--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/memmodel/epoc/flexible/mmu/mptalloc.cpp Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,1217 @@
+// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+//
+
+#include <plat_priv.h>
+#include "mm.h"
+#include "mmu.h"
+#include "mpager.h"
+
+#include "mmanager.h"
+#include "mmapping.h"
+#include "mobject.h"
+
+#include "mptalloc.h"
+#include "cache_maintenance.inl"
+
+/**
+@class PageTableAllocator
+@details
+
+NOTES
+
+Page tables are mapped into a sparse array in the virtual address range
+#KPageTableBase..#KPageTableEnd. For each present page table there is a
+corresponding #SPageTableInfo object mapped from #KPageTableInfoBase upwards.
+
+Page tables for demand paged content are kept separate from other page tables,
+this enables the memory for these to be freed when the page tables no longer map
+any memory i.e. when it has all been paged-out. Pages with these 'paged' page
+tables are stored in the demand paging live list, so it participates in the page
+aging process.
+
+The 'unpaged' page tables are allocated from the bottom of the array upwards,
+via TPtPageAllocator::iLowerAllocator; the 'paged' page tables are allocated
+from the top of the array downwards, via TPtPageAllocator::iUpperAllocator.
+These two regions are prevented from overlapping, or from coming close enough
+together so that the #SPageTableInfo struct for paged and unpaged page tables
+lie in the same page. This means that the SPageTableInfo memory for paged page
+tables can be discarded when it's page tables are discarded.
+
+Memory for page tables and page table info objects is managed by
+#ThePageTableMemoryManager. When allocating memory for demand paged use, this
+uses memory from #ThePager which will reclaim paged memory if necessary.
+Providing the live list always has #DPager::iMinYoungPages, this guarantees that
+handling page faults can never fail by running out of memory.
+
+TODO: In really pathological situations page table allocation can fail due to
+being out of virtual address space to map the table, this needs to be prevented
+from happening when handling demand paging faults.
+*/
+
+
+PageTableAllocator PageTables;
+
+
+
+TBool PageTablesLockIsHeld()
+ {
+ return ::PageTables.LockIsHeld();
+ }
+
+
+/**
+Minimum number of page tables to keep in reserve.
+*/
+const TUint KNumReservedPageTables = 0; // none needed - page tables for mapping page tables and infos are permanently allocated
+
+
+/**
+Manager for the memory object used to store all the MMU page tables.
+*/
+class DPageTableMemoryManager : public DMemoryManager
+ {
+public:
+ /**
+ Not implemented - page table memory is never destroyed.
+ */
+ virtual void Destruct(DMemoryObject* aMemory)
+ {}
+
+ virtual TInt StealPage(DMemoryObject* aMemory, SPageInfo* aPageInfo)
+ { return PageTables.StealPage(aPageInfo); }
+
+ /**
+ Does nothing, returns KErrNone.
+ The RAM containing page tables does not need access restrictions applied for demand paging
+ purposes. Page table life-time is implicitly managed through the pages it maps.
+ */
+ virtual TInt RestrictPage(DMemoryObject* aMemory, SPageInfo* aPageInfo, TRestrictPagesType aRestriction)
+ { return KErrNone; }
+
+ /**
+ Does nothing, returns KErrNone.
+ The contents of page tables never need saving as their contents are dynamically generated.
+ */
+ virtual TInt CleanPage(DMemoryObject* aMemory, SPageInfo* aPageInfo, TPhysAddr*& aPageArrayEntry)
+ { return KErrNone; }
+
+ /**
+ Not implemented, returns KErrNotSupported.
+ */
+ virtual TInt Pin(DMemoryObject* aMemory, DMemoryMappingBase* aMapping, TPinArgs& aPinArgs)
+ { return KErrNotSupported; }
+
+ /**
+ Not implemented.
+ */
+ virtual void Unpin(DMemoryObject* aMemory, DMemoryMappingBase* aMapping, TPinArgs& aPinArgs)
+ { }
+
+
+ virtual TInt MovePage( DMemoryObject* aMemory, SPageInfo* aOldPageInfo,
+ TPhysAddr& aNewPage, TUint aBlockZoneId, TBool aBlockRest);
+public:
+ /**
+ Allocate a page of RAM for storing page tables in.
+
+ @param aMemory A memory object associated with this manager.
+ @param aIndex Page index, within the memory, to allocate the page at.
+ @param aDemandPaged True if the memory is to be used for page tables mapping
+ demand paged content.
+
+ @return KErrNone if successful, otherwise one of the system wide error codes.
+ */
+ TInt Alloc(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged);
+
+ /**
+ Allocate a page of RAM being used for storing page tables in.
+
+ @param aMemory A memory object associated with this manager.
+ @param aIndex Page index, within the memory, to free the page from.
+ @param aDemandPaged True if the memory is being used for page tables mapping
+ demand paged content.
+
+ @return KErrNone if successful, otherwise one of the system wide error codes.
+ */
+ TInt Free(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged);
+ };
+
+/**
+The single instance of the #DPageTableMemoryManager class.
+*/
+DPageTableMemoryManager ThePageTableMemoryManager;
+
+
+TInt DPageTableMemoryManager::Alloc(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged)
+ {
+ TRACE2(("DPageTableMemoryManager::Alloc(0x%08x,0x%x,%d)",aMemory, aIndex, aDemandPaged));
+ __NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
+
+ // allocate page array entry...
+ RPageArray::TIter pageList;
+ TPhysAddr* p = aMemory->iPages.AddPageStart(aIndex,pageList);
+ if(!p)
+ return KErrNoMemory;
+
+ // allocate RAM...
