// Copyright (c) 2003-2010 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\t_sharedio.cpp
// Overview:
// Verifies the correct implementation of Shared IO Buffers
// API information:
// DSharedIoBuffer
// Details:
// 1. Loading the shared IO buffer test device driver
// 2. Create buffer of a specified size
// - it passes a request to the device driver to create a buffer
// - the driver creates a shared io buffer and it zero fills it
// - it checks the size is as specified
// 3. Map in buffer
// - it passes a request to the device driver to map the buffer created at
// step 1 into this user process
// - the driver maps the buffer into this user process
// - checks if UserToKernel and KernelToUser methods work as expected
// - fills a buffer
// - returns the user address and size to the user process
// - using the address and size returned by the driver, the user process
// checks the buffer is filled as expected
// 4. Fill and check shared buffer
// - user process fills the buffer and driver checks it
// - driver fills the buffer and user process checks it
// 5. Map Out Buffer
// - requests to the driver that the buffer should be unmapped from this
// process' address space
// - the driver checks that iUserAddress becomes NULL after unmapping
// 6. Destroy Buffer
// - requests to the driver to destroy the buffer
// 7. Create a buffer with a physical address
// (not performed on WINS)
// - requests to the driver to create a buffer by specifying a physical address
// - the driver allocates a physical address
// - creates a shared IO buffer over that physical address
// - fills the buffer with a pattern
// - destroys the buffer
// - creates a hardware chunk over the same physical address
// - checks the buffer contains the pattern
// - closes the chunk
// 8. Check using the same buffer by 2 different user processes
// (not performed on WINS)
// - process 1 maps a global buffer (the global buffer will be
// created in the context of process 1)
// - fills it
// - unmaps it
// - process 2 maps the global buffer
// - checks if it's filled accordingly
// - unmaps it
// - destroys the global buffer
// 9. Checking buffers are protected at context switching
// (not relevant on WINS)
// - creates a shared buffer and map it into this process
// - creates a new process
// - the new process tries to access the buffer mapped into the first process
// by zeroing the raw buffer passed from the first process. This relies on the
// fact that each shared buffer is created in the Home Section, so they will be
// available at the same address
// - tests if the new process was panicked due to access violation
// - tests if the contents of the buffer haven't been changed
// 10.Checking writing to unmapped buffer
// (not performed on WINS)
// - creates a new process
// - the new process creates a buffer, maps it and unmaps it
// - the new process tries to use the buffer after unmapping
// - the parent process logs the exit type and reason and checks
// these are EExitPanic and 3 (Kern 3 - access violation)
// 11.Checking address lookup is implemented
// (not relevant on WINS)
// - creates a new process
// - the new process will ask the device driver to read and write a descriptor
// in the old process, the kernel will perform an address lookup before
// reading or writing the descriptor, to make sure the address location does
// belong to the old process. The descriptor is a TPtr pointing to a buffer
// located in a shared io buffer.
// - device driver will return an error in case address lookup fails or ThreadRead
// or ThreadWrite fail
// - the new process returns the error code returned by the device driver
// - the old process tests for the exit code for the new process being KErrNone and
// that the thread is not panicked, and also that the values written and read
// are those expected.
// 12.Closing test driver
// - Trivial, but it will test if a created & mapped shared io buffer gets released
// successfully when the logical channel is closed (which in turn will delete the
// shared io buffer associated with the channel)
// The test comes in 4 flavours, in order to test memory protection when context switching
// between different types of processes.
// T_SHAREDIO:
// Main process is a moving process which creates another moving process.
// T_SHAREDIO2:
// Main process is a fixed process which creates a moving process.
// T_SHAREDIO3:
// Main process is a fixed process which creates another fixed process.
// T_SHAREDIO4:
// Main process is a moving process which creates a fixed process.
// Platforms/Drives/Compatibility:
// All (some steps will not be performed on emulator)
// Assumptions/Requirement/Pre-requisites:
// The test needs D_SHAREDIO.LDD, the device driver that actually operates the API.
