											// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
+											// by the number of bytes specified in a->iWordSize
+				}
+			}
+		}
+
+	if(status & KIicPslRxInterrupt)
+		{
+		// Rx interrupt processing
+
+		// Copy the received data to the Rx buffer. 
+		// Do this in a loop in case there are more than one units of data to be handled. Data availability
+		// will be indicated by a PSL-specific register, and so may be handled by code similar to the following:
+		//		while(AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData))
+		// 
+		// But, to allow compilation of the template port, just use a dummy condition (while(1)):
+		while(1)
+			{
+			// While there is space in the buffer, copy received data to it
+			if((a->iRxDataEnd - a->iRxData) >= a->iWordSize)
+				{
+				TUint8 nextRxValue = 0;
+				// Read from the Rx register with something similar to the following:
+				//		TUint8 nextRxValue = AsspRegister::Read32(aRegisterSetBaseAddress + KRxRegisterOffset);
+				*a->iRxData = nextRxValue;
+				}
+			else
+				{
+				// If there is no space left in the buffer an Overrun has occurred
+				a->iTransactionStatus = KErrOverflow;
+				break;
+				}
+
+			// Increment the pointer to the received data
+			a->iRxData += a->iWordSize;
+			}
+
+		// If the Rx buffer is now full, finish the transmission.
+		if(a->iRxDataEnd == a->iRxData)
+			{
+			// Disable the interrupt since it is no longer required
+			//		Interrupt::Disable(a->iRxInterruptId);
+
+			// Then queue a DFC to perform the next steps
+			a->iTransferEndDfc.Add();
+			}
+		
+		// After processing the data, clear the interrupt source (do it last to prevent the ISR being
+		// re-invoked before this ISR is finished), with something similar to the following line:
+		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslRxInterrupt);
+		}
+	}
+
+// Constructor, first stage
+//
+// The PSL is responsible for setting the channel number - this is passed as the first parameter to
+// this overload of the base class constructor
+//
+DIicBusChannelMasterPsl::DIicBusChannelMasterPsl(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
+	DIicBusChannelMaster(aBusType, aChanDuplex),				// Base class constructor
+	iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority),	// DFC to handle transfer completion
+	iHwGuardTimer(TimeoutCallback, this)						// Timer to guard against hardware timeout
+	{
+	iChannelNumber = aChannelNumber;	// Set the iChannelNumber of the Base Class
+	iState = EIdle;						// Initialise channel state machine
+
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DIicBusChannelMasterPsl: iChannelNumber = %d", iChannelNumber));
+	}
+
+// Second stage construction
+//
+// Allocate and initialise objects required by the PSL channel implementation
+//
+TInt DIicBusChannelMasterPsl::DoCreate()
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoCreate() ch: %d \n", iChannelNumber));
+
+	TInt r = KErrNone;
+
+	// Interrupt IDs (such as iRxInterruptId, iTxInterruptId, used in this file)would be initialised here.
+	//
+	// Also, information relevant to the channel number (such as the base register address, 
+	// aRegisterSetBaseAddress) would be initialised here.
+
+	// Create the DFCQ to be used by the channel
+	if(!iDfcQ)
+		{
+		TBuf8<KMaxName> threadName (KIicPslThreadName);
+		threadName.AppendNum(iChannelNumber);		// Optional: append the channel number to the name
+		r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
+		if(r != KErrNone)
+			{
+			__KTRACE_OPT(KIIC, Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
+			return r;
+			}
+		}
+
+	// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
+	r = Init();			
+	if(r == KErrNone)
+		{
+		// Call base class function to set DFCQ pointers in the required objects
+		// This also enables the channel to process transaction requests
+		SetDfcQ(iDfcQ); 
+
+		// PSL DFCQ initialisation for local DFC
+		iTransferEndDfc.SetDfcQ(iDfcQ); 
+
+#ifdef CPU_AFFINITY_ANY
+		NKern::ThreadSetCpuAffinity((NThread*)(iDfcQ->iThread), KCpuAffinityAny);
+#endif
+		// Bind interrupts.
+		// This would be with something similar to the following lines:
+		//		iMasterIntId = Interrupt::Bind(interruptIdToUse, IicPslIsr, this);
+		//
+		// Interrupt::Bind returns interruptId or an error code (negative value)
+		if(iMasterIntId < KErrNone)
+			{
+			__KTRACE_OPT(KIIC, Kern::Printf("ERROR: InterruptBind error.. %d", r));
+			r = iMasterIntId;
+			}
+		}
+	return r;
+	}
+
+// New
+//
+// A static method used to construct the DIicBusChannelMasterPsl object.