+ RamAllocLock::Lock();
+ TPhysAddr pagePhys;
+ TInt r;
+ if(aDemandPaged)
+ {
+ r = ThePager.PageInAllocPages(&pagePhys,1,aMemory->RamAllocFlags());
+ __NK_ASSERT_DEBUG(r!=KErrNoMemory);
+ }
+ else
+ {// Allocate fixed paged as page tables aren't movable.
+ r = TheMmu.AllocRam(&pagePhys, 1, aMemory->RamAllocFlags(), EPageFixed);
+ }
+ RamAllocLock::Unlock();
+
+ TUint usedNew = 0;
+ if(r==KErrNone)
+ {
+ // add RAM to page array...
+ MmuLock::Lock();
+ if(aDemandPaged)
+ ThePager.Event(DPager::EEventPagePageTableAlloc,SPageInfo::FromPhysAddr(pagePhys));
+ SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+ pi->SetManaged(aMemory,aIndex,aMemory->PageInfoFlags());
+ RPageArray::AddPage(p,pagePhys);
+ MmuLock::Unlock();
+ usedNew = 1;
+
+ // map page...
+ r = aMemory->MapPages(pageList);
+ }
+
+ // release page array entry...
+ aMemory->iPages.AddPageEnd(aIndex,usedNew);
+
+ // revert if error...
+ if(r!=KErrNone)
+ Free(aMemory,aIndex,aDemandPaged);
+
+ return r;
+ }
+
+
+TInt DPageTableMemoryManager::Free(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged)
+ {
+ TRACE2(("DPageTableMemoryManager::Free(0x%08x,0x%x,%d)",aMemory, aIndex, aDemandPaged));
+ __NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
+
+ // find page array entry...
+ RPageArray::TIter pageList;
+ TPhysAddr* p = aMemory->iPages.RemovePageStart(aIndex,pageList);
+ if(!p)
+ return KErrNoMemory;
+
+ // unmap page...
+ aMemory->UnmapPages(pageList,true);
+
+ RamAllocLock::Lock();
+
+ // remove page...
+ MmuLock::Lock();
+ TPhysAddr pagePhys = RPageArray::RemovePage(p);
+ MmuLock::Unlock();
+
+ TInt r;
+ if(pagePhys==KPhysAddrInvalid)
+ {
+ // no page removed...
+ r = 0;
+ }
+ else
+ {
+ // free the removed page...
+ if(aDemandPaged)
+ ThePager.PageInFreePages(&pagePhys,1);
+ else
+ TheMmu.FreeRam(&pagePhys, 1, EPageFixed);
+ r = 1;
+ }
+
+ RamAllocLock::Unlock();
+
+ // cleanup...
+ aMemory->iPages.RemovePageEnd(aIndex,r);
+ return r;
+ }
+
+TInt DPageTableMemoryManager::MovePage( DMemoryObject* aMemory, SPageInfo* aOldPageInfo,
+ TPhysAddr& aNewPage, TUint aBlockZoneId, TBool aBlockRest)
+ {
+ // This could be a demand paged page table info which can be discarded
+ // but let the PageTableAllocator handle that.
+ return ::PageTables.MovePage(aMemory, aOldPageInfo, aBlockZoneId, aBlockRest);
+ }
+
+
+//
+// PageTableAllocator
+//
+
+void PageTableAllocator::Init2(DMutex* aLock)
+ {
+ TRACEB(("PageTableAllocator::Init2(0x%x)",aLock));
+ iLock = aLock;
+
+ __NK_ASSERT_DEBUG(iUnpagedAllocator.CheckFreeList());
+
+ // scan for already allocated page tables
+ // (assumes the first page table is used to map page tables)...
+ SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase;
+ TUint pages = 0;
+ for(;;)
+ {
+ TPte pte = ((TPte*)KPageTableBase)[pages];
+ if(pte==KPteUnallocatedEntry)
+ break; // end (assumes no gaps in page table allocation)
+
+ // process free page tables in this page...
+ TUint freeCount = 0;
+ do
+ {
+ if(pti->IsUnused())
+ {
+ pti->PtClusterAlloc();
+ iUnpagedAllocator.iFreeList.Add(&pti->FreeLink());
+ ++freeCount;
+ }
+#ifdef _DEBUG
+ else
+ __NK_ASSERT_DEBUG(pti->IsPtClusterAllocated());
+#endif
+ }
+ while(!(++pti)->IsFirstInPage());
+ iUnpagedAllocator.iFreeCount += freeCount;
+ __NK_ASSERT_DEBUG(iUnpagedAllocator.CheckFreeList());
+ TRACE2(("PT page 0x%08x has %d free tables",pti[-KPtClusterSize].PageTable(),freeCount));
+
+ // count page, and move on to next one...
+ ++pages;
+ __NK_ASSERT_DEBUG(pages<KChunkSize/KPageSize); // we've assumed less than one page table of page tables
+ }
+
+ // construct allocator for page table pages...
+ iPtPageAllocator.Init2(pages);
+
+ // initialise allocator page table infos...
+ iPageTableGroupCounts[0] = pages;
+ __NK_ASSERT_DEBUG(pages/KPageTableGroupSize==0); // we've assumed less than 1 page of page table infos
+
+ // FOLLOWING CODE WILL USE THIS OBJECT TO ALLOCATE SOME PAGE TABLES,
+ // SO ALLOCATOR MUST BE INITIALISED TO A FIT STATE BEFORE THIS POINT!