// Failures and causes:
// Failures of this test will indicate defects in the implementation of Shared Io Buffers.
// Base Port information:
// No?
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32math.h>
#include "d_sharedio.h"
#include <e32hal.h>
#include "u32std.h"
#include <u32hal.h>
#include <e32svr.h>
#include <f32dbg.h>
#include <e32def.h>
#include <e32def_private.h>
LOCAL_D RTest test(_L("T_SHAREDIO"));
const TInt KTestBufferSize = 0x100000;
TUint MemModelAttributes;
TBool PhysicalCommitSupported;
RTestLdd ldd;
TUint32 TestBufferSizes[]={0x1000, 0x10453, 0x100000, 0x100001, 0x203000, 0};
TInt checkBuffer(TAny* buffer, TUint32 aSize, TUint32 key)
{
TInt r=KErrNone;
TUint8* m=(TUint8*)buffer;
for(TUint32 size=0;size<aSize;size++,key+=5,m++)
{
if(*m!=(TUint8)(key%256))
{
r=KErrCorrupt;
break;
}
}
return r;
}
TInt fillBuffer(TAny* buffer, TUint32 aSize, TUint32 key)
{
TUint8* m=(TUint8*)buffer;
for(TUint32 size=0;size<aSize;size++,key+=5,m++)
{
*m=(TUint8)(key%256);
}
return KErrNone;
}
TBool CheckBuffer(TAny* aBuffer,TInt aSize)
{
TAny** p = (TAny**)aBuffer;
TAny** end = (TAny**)((TInt)p+aSize);
while(p<end)
{
if(*p!=p)
return EFalse;
++p;
}
return ETrue;
}
enum TTestProcessFunctions
{
ETestProcess1,
ETestProcess2,
ETestProcess3,
};
class RTestProcess : public RProcess
{
public:
void Create(TTestProcessFunctions aFunction,TInt aArg1=-1,TInt aArg2=-1);
};
void RTestProcess::Create(TTestProcessFunctions aFunction,TInt aArg1,TInt aArg2)
{
if(aArg1==-1)
aArg1 = RProcess().Id();
TBuf<512> commandLine;
commandLine.Num((TInt)aFunction);
commandLine.Append(_L(" "));
commandLine.AppendNum(aArg1);
commandLine.Append(_L(" "));
commandLine.AppendNum(aArg2);
#ifdef __FIXED__
//fixed process creating a moving process
TFileName filename(RProcess().FileName());
TInt pos=filename.LocateReverse(TChar('\\'));
filename.SetLength(pos+1);
filename+=_L("T_SHAREDIO.EXE");
TInt r = RProcess::Create(filename,commandLine);
#else
#ifdef __SECOND_FIXED__
//fixed process creating another fixed process
TFileName filename(RProcess().FileName());
TInt pos=filename.LocateReverse(TChar('\\'));
filename.SetLength(pos+1);
filename+=_L("T_SHAREDIO2.EXE");
TInt r = RProcess::Create(filename,commandLine);
#else
#ifdef __MOVING_FIXED__
//moving process creating a fixed process
TFileName filename(RProcess().FileName());
TInt pos=filename.LocateReverse(TChar('\\'));
filename.SetLength(pos+1);
filename+=_L("T_SHAREDIO2.EXE");
TInt r = RProcess::Create(filename,commandLine);
#else
//moving process creating a moving process
TInt r = RProcess::Create(RProcess().FileName(),commandLine);
#endif
#endif
#endif
test(r==KErrNone);
SetJustInTime(EFalse);
}
const TInt KProcessRendezvous = KRequestPending+1;
TInt DoTestProcess(TInt aTestNum,TInt aArg1,TInt aArg2)
{
(void)aArg1;
(void)aArg2;
RTestLdd ldd;
TInt r;
r=User::LoadLogicalDevice(KSharedIoTestLddName);
if(r!=KErrNone && r!=KErrAlreadyExists)
return KErrGeneral;
r=ldd.Open();
if(r!=KErrNone)
return r;
switch(aTestNum)
{
case ETestProcess1:
{
TAny* gbuffer;
TUint32 gsize;
r=User::GetTIntParameter(1,(TInt&)gbuffer);
if(r!=KErrNone)
return r;
r=User::GetTIntParameter(2,(TInt&)gsize);
if(r!=KErrNone)
return r;
r=checkBuffer(gbuffer,gsize,23454);
if(r!=KErrNone)
return r;
r=ldd.MapOutGlobalBuffer();
if(r!=KErrNone)
return r;
r=ldd.CreateBuffer(KTestBufferSize);
if(r!=KErrNone)
return r;
TAny* buffer;
TUint32 size;
r=ldd.MapInBuffer(&buffer,&size);
if(r!=KErrNone)
return r;
if(!CheckBuffer(buffer,size))
return KErrGeneral;
r=ldd.MapOutBuffer();
if(r!=KErrNone)
return r;
RProcess::Rendezvous(KProcessRendezvous);
*(TInt*)buffer = 0; // Should cause exception
break;
}
case ETestProcess2:
{
TInt size=aArg2;
TUint8* p=(TUint8*)aArg1;
RProcess::Rendezvous(KProcessRendezvous);
for(TInt i=0;i<size;i++)
p[i]=0; // Should cause exception
break;
}
case ETestProcess3:
{
TAny* buffer;
TUint32 size;
r=ldd.CreateBuffer(KTestBufferSize);
if(r!=KErrNone)
return r;
r=ldd.MapInBuffer(&buffer,&size);
if(r!=KErrNone)
return r;
if(!CheckBuffer(buffer,size))
return KErrGeneral;
*(TInt*)buffer=KMagic1;
TPckg<TInt> buf(*(TInt*)buffer);
r=ldd.ThreadRW(buf);
if(r!=KErrNone)
return r;
if(*(TInt*)buffer!=KMagic2)
return KErrCorrupt;
r=ldd.ThreadRW(*(TDes8*)aArg1,aArg2);
if(r!=KErrNone)
return r;
r=ldd.MapOutBuffer();
if(r!=KErrNone)
return r;
break;
}
default:
User::Panic(_L("T_SHAREDIO"),1);
}
ldd.Close();
return KErrNone;
}
void CreateWithOOMCheck(TInt aSize, TBool aPhysicalAddress)
{
TInt failResult=KErrGeneral;
for(TInt failCount=1; failCount<1000; failCount++)
{
test.Printf(_L("alloc fail count = %d\n"),failCount);
User::__DbgSetAllocFail(ETrue,RAllocator::EFailNext,failCount);
__KHEAP_MARK;
if (aPhysicalAddress)
failResult=ldd.CreateBufferPhysAddr(aSize);
else
failResult=ldd.CreateBuffer(aSize);
if(failResult==KErrNone)
break;
test(failResult==KErrNoMemory);
__KHEAP_MARKEND;
}
__KHEAP_RESET;
test.Next(_L("Destroy buffer"));
if (aPhysicalAddress)
ldd.DestroyBufferPhysAddr();
else
ldd.DestroyBuffer();
__KHEAP_MARKEND;
}
GLDEF_C TInt E32Main()
{
COMPLETE_POST_BOOT_SYSTEM_TASKS();
TBuf16<512> cmd;
User::CommandLine(cmd);
if(cmd.Length() && TChar(cmd[0]).IsDigit())
{
TInt function = -1;
TInt arg1 = -1;
TInt arg2 = -1;
TLex lex(cmd);
lex.Val(function);
lex.SkipSpace();
lex.Val(arg1);
lex.SkipSpace();
lex.Val(arg2);
return DoTestProcess(function,arg1,arg2);
}
MemModelAttributes=UserSvr::HalFunction(EHalGroupKernel, EKernelHalMemModelInfo, NULL, NULL);
TUint mm=MemModelAttributes&EMemModelTypeMask;
PhysicalCommitSupported = mm!=EMemModelTypeDirect && mm!=EMemModelTypeEmul;
test.Title();
#if defined(__FIXED__) || defined(__SECOND_FIXED__) || defined(__MOVING_FIXED__)
if(mm!=EMemModelTypeMoving)
{
test.Printf(_L("TESTS NOT RUN - Only applicable to moving memory model\r\n"));
return 0;
}
#endif
test.Start(_L("Loading test driver..."));
TInt r;
r=User::LoadLogicalDevice(KSharedIoTestLddName);
test(r==KErrNone || r==KErrAlreadyExists);
r=User::LoadLogicalDevice(KSharedIoTestLddName);
test(r==KErrAlreadyExists);
r=ldd.Open();