+DIicBusChannelMasterPsl* DIicBusChannelMasterPsl::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
+	DIicBusChannelMasterPsl *pChan = new DIicBusChannelMasterPsl(aChannelNumber, aBusType, aChanDuplex);
+
+	TInt r = KErrNoMemory;
+	if(pChan)
+		{
+		r = pChan->DoCreate();
+		}
+	if(r != KErrNone)
+		{
+		delete pChan;
+		pChan = NULL;
+		}
+	return pChan;
+	}
+
+// Optional method - that determines if the previous transaction header is different to the current one.
+// If configuration is the same, the hardware may not need to be re-initialized. 
+TBool DIicBusChannelMasterPsl::TransConfigDiffersFromPrev()
+	{
+	// 
+	// The header will be specific to a particular bus type. Using a fictional
+	// bus type Abc, code similar to the following could be used to compare each
+	// member of the previous header with the current one
+	// 
+	//		TConfigAbcBufV01* oldHdrBuf = (TConfigAbcBufV01*) iPrevHeader;
+	//		TConfigAbcV01 &oldHeader = (*oldHdrBuf)();
+	//		TConfigAbcBufV01* newHdrBuf = (TConfigAbcBufV01*) iCurrHeader;
+	//		TConfigAbcV01 &newHeader = (*newHdrBuf)();
+	//		if(	(newHeader.iHeaderMember != oldHeader.iHeaderMember)	||
+	//			... )
+	//			{
+	//			return EFalse;
+	//			}
+	return ETrue;
+	}
+
+
+// CheckHdr is called by the PIL when a transaction is queued, in function
+// QueueTransaction. This is done in the context of the Client's thread.
+//
+// The PSL is required to check that the transaction header is valid for
+// this channel.
+//
+// If the pointer to the header is NULL, return KErrArgument.
+// If the content of the header is not valid for this channel, return KErrNotSupported.
+//
+TInt DIicBusChannelMasterPsl::CheckHdr(TDes8* aHdrBuff)
+	{
+	TInt r = KErrNone;
+
+	if(!aHdrBuff)
+		{
+		r = KErrArgument;
+		}
+	else
+		{
+		// Check that the contents of the header are valid
+		//
+		// The header will be specific to a particular bus type. Using a fictional
+		// bus type Abc,code similar to the following could be used to validate each
+		// member of the header:
+		// 
+		//		TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) aHdrBuff;
+		//		TConfigAbcV01 &abcHeader = (*headerBuf)();
+		//		if(	(abcHeader.iHeaderMember < ESomeMinValue)	||
+		//			(abcHeader.iHeaderMember > ESomeMaxValue))
+		//			{
+		//			__KTRACE_OPT(KIIC, Kern::Printf("iHeaderMember %d not supported",abcHeader.iHeaderMember));
+		//			r = KErrNotSupported;
+		//			}
+		}
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::CheckHdr() r %d", r));
+	return r;
+	}
+
+// Initialise the hardware with the data provided in the transaction and slave-address field
+//
+// If a specified configuration is not supported, return KErrNotSupported
+// If a configuration is supported, but the implementing configuration fails, return KErrGeneral
+//
+TInt DIicBusChannelMasterPsl::ConfigureInterface()
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
+
+	// This method will be platform-specific and will configure the hardware as required to support
+	// the current transacation. This will be supported with something similar to the following:
+	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
+	//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
+
+	// Depending on the platform, timers (such as iHwGuardTimer) may be used to check that the hardware
+	// responds in the required way within an allowed timeout. Since this is configuring the channel for
+	// an operation, it is acceptable to perform an active wait, with something similar to the following:
+	//		iTransactionStatus = KErrNone;
+	//		iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
+	//		while((iTransactionStatus == KErrNone) &&
+	//			AsspRegister::Read32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
+	//		if(iTransactionStatus != KErrNone)
+	//			{
+	//			return KErrGeneral;
+	//			}
+	//		else
+	//			{
+	//			iHwGuardTimer.Cancel();
+	//			}
+	return KErrNone;
+	}
+
+
+// Method called by StartTransfer to actually initiate the transfers. It manipulates the hardware to
+// perform the required tasks.