+
+ // construct memory object for page tables...
+ TMappingCreateFlags mapFlags = (TMappingCreateFlags)(EMappingCreateFixedVirtual|EMappingCreateReserveAllResources);
+#if defined(__CPU_PAGE_TABLES_FULLY_CACHED)
+ TMemoryAttributes memAttr = EMemoryAttributeStandard;
+#else
+ TMemoryAttributes memAttr = (TMemoryAttributes)(EMemoryAttributeNormalUncached|EMemoryAttributeDefaultShareable);
+#endif
+ TMemoryCreateFlags createFlags = (TMemoryCreateFlags)(EMemoryCreateNoWipe|EMemoryCreateCustomManager);
+ TInt r = MM::InitFixedKernelMemory(iPageTableMemory, KPageTableBase, KPageTableEnd, pages<<KPageShift, (TMemoryObjectType)(T_UintPtr)&ThePageTableMemoryManager, createFlags, memAttr, mapFlags);
+ __NK_ASSERT_ALWAYS(r==KErrNone);
+ MM::MemorySetLock(iPageTableMemory,aLock);
+
+ // construct memory object for page table infos...
+ memAttr = EMemoryAttributeStandard;
+ TUint size = pages*KPtClusterSize*sizeof(SPageTableInfo);
+ size = (size+KPageMask)&~KPageMask;
+ r = MM::InitFixedKernelMemory(iPageTableInfoMemory, KPageTableInfoBase, KPageTableInfoEnd, size, (TMemoryObjectType)(T_UintPtr)&ThePageTableMemoryManager, createFlags, memAttr, mapFlags);
+ __NK_ASSERT_ALWAYS(r==KErrNone);
+ MM::MemorySetLock(iPageTableInfoMemory,aLock);
+
+ // make sure we have enough reserve page tables...
+ Lock();
+ iUnpagedAllocator.Init2(this,KNumReservedPageTables,false);
+ iPagedAllocator.Init2(this,0,true);
+ Unlock();
+
+ TRACEB(("PageTableAllocator::Init2 done"));
+ }
+
+
+void PageTableAllocator::Init2B()
+ {
+ TRACEB(("PageTableAllocator::Init2B()"));
+ TInt r = iPageTableMemory->iPages.PreallocateMemory();
+ __NK_ASSERT_ALWAYS(r==KErrNone);
+ r = iPageTableInfoMemory->iPages.PreallocateMemory();
+ __NK_ASSERT_ALWAYS(r==KErrNone);
+ TRACEB(("PageTableAllocator::Init2B done"));
+ }
+
+
+void PageTableAllocator::TSubAllocator::Init2(PageTableAllocator* aAllocator, TUint aReserveCount, TBool aDemandPaged)
+ {
+ iReserveCount = aReserveCount;
+ iDemandPaged = aDemandPaged;
+ while(iFreeCount<aReserveCount)
+ if(!aAllocator->AllocReserve(*this))
+ {
+ __NK_ASSERT_ALWAYS(0);
+ }
+ }
+
+
+void PageTableAllocator::TPtPageAllocator::Init2(TUint aNumInitPages)
+ {
+ iLowerAllocator = TBitMapAllocator::New(KMaxPageTablePages,ETrue);
+ __NK_ASSERT_ALWAYS(iLowerAllocator);
+ iLowerAllocator->Alloc(0,aNumInitPages);
+ iLowerWaterMark = aNumInitPages-1;
+
+ iUpperAllocator = TBitMapAllocator::New(KMaxPageTablePages,ETrue);
+ __NK_ASSERT_ALWAYS(iUpperAllocator);
+ iUpperWaterMark = KMaxPageTablePages;
+ }
+
+
+TInt PageTableAllocator::TPtPageAllocator::Alloc(TBool aDemandPaged)
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ TUint pageIndex;
+ if(aDemandPaged)
+ {
+ TInt bit = iUpperAllocator->Alloc();
+ if(bit<0)
+ return bit;
+ pageIndex = KMaxPageTablePages-1-bit;
+ if(pageIndex<iUpperWaterMark)
+ {
+ // new upper watermark...
+ if((pageIndex&~(KPageTableGroupSize-1))<=iLowerWaterMark)
+ {
+ // clashes with other bitmap allocator, so fail..
+ iUpperAllocator->Free(bit);
+ return -1;
+ }
+ iUpperWaterMark = pageIndex;
+ TRACE(("TPtPageAllocator::Alloc new iUpperWaterMark=%d",pageIndex));
+ }
+ }
+ else
+ {
+ TInt bit = iLowerAllocator->Alloc();
+ if(bit<0)
+ return bit;
+ pageIndex = bit;
+ if(pageIndex>iLowerWaterMark)
+ {
+ // new upper watermark...
+ if(pageIndex>=(iUpperWaterMark&~(KPageTableGroupSize-1)))
+ {
+ // clashes with other bitmap allocator, so fail..
+ iLowerAllocator->Free(bit);
+ return -1;
+ }
+ iLowerWaterMark = pageIndex;
+ TRACE(("TPtPageAllocator::Alloc new iLowerWaterMark=%d",pageIndex));
+ }
+ }
+ return pageIndex;
+ }
+
+
+void PageTableAllocator::TPtPageAllocator::Free(TUint aPageIndex, TBool aDemandPaged)
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ if(aDemandPaged)
+ iUpperAllocator->Free(KMaxPageTablePages-1-aPageIndex);
+ else
+ iLowerAllocator->Free(aPageIndex);
+ }
+
+
+void PageTableAllocator::Lock()
+ {
+ Kern::MutexWait(*iLock);
+ }
+
+
+void PageTableAllocator::Unlock()
+ {
+ Kern::MutexSignal(*iLock);
+ }
+
+
+TBool PageTableAllocator::LockIsHeld()
+ {
+ return iLock->iCleanup.iThread == &Kern::CurrentThread();
+ }
+
+
+TBool PageTableAllocator::AllocReserve(TSubAllocator& aSubAllocator)
+ {
+ __NK_ASSERT_DEBUG(LockIsHeld());
+
+ // allocate page...