test(r==KErrNone);
TAny* buffer;
TUint32 size;
TUint32 key;
TInt testBufferSize=0;
for(; TestBufferSizes[testBufferSize]!=0; ++testBufferSize)
{
test.Printf(_L("Test buffer size = %08x\n"),TestBufferSizes[testBufferSize]);
test.Next(_L("Create buffer"));
r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
if(r!=KErrNone)
test.Printf(_L("Creating buffer failed client r=%d"), r);
test(r==KErrNone);
test.Next(_L("Map In Buffer"));
r=ldd.MapInBuffer(&buffer,&size);
test.Next(_L("CheckBuffer"));
test(CheckBuffer(buffer,size));
test(r==KErrNone);
test.Next(_L("Fill and check shared buffer"));
key=Math::Random();
fillBuffer(buffer,size,key);
test(ldd.CheckBuffer(key)==KErrNone);
key=Math::Random();
test(ldd.FillBuffer(key)==KErrNone);
test(checkBuffer(buffer,size,key)==KErrNone);
test.Next(_L("Map Out Buffer"));
r=ldd.MapOutBuffer();
test(r==KErrNone);
test.Next(_L("Destroy Buffer"));
r=ldd.DestroyBuffer();
test(r==KErrNone);
test.Next(_L("Create a buffer under OOM conditions"));
CreateWithOOMCheck(TestBufferSizes[testBufferSize], EFalse);
if(PhysicalCommitSupported)
{
test.Next(_L("Create a buffer with a physical address under OOM conditions"));
CreateWithOOMCheck(TestBufferSizes[testBufferSize], ETrue);
test.Next(_L("Create a buffer with a physical address"));
r=ldd.CreateBufferPhysAddr(0x1000);
test(r==KErrNone);
test.Next(_L("Map In physical address Buffer"));
r=ldd.MapInBuffer(&buffer,&size);
test(r==KErrNone);
test.Next(_L("Fill and check physical address shared buffer"));
key=Math::Random();
fillBuffer(buffer,size,key);
test(ldd.CheckBuffer(key)==KErrNone);
key=Math::Random();
test(ldd.FillBuffer(key)==KErrNone);
test(checkBuffer(buffer,size,key)==KErrNone);
test.Next(_L("Map Out physical address Buffer"));
r=ldd.MapOutBuffer();
test(r==KErrNone);
test.Next(_L("Destroy a buffer with a physical address"));
r=ldd.DestroyBufferPhysAddr();
test(r==KErrNone);
}
test.Next(_L("Check using the same buffer by 2 different user processes"));
TAny* gbuffer;
TUint32 gsize;
r=ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize);
test(r==KErrNone);
fillBuffer(gbuffer,gsize,23454);
r=ldd.MapOutGlobalBuffer();
test(r==KErrNone);
r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
test(r==KErrNone);
r=ldd.MapInBuffer(&buffer,&size);
test(r==KErrNone);
test(CheckBuffer(buffer,size));
key=Math::Random();
fillBuffer(buffer,size,key);
test(ldd.CheckBuffer(key)==KErrNone);
RTestProcess rogueP;
TRequestStatus rendezvous;
TRequestStatus logon;
if(MemModelAttributes&EMemModelAttrProcessProt)
{
test.Next(_L("Checking buffers are protected at context switching"));
rogueP.Create(ETestProcess2,(TInt)buffer,(TInt)size);
rogueP.Logon(logon);
rogueP.Rendezvous(rendezvous);
rogueP.Resume();
User::WaitForRequest(rendezvous);
test(rendezvous==KProcessRendezvous);
User::WaitForRequest(logon);
test(rogueP.ExitType()==EExitPanic);
test(logon==3);
test(ldd.CheckBuffer(key)==KErrNone);
}
r=ldd.MapOutBuffer();
test(r==KErrNone);
r=ldd.DestroyBuffer();
test(r==KErrNone);
RTestProcess process;