+//
+TInt DIicBusChannelMasterPsl::DoTransfer(TInt8 *aBuff, TUint aNumOfBytes, TUint8 aType)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoTransfer() - aBuff=0x%x, aNumOfBytes=0x%x\n",aBuff,aNumOfBytes));
+
+	TInt r = KErrNone;
+
+	// Validate the input arguments
+	if((aBuff == NULL) || (aNumOfBytes == 0))
+		{
+		r = KErrArgument;
+		}
+	else
+		{
+		// This method will be platform-specific and will configure the hardware as required
+		// This will likely be supported with calls similar to the following:
+		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
+		//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
+		//		Interrupt::Enable(aInterruptId);
+		//
+		// Steps that may be typically required are described below
+
+		switch(aType)
+			{
+			case TIicBusTransfer::EMasterWrite:
+				{
+				// If using a Tx FIFO, may wish to disable transmission until the FIFO has been filled to certain level
+				// If using a Tx FIFO, may wish to flush it and re-initialise any counters or pointers used
+
+				// If using a FIFO, copy data to it until either the FIFO is full or all data has been copied
+				// Checking the FIFO is full will be reading a flag in a status register, by use of code similar the following
+				//		TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
+				//		if(status & KTxFifoFullBitMask)
+				//			... FIFO is full
+				//
+				// For this example base port, represent the FIFO full status by a dummy value (zero).
+				TUint8 txFifoFull = 0;
+				while(!txFifoFull && (iTxData != iTxDataEnd))
+					{
+					// TUint8 nextTxValue = *iTxData;	// For this example, assumes one byte of data is to be transmitted
+															// but if operating in 16-bit mode, bytes may need arranging for
+															// endianness
+
+					// Write to the Tx FIFO register with something similar to the following:
+					//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
+
+					iTxData += iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
+												// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
+												// by the number of bytes specified in a->iWordSize
+					}
+				// May wish to enable transmission now - or wait until after the Read transfer has been initialised
+				break;
+				}
+			case TIicBusTransfer::EMasterRead:
+				{
+				// If using an Rx FIFO, it will already have been drained at the end of the last transfer by TransferEndDfc
+				// so no need to do it again here.
+
+				// May wish to enable reception now - or group with the code, below
+				break;
+				}
+			default:
+				{
+				__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
+				r = KErrArgument;
+				break;
+				}
+			}
+
+		// Final stages of hardware preparation
+		//
+		// Enable hardware interrupts
+		// Finally, enable (start) transmission and reception
+		}
+
+	return r;
+	}
+
+
+// This method performs the initialisation required for either a read or write transfer
+// and then invokes the next stage of the processing (DoTransfer)
+//
+TInt DIicBusChannelMasterPsl::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer() - aTransferPtr=0x%x, aType=%d",aTransferPtr,aType));
+
+	if(aTransferPtr == NULL)
+		{
+		__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer - NULL pointer\n"));
+		return KErrArgument;
+		}
+
+	TInt r = KErrNone;
+
+	switch(aType)
+		{
+		case TIicBusTransfer::EMasterWrite:
+			{
+			__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterWrite, duplex=%d", iFullDTransfer));
+
+			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
+			const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
+
+			__KTRACE_OPT(KIIC, Kern::Printf("Length %d, iWordSize %d", aBufPtr->Length(), iWordSize));
+
+			// Store the current address and ending address for Transmission - they are required by the ISR and DFC
+			iTxData = (TInt8*) aBufPtr->Ptr();
+			iTxDataEnd = (TInt8*) (iTxData + aBufPtr->Length());
+
+			__KTRACE_OPT(KIIC, Kern::Printf("Tx: Start: %x, End %x, bytes %d\n\n", iTxData, iTxDataEnd, aBufPtr->Length()));
+
+			// Set the flag to indicate that we'll be transmitting data
+			iOperation.iOp.iIsTransmitting = ETrue;
+
+			// initiate the transmission..
+			r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
+			if(r != KErrNone)
+				{
+				__KTRACE_OPT(KIIC, Kern::Printf("Starting Write failed, r = %d", r));
+				}
+			break;
+			}
+
+		case TIicBusTransfer::EMasterRead:
+			{
+			__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
+
+			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
+			const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
+
+			// Store the current address and ending address for Reception - they are required by the ISR and DFC
+			iRxData = (TInt8*) aBufPtr->Ptr();
+			iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
+
+			__KTRACE_OPT(KIIC, Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
+
+			// Set the flag to indicate that we'll be receiving data
+			iOperation.iOp.iIsReceiving = ETrue;
+
+			// initiate the reception
+			r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
+			if(r != KErrNone)
+				{
+				__KTRACE_OPT(KIIC, Kern::Printf("Starting Read failed, r = %d", r));
+				}
+			break;
+			}
+
+		default:
+			{
+			__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
+			r = KErrArgument;
+			break;
+			}
+		}
+
+	return r;
+	}
+
+// This method determines the next transfers to be processed, and passes them to the next stage
+// in the processing (StartTransfer).