+ TInt ptPageIndex = iPtPageAllocator.Alloc(aSubAllocator.iDemandPaged);
+ if(ptPageIndex<0)
+ return false;
+
+ // commit memory for page...
+ __NK_ASSERT_DEBUG(iPageTableMemory); // check we've initialised iPageTableMemory
+ TInt r = ThePageTableMemoryManager.Alloc(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+ if(r==KErrNoMemory)
+ {
+ iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+ return false;
+ }
+ __NK_ASSERT_DEBUG(r==KErrNone);
+
+ // allocate page table info...
+ TUint ptgIndex = ptPageIndex/KPageTableGroupSize;
+ if(!iPageTableGroupCounts[ptgIndex])
+ {
+ __NK_ASSERT_DEBUG(iPageTableInfoMemory); // check we've initialised iPageTableInfoMemory
+ r = ThePageTableMemoryManager.Alloc(iPageTableInfoMemory,ptgIndex,aSubAllocator.iDemandPaged);
+
+ if(r==KErrNoMemory)
+ {
+ r = ThePageTableMemoryManager.Free(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+ __NK_ASSERT_DEBUG(r==1);
+ iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+ return false;
+ }
+ __NK_ASSERT_DEBUG(r==KErrNone);
+ // For paged page tables set all the page table infos in this page as unused
+ // and their page table clusters as not allocated.
+ if (aSubAllocator.iDemandPaged)
+ {
+ SPageTableInfo* ptiBase = (SPageTableInfo*)KPageTableInfoBase + (ptgIndex*KPageTableInfosPerPage);
+ memclr(ptiBase, KPageSize);
+ }
+ }
+ ++iPageTableGroupCounts[ptgIndex];
+
+ SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+ aSubAllocator.AllocPage(pti);
+ return true;
+ }
+
+
+void PageTableAllocator::TSubAllocator::AllocPage(SPageTableInfo* aPageTableInfo)
+ {
+ SPageTableInfo* pti = aPageTableInfo;
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+
+ TRACE2(("Alloc PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+ // initialise page table infos...
+ do pti->New(iDemandPaged);
+ while(!(++pti)->IsFirstInPage());
+ pti -= KPtClusterSize;
+
+ // all page tables initially unused, so start them off on iCleanupList...
+ pti->AddToCleanupList(iCleanupList);
+ iFreeCount += KPtClusterSize;
+ __NK_ASSERT_DEBUG(CheckFreeList());
+ }
+
+
+SPageTableInfo* PageTableAllocator::TSubAllocator::FreePage()
+ {
+ if(!IsCleanupRequired())
+ return 0;
+
+ // get a completely free page...
+ SDblQueLink* link = iCleanupList.Last();
+ __NK_ASSERT_DEBUG(link);
+ SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+ pti->RemoveFromCleanupList();
+ iFreeCount -= KPtClusterSize;
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ TRACE2(("Free PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+ // Mark each page table info as no longer having its page table cluster allocated.
+ do
+ {// make sure all page tables in page are unused...
+ __NK_ASSERT_DEBUG(pti->IsUnused());
+ pti->PtClusterFreed();
+ }
+ while(!(++pti)->IsFirstInPage());
+ pti -= KPtClusterSize;
+
+ return pti;
+ }
+
+
+TBool PageTableAllocator::FreeReserve(TSubAllocator& aSubAllocator)
+ {
+ __NK_ASSERT_DEBUG(LockIsHeld());
+
+ // get a page which needs freeing...
+ SPageTableInfo* pti = aSubAllocator.FreePage();
+ if(!pti)
+ return false;
+
+ // free the page...
+ TUint ptPageIndex = ((TLinAddr)pti-KPageTableInfoBase)>>(KPageTableInfoShift+KPtClusterShift);
+ iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+ TInt r = ThePageTableMemoryManager.Free(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+ (void)r;
+ __NK_ASSERT_DEBUG(r==1);
+
+ // free page table info...
+ TUint ptgIndex = ptPageIndex/KPageTableGroupSize;
+ TUint groupCount = iPageTableGroupCounts[ptgIndex]; // compiler handles half-word values stupidly, so give it a hand
+ --groupCount;
+ iPageTableGroupCounts[ptgIndex] = groupCount;
+ if(!groupCount)
+ r = ThePageTableMemoryManager.Free(iPageTableInfoMemory,ptgIndex,aSubAllocator.iDemandPaged);
+
+ return true;
+ }
+
+
+TPte* PageTableAllocator::Alloc(TBool aDemandPaged)
+ {
+ TRACE(("PageTableAllocator::Alloc(%d)",(bool)aDemandPaged));
+ TPte* pt = DoAlloc(aDemandPaged);
+ TRACE(("PageTableAllocator::Alloc() returns 0x%08x phys=0x%08x",pt,pt?Mmu::PageTablePhysAddr(pt):KPhysAddrInvalid));
+ return pt;
+ }
+
+
+TPte* PageTableAllocator::DoAlloc(TBool aDemandPaged)
+ {
+ __NK_ASSERT_DEBUG(LockIsHeld());
+
+#ifdef _DEBUG
+ // simulated OOM, but not if demand paged as this can't fail under normal circumstances...
+ if(!aDemandPaged)
+ {
+ RamAllocLock::Lock();
+ TBool fail = K::CheckForSimulatedAllocFail();
+ RamAllocLock::Unlock();
+ if(fail)
+ return 0;
+ }
+#endif
+
+ TSubAllocator& allocator = aDemandPaged ? iPagedAllocator : iUnpagedAllocator;
+
+ __NK_ASSERT_DEBUG(!iAllocating || !aDemandPaged); // can't recursively allocate demand paged tables
+
+ __NK_ASSERT_DEBUG(iAllocating<=allocator.iReserveCount); // can't recursively allocate more than the reserve
+
+ // keep up enough spare page tables...
+ if(!iAllocating++) // if we haven't gone recursive...
+ {
+ // make sure we have a page table to allocate...
+ while(allocator.iFreeCount<=allocator.iReserveCount)
+ if(!AllocReserve(allocator))
+ {
+ --iAllocating;
+ return 0; // out of memory
+ }
+ }
+ else
+ {
+ TRACE(("PageTableAllocator::DoAlloc recurse=%d",iAllocating));
+ }
+
+ // allocate a page table...
+ SPageTableInfo* pti = allocator.Alloc();
+
+ // initialise page table info...
+ pti->Init();
+
+ // initialise page table...
+ TPte* pt = pti->PageTable();
+ memclr(pt,KPageTableSize);
+ CacheMaintenance::MultiplePtesUpdated((TLinAddr)pt,KPageTableSize);
+
+ // done...
+ --iAllocating;
+ return pt;
+ }
+
+
+SPageTableInfo* PageTableAllocator::TSubAllocator::Alloc()
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ __NK_ASSERT_DEBUG(iFreeCount);
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ // get next free page table...
+ SDblQueLink* link = iFreeList.GetFirst();
+ SPageTableInfo* pti;
+ if(link)
+ pti = SPageTableInfo::FromFreeLink(link);
+ else
+ {
+ // need to get one back from the cleanup list...
+ link = iCleanupList.First();
+ __NK_ASSERT_DEBUG(link); // we can't be out of page tables
+ pti = SPageTableInfo::FromFreeLink(link);
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+ pti->RemoveFromCleanupList();
+
+ // add other page tables in the page to the free list...
+ SPageTableInfo* free = pti+1;
+ while(!free->IsFirstInPage())
+ {
+ __NK_ASSERT_DEBUG(free->IsUnused());
+ iFreeList.Add(&free->FreeLink());
+ ++free;
+ }
+ }
+
+ // count page as allocated...
+ --iFreeCount;
+ __NK_ASSERT_DEBUG(pti->IsUnused());
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ return pti;
+ }
+
+
+void PageTableAllocator::Free(TPte* aPageTable)
+ {
+ TRACE(("PageTableAllocator::Free(0x%08x)",aPageTable));
+ DoFree(aPageTable);
+ }
+
+
+void PageTableAllocator::DoFree(TPte* aPageTable)
+ {
+ __NK_ASSERT_DEBUG(LockIsHeld());
+
+ // make sure page table isn't being aliased...
+ TPhysAddr pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+ __NK_ASSERT_DEBUG(pagePhys!=KPhysAddrInvalid);
+ TheMmu.RemoveAliasesForPageTable(pagePhys);
+
+ // free page table...
+ SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+ TSubAllocator& allocator = pti->IsDemandPaged() ? iPagedAllocator : iUnpagedAllocator;
+ allocator.Free(pti);
+
+ // check for surplus pages...
+ if(allocator.IsCleanupRequired())
+ {
+ iCleanup.Add(CleanupTrampoline,this);
+ }
+ }
+
+
+void PageTableAllocator::TSubAllocator::Free(SPageTableInfo* aPageTableInfo)
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ SPageTableInfo* pti = aPageTableInfo;
+
+ // clear the page table info...
+ MmuLock::Lock();
+ __NK_ASSERT_DEBUG(!pti->PermanenceCount());
+ pti->SetUnused();
+ MmuLock::Unlock();
+
+ // scan other page tables in same page...
+ SPageTableInfo* first = pti->FirstInPage();
+ SPageTableInfo* last = pti->LastInPage();
+ SPageTableInfo* prev;
+ SPageTableInfo* next;
+
+ // try insert page table after previous free page table in same page...
+ prev = pti;
+ while(prev>first)
+ {
+ --prev;
+ if(prev->IsUnused())
+ {
+ pti->FreeLink().InsertAfter(&prev->FreeLink());
+ goto inserted;
+ }
+ }
+
+ // try insert page table before next free page table in same page...
+ next = pti;
+ while(next<last)
+ {
+ ++next;
+ if(next->IsUnused())
+ {
+ pti->FreeLink().InsertBefore(&next->FreeLink());
+ goto inserted;
+ }
+ }
+
+ // only free page table in page, so link into start of free list...
+ pti->FreeLink().InsertAfter(&iFreeList.iA);
+
+inserted:
+ ++iFreeCount;
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ // see if all page tables in page are empty...
+ pti = first;
+ do
+ {
+ if(!pti->IsUnused())
+ return; // some page tables still in use, so end
+ }
+ while(!(++pti)->IsFirstInPage());
+ pti -= KPtClusterSize;
+
+ // check if page with page table in is pinned...