+//
+// This is called from DoRequest (for the first transfer) and TransferEndDfc (after a transfer
+// has completed)
+//
+TInt DIicBusChannelMasterPsl::ProcessNextTransfers()
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ProcessNextTransfers(),BUSY=%d", iState));
+
+	// Since new transfers are strating, clear exisiting flags
+	iOperation.iValue = TIicOperationType::ENop;
+
+	// Some hardware preparation may be required before starting the transfer using something similar
+	// to the following line:
+	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
+
+	// If this is the first transfer in the transaction the channel will be in state EIdle
+	if(iState == EIdle)
+		{
+		// Get the pointer to half-duplex transfer object..
+		iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
+
+		// Get the pointer to full-duplex transfer object..
+		iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
+
+		// Update the channel state to EBusy and initialise the transaction status
+		iState = EBusy;
+		iTransactionStatus = KErrNone;
+
+		// Use the PIL funcitonality to start a timer that will timeout if the transaction
+		// is not completed within a specified time period (the client may have specified a period
+		// to use in the transaction header - some something similar tot he following could be used)
+		//		StartSlaveTimeOutTimer(iCurrHeader->iTimeoutPeriod);
+		//
+		// If the timer expires, callback function HandleSlaveTimeout (implemented by the PSL, above)
+		// will be called. This will ensure that the hardware ceases transfer activity, and calls ExitComplete
+		// with KErrTImedOut, which will return the channel state to EIdle.
+		}
+	else
+	// If not in state EIdle, process the next transfer in the linked-list held by the transaction
+		{
+		// Get the pointer the next half-duplex transfer object..
+		iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
+
+		// Get the pointer to the next half-duplex transfer object..
+		if(iFullDTransfer)
+			{
+			iFullDTransfer = GetTferNextTfer(iFullDTransfer);
+			}
+		}
+
+	TInt r = KErrNone;
+	if(!iFullDTransfer && !iHalfDTransfer)
+		{
+		// If all of the transfers were completed, just notify the PIL and return.
+		// (if either Rx or Tx has not finished properly ExitComplete() would have been called
+		// from TransferEndDfc if there was an error during the transfer)
+		__KTRACE_OPT(KIIC, Kern::Printf("All transfers completed successfully"));
+
+		ExitComplete(KErrNone);
+		}
+	else
+		{
+		// Transfers remain to be processed
+		//
+		// For full-duplex transfers, the order in which read and write transfers are started may be significant.
+		// Below is an example where the read transfer is explicitly started before the write transfer.
+		TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
+
+		if(iFullDTransfer)
+			{
+			if(hDTrType == TIicBusTransfer::EMasterRead)
+				{
+				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
+				if(r != KErrNone)
+					{
+					return r;
+					}
+				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
+				}
+			else // hDTrType == TIicBusTransfer::EMasterWrite)
+				{
+				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
+				if(r != KErrNone)
+					{
+					return r;
+					}
+				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
+				}
+			}
+		else
+		// This is a HalfDuplex transfer - so just start it
+			{
+			r = StartTransfer(iHalfDTransfer, hDTrType);
+			}
+		}
+	return r;
+	}
+
+// The gateway function for PSL implementation
+//
+// This method is called by the PIL to initiate the transaction. After finishing it's processing,
+// the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
+//
+TInt DIicBusChannelMasterPsl::DoRequest(TIicBusTransaction* aTransaction)
+	{
+	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DoRequest (aTransaction=0x%x)\n", aTransaction));
+
+	// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
+	// header information is NULL, return KErrArgument
+	if(!aTransaction || !GetTransactionHeader(aTransaction))
+		{
+		return KErrArgument;
+		}
+
+	// The PSL operates a simple state machine to ensure that only one transaction is processed
+	// at a time - if the channel is currently busy, reject the request with KErrInUse.
+	if(iState != EIdle)
+		{
+		return KErrInUse;
+		}
+
+	// Make a copy of the pointer to the transaction
+	iCurrTransaction = aTransaction;
+
+	// Configure the hardware to support the transaction
+	TInt r = KErrNone;
+	if(TransConfigDiffersFromPrev())	// Optional: check if hardware needs reconfiguration
+		{
+		r = ConfigureInterface();
+		if(r != KErrNone)
+			{
+			return r;
+			}
+		}
+
+	// start processing transfers of this transaction.
+	r = ProcessNextTransfers();
+	return r;
+	}
+