+ MmuLock::Lock();
+ TPte* pt = pti->PageTable();
+ TPhysAddr pagePhys = Mmu::PageTablePhysAddr(pt);
+ SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+ TBool pinned = pi->PagedState()==SPageInfo::EPagedPinned;
+ MmuLock::Unlock();
+ // Note, the pinned state can't change even though we've now released the MmuLock.
+ // This is because all page tables in the page are unused and we don't pin unused
+ // page tables. Also, the page table(s) can't become used again whilst this function
+ // executes as we hold the page table allocator lock.
+ if(pinned)
+ {
+ // return now and leave page table(s) in free list if their page is pinned...
+ // Note, when page is unpinned it will end up in the paging live list and
+ // eventually be reclaimed for other use (if the page tables in the page
+ // don't get reallocated before then).
+ __NK_ASSERT_DEBUG(pti->IsDemandPaged()); // only paged page tables should have been pinned
+ return;
+ }
+
+ // the page with our page table in it is no longer in use...
+ MoveToCleanup(pti);
+ }
+
+
+void PageTableAllocator::TSubAllocator::MoveToCleanup(SPageTableInfo* aPageTableInfo)
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ __NK_ASSERT_DEBUG(CheckFreeList());
+
+ SPageTableInfo* pti = aPageTableInfo;
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+
+ TRACE2(("Cleanup PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+ // make sure all page tables in page are unused...
+#ifdef _DEBUG
+ do __NK_ASSERT_DEBUG(pti->IsUnused());
+ while(!(++pti)->IsFirstInPage());
+ pti -= KPtClusterSize;
+#endif
+
+ // unlink all page tables in page...
+ SDblQueLink* prev = pti->FreeLink().iPrev;
+ SDblQueLink* next = pti->LastInPage()->FreeLink().iNext;
+ prev->iNext = next;
+ next->iPrev = prev;
+
+ // add page tables to cleanup list...
+ __NK_ASSERT_DEBUG(!pti->IsOnCleanupList());
+ pti->AddToCleanupList(iCleanupList);
+ __NK_ASSERT_DEBUG(CheckFreeList());
+ }
+
+
+
+TBool PageTableAllocator::TSubAllocator::IsCleanupRequired()
+ {
+ return iFreeCount>=iReserveCount+KPtClusterSize && !iCleanupList.IsEmpty();
+ }
+
+
+#ifdef _DEBUG
+
+TBool PageTableAllocator::TSubAllocator::CheckFreeList()
+ {
+ TUint count = iFreeCount;
+
+ // count page tables in iCleanupList...
+ SDblQueLink* head = &iCleanupList.iA;
+ SDblQueLink* link = head;
+ for(;;)
+ {
+ link = link->iNext;
+ if(link==head)
+ break;
+ SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+ __NK_ASSERT_DEBUG(pti->IsOnCleanupList());
+ if(count<(TUint)KPtClusterSize)
+ return false;
+ count -= KPtClusterSize;
+ }
+
+ // count page tables in iFreeList...
+ head = &iFreeList.iA;
+ link = head;
+ while(count)
+ {
+ link = link->iNext;
+ if(link==head)
+ return false;
+
+ // check next free page table in page is linked in correct order...
+ SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+ SPageTableInfo* last = pti->LastInPage();
+ SPageTableInfo* next = pti;
+ while(next<last)
+ {
+ ++next;
+ if(next->IsUnused())
+ {
+ __NK_ASSERT_DEBUG(pti->FreeLink().iNext==&next->FreeLink());
+ __NK_ASSERT_DEBUG(next->FreeLink().iPrev==&pti->FreeLink());
+ break;
+ }
+ }
+
+ --count;
+ }
+
+ return link->iNext==head;
+ }
+
+#endif
+
+
+
+//
+// Paged page table handling
+//
+
+TInt SPageTableInfo::ForcedFree()
+ {
+ __NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+ __NK_ASSERT_DEBUG(MmuLock::IsHeld());
+ __NK_ASSERT_DEBUG(IsDemandPaged());
+
+ TUint type = iType;
+
+ if(type==EUnused)
+ return KErrNone;
+
+ __NK_ASSERT_DEBUG(iPermanenceCount==0);
+
+ // clear all PTEs in page table...
+ TPte* pt = PageTable();
+ memclr(pt,KPageTableSize);
+ __e32_memory_barrier(); // make sure all CPUs read zeros from pt so forcing a page-in (rather than a rejuvenate) if accessed
+ iPageCount = 0;
+
+ if(type==ECoarseMapping)
+ {
+ TRACE2(("SPageTableInfo::ForcedFree() coarse 0x%08x 0x%x %d",iCoarse.iMemoryObject,iCoarse.iChunkIndex,iCoarse.iPteType));
+ // mustn't release MmuLock between clearing page table and calling this
+ // (otherwise page table may get updated before its actually removed from
+ // the memory object)...
+ iCoarse.iMemoryObject->StealPageTable(iCoarse.iChunkIndex,iCoarse.iPteType);
+ }
+ else if(type==EFineMapping)
+ {
+ // need to remove page table from address spaces's page directory...
+ TLinAddr addr = iFine.iLinAddrAndOsAsid;
+ TUint osAsid = addr&KPageMask;
+ TPde* pPde = Mmu::PageDirectoryEntry(osAsid,addr);
+
+ TRACE2(("SPageTableInfo::ForcedFree() fine %d 0x%08x",osAsid,addr&~KPageMask));
+
+ TPde pde = KPdeUnallocatedEntry;
+ TRACE2(("!PDE %x=%x",pPde,pde));
+ *pPde = pde;
+ SinglePdeUpdated(pPde);
+ }
+ else
+ {
+ // invalid type...
+ __NK_ASSERT_DEBUG(0);
+ return KErrNotSupported;
+ }
+
+ MmuLock::Unlock();
+
+ // make sure page table updates visible to MMU...
+ CacheMaintenance::MultiplePtesUpdated((TLinAddr)pt,KPageTableSize);
+ InvalidateTLB();
+
+ // free the page table back to the allocator,
+ // this will also remove any IPC alias using it...
+ __NK_ASSERT_DEBUG(iPageCount==0); // should still be unused
+ ::PageTables.Free(pt);
+
+ MmuLock::Lock();
+
+ return KErrNone;
+ }
+
+
+TInt PageTableAllocator::StealPage(SPageInfo* aPageInfo)
+ {
+ TRACE2(("PageTableAllocator::StealPage(0x%08x)",aPageInfo));
+ __NK_ASSERT_DEBUG(LockIsHeld()); // only works if PageTableAllocator lock is the RamAllocLock
+ __NK_ASSERT_DEBUG(MmuLock::IsHeld());
+
+ if (aPageInfo->Owner() == iPageTableInfoMemory)
+ return StealPageTableInfo(aPageInfo);
+
+ __UNLOCK_GUARD_START(MmuLock);
+
+ // This must be a page table page so steal it.
+ __NK_ASSERT_ALWAYS(aPageInfo->Owner()==iPageTableMemory);
+ TUint ptPageIndex = aPageInfo->Index();
+ SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+
+ aPageInfo->SetModifier(&pti);
+ __UNLOCK_GUARD_END(MmuLock);
+
+ // forcibly free each page table in the page...
+ TInt r;
+ do
+ {// Check for pinning, ForcedFree() releases MmuLock so must check for
+ // each page table.
+ if (aPageInfo->PagedState() == SPageInfo::EPagedPinned)
+ {// The page table page is pinned so can't steal it.
+ r = KErrInUse;
+ break;
+ }
+ r = pti->ForcedFree();
+ if(r!=KErrNone)
+ break;
+ if(aPageInfo->CheckModified(&pti))
+ {
+ r = KErrInUse;
+ break;
+ }
+ }
+ while(!(++pti)->IsFirstInPage());
+ pti -= KPtClusterSize; // restore pti back to first page table
+
+ if(r==KErrNone)
+ {
+ MmuLock::Unlock();
+ if(!pti->IsOnCleanupList())
+ {
+ // the page might not already be on the cleanup list in the case where
+ // it was previously freed whilst it was pinned.
+ // In this case, a later unpinning would have put it back into the paging live
+ // list from where it is now subsequently being stolen...
+ iPagedAllocator.MoveToCleanup(pti);
+ }
+ // free the page from allocator so it ends up back in the paging pool as a free page...
+ while(FreeReserve(iPagedAllocator))
+ {}
+ // return an 'error' to indicate page has not been stolen.
+ // We have however achieved the main aim of making the page 'free' and
+ // it will be available if page stealing attempts to steal the page again...
+ r = KErrCompletion;
+ MmuLock::Lock();
+ }
+
+ __NK_ASSERT_DEBUG(MmuLock::IsHeld());
+ TRACE2(("PageTableAllocator::StealPage returns %d",r));
+ return r;
+ }
+
+
+TInt PageTableAllocator::StealPageTableInfo(SPageInfo* aPageInfo)
+ {
+ // Need to steal every page table for every page table info in this page.
+ // This page can't be modified or removed as we hold the lock, however
+ // the page table pages being freed may be rejuvenated and therefore their
+ // SPageInfos may be marked as modified.
+ TInt r = KErrNone;
+ TUint ptiOffset = aPageInfo->Index() * KPageTableInfosPerPage;
+ SPageTableInfo* ptiBase = (SPageTableInfo*)KPageTableInfoBase + ptiOffset;
+ SPageTableInfo* ptiEnd = ptiBase + KPageTableInfosPerPage;
+ TUint flash = 0;
+ for (SPageTableInfo* pti = ptiBase; pti < ptiEnd;)
+ {// Free each page table cluster that is allocated.
+ if (pti->IsPtClusterAllocated())
+ {
+ TPhysAddr ptPhysAddr = Mmu::LinearToPhysical((TLinAddr)pti->PageTable());
+ SPageInfo* ptSPageInfo = SPageInfo::FromPhysAddr(ptPhysAddr);
+ ptSPageInfo->SetModifier(&flash);
+ do
+ {
+ __NK_ASSERT_DEBUG(pti->IsPtClusterAllocated());
+ if (aPageInfo->PagedState() == SPageInfo::EPagedPinned ||
+ ptSPageInfo->PagedState() == SPageInfo::EPagedPinned)
+ {// The page table or page table info is pinned so can't steal info page.
+ r = KErrInUse;
+ break;
+ }
+ r = pti->ForcedFree();
+ if(r!=KErrNone)
+ break;
+ if(ptSPageInfo->CheckModified(&flash))
+ {// The page table page has been rejunvenated so can't steal it.
+ r = KErrInUse;
+ break;
+ }
+ }
+ while (!(++pti)->IsFirstInPage());
+ if (r != KErrNone)
+ break;
+ SPageTableInfo* ptiTmp = pti - KPtClusterSize;
+ MmuLock::Unlock();
+ if(!ptiTmp->IsOnCleanupList())
+ {
+ // the page might not already be on the cleanup list in the case where
+ // it was previously freed whilst it was pinned.
+ // In this case, a later unpinning would have put it back into the paging live
+ // list from where it is now subsequently being stolen...
+ iPagedAllocator.MoveToCleanup(ptiTmp);
+ }
+ MmuLock::Lock();
+ flash = 0; // The MmuLock has been flashed at least once.
+ }
+ else
+ {// Move onto the next cluster this page of page table infos refers to.
+ __NK_ASSERT_DEBUG(pti->IsFirstInPage());
+ pti += KPtClusterSize;
+ MmuLock::Flash(flash,KMaxPageInfoUpdatesInOneGo);
+ }
+ }
+ // free the pages discarded from allocator so they end up back in the paging pool as free pages...
+ MmuLock::Unlock();
+ while(FreeReserve(iPagedAllocator))
+ {}
+ if (r == KErrNone)
+ r = KErrCompletion; // The pager needs to remove the page from the live list.
+ MmuLock::Lock();
+ return r;
+ }
+
+
+TInt PageTableAllocator::MovePage(DMemoryObject* aMemory, SPageInfo* aOldPageInfo,
+ TUint aBlockZoneId, TBool aBlockRest)
+ {
+ // We don't move page table or page table info pages, however, if this page
+ // is demand paged then we may be able to discard it.
+ MmuLock::Lock();
+ if (!(iPtPageAllocator.IsDemandPaged(aOldPageInfo)))
+ {
+ MmuLock::Unlock();
+ return KErrNotSupported;
+ }
+ if (aOldPageInfo->PagedState() == SPageInfo::EPagedPinned)
+ {// The page is pinned so don't attempt to discard it as pinned pages
+ // can't be discarded. Also, the pager will invoke this method again.
+ MmuLock::Unlock();
+ return KErrInUse;
+ }
+ // Let the pager discard the page as it controls the size of the live list.
+ // If the size of the live list allows then eventually
+ // PageTableAllocator::StealPage() will be invoked on this page.
+ return ThePager.DiscardPage(aOldPageInfo, aBlockZoneId, aBlockRest);
+ }
+
+
+void PageTableAllocator::PinPageTable(TPte* aPageTable, TPinArgs& aPinArgs)
+ {
+ __NK_ASSERT_DEBUG(MmuLock::IsHeld());
+ __NK_ASSERT_DEBUG(SPageTableInfo::FromPtPtr(aPageTable)->IsDemandPaged());
+ __NK_ASSERT_DEBUG(!SPageTableInfo::FromPtPtr(aPageTable)->IsUnused());
+ __NK_ASSERT_DEBUG(aPinArgs.HaveSufficientPages(KNumPagesToPinOnePageTable));
+
+ // pin page with page table in...
+ TPhysAddr pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+ SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+ ThePager.Pin(pi,aPinArgs);
+
+ // pin page with page table info in...
+ SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+ pagePhys = Mmu::UncheckedLinearToPhysical((TLinAddr)pti,KKernelOsAsid);
+ pi = SPageInfo::FromPhysAddr(pagePhys);
+ ThePager.Pin(pi,aPinArgs);
+ }
+
+
+void PageTableAllocator::UnpinPageTable(TPte* aPageTable, TPinArgs& aPinArgs)
+ {
+ // unpin page with page table info in...
+ SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+ TPhysAddr pagePhys = Mmu::UncheckedLinearToPhysical((TLinAddr)pti,KKernelOsAsid);
+ SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+ ThePager.Unpin(pi,aPinArgs);
+
+ // unpin page with page table in...
+ pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+ pi = SPageInfo::FromPhysAddr(pagePhys);
+ ThePager.Unpin(pi,aPinArgs);
+ }
+
+
+#ifdef _DEBUG
+TBool IsPageTableUnpagedRemoveAllowed(SPageInfo* aPageInfo)
+ { return ::PageTables.IsPageTableUnpagedRemoveAllowed(aPageInfo); }
+
+TBool PageTableAllocator::IsPageTableUnpagedRemoveAllowed(SPageInfo* aPageInfo)
+ {
+ if (aPageInfo->Owner() == iPageTableInfoMemory)
+ {// Page table info pages are never added to the live list but can be
+ // stolen via DPager::StealPage()
+ return ETrue;
+ }
+
+ if (aPageInfo->Owner() == iPageTableMemory)
+ {// Page table pages are added to the live list but only after the page they
+ // map has been paged in. Therefore, a pde can reference a pte before it has been
+ // added to the live list so allow this but for uninitialised page table pages only.
+ TUint ptPageIndex = aPageInfo->Index();
+ SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+ do
+ {
+ if (!pti->IsUnused())
+ {
+ TPte* pte = pti->PageTable();
+ TPte* pteEnd = pte + (KPageTableSize/sizeof(TPte));
+ while (pte < pteEnd)
+ if (*pte++ != KPteUnallocatedEntry)
+ return EFalse;
+ }
+ }
+ while(!(++pti)->IsFirstInPage());
+ return ETrue;
+ }
+ return EFalse;
+ }
+#endif
+
+
+//
+// Cleanup
+//
+
+void PageTableAllocator::CleanupTrampoline(TAny* aSelf)
+ {
+ ((PageTableAllocator*)aSelf)->Cleanup();
+ }
+
+
+void PageTableAllocator::Cleanup()
+ {
+ // free any surplus pages...
+ Lock();
+ while(FreeReserve(iPagedAllocator) || FreeReserve(iUnpagedAllocator))
+ {}
+ Unlock();
+ }