if((MemModelAttributes&EMemModelAttrKernProt) && (MemModelAttributes&EMemModelTypeMask)!=EMemModelTypeDirect)
{
test.Next(_L("Checking writing to unmapped buffer"));
process.Create(ETestProcess1);
process.Logon(logon);
process.Rendezvous(rendezvous);
test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
test(process.SetParameter(1,(TInt)gbuffer)==KErrNone);
test(process.SetParameter(2,(TInt)gsize)==KErrNone);
process.Resume();
User::WaitForRequest(rendezvous);
test(rendezvous==KProcessRendezvous);
User::WaitForRequest(logon);
test(process.ExitType()==EExitPanic);
test(logon==3);
process.Close();
}
r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
if(r!=KErrNone)
return r;
r=ldd.MapInBuffer(&buffer,&size);
if(r!=KErrNone)
return r;
if(!CheckBuffer(buffer,size))
return KErrGeneral;
*(TInt*)buffer=KMagic1;
TPckg<TInt> buf(*(TInt*)buffer);
RTestProcess proc;
test.Next(_L("Checking address lookup is implemented"));
proc.Create(ETestProcess3,(TInt)&buf,RThread().Id());
proc.Logon(logon);
proc.Resume();
User::WaitForRequest(logon);
test(proc.ExitType()==EExitKill);
test(logon==0);
test(*(TInt*)buffer==KMagic2);
ldd.DestroyBuffer();
// Check process death whilst buffer is mapped in
// Test case for defect DEF051851 - Shared IO Buffer fault when process dies
test.Next(_L("Checking process death whilst buffer is mapped in"));
process.Create(ETestProcess1);
process.Logon(logon);
test.Start(_L("Map buffer into another process"));
test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
test.Next(_L("Kill other process"));
process.Kill(99);
User::WaitForRequest(logon);
test(process.ExitType()==EExitKill);
test(logon==99);
process.Close();
test.Next(_L("Map out buffer"));
r=ldd.MapOutGlobalBuffer();
test.Printf(_L("result = %d\n"),r);
test(r==KErrNone);
test.Next(_L("Map buffer into this process"));
test(ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize)==KErrNone);
test.Next(_L("Map out buffer from this process"));
r=ldd.MapOutGlobalBuffer();
test.Printf(_L("result = %d\n"),r);
test(r==KErrNone);
process.Create(ETestProcess1);
process.Logon(logon);
test.Next(_L("Map buffer into another process"));
test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
test.Next(_L("Kill other process"));
process.Kill(99);
User::WaitForRequest(logon);
test(process.ExitType()==EExitKill);
test(logon==99);
process.Close();
test.Next(_L("Map out buffer"));
r=ldd.MapOutGlobalBuffer();
test.Printf(_L("result = %d\n"),r);
test(r==KErrNone);
test.End();
} // loop for next buffer size
test.Next(_L("Create and map in buffer"));
r=ldd.CreateBuffer(KTestBufferSize);
test(r==KErrNone);
r=ldd.MapInBuffer(&buffer,&size);
test(r==KErrNone);
// Test for DEF053512 - Can't delete SharedIo buffers in DLogicalDevice destructor
test.Next(_L("Map in global buffer"));
TAny* gbuffer;
TUint32 gsize;
test(ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize)==KErrNone);
test.Next(_L("Closing channel (with a buffer still mapped in)"));
ldd.Close();
// Test for DEF053512 - Can't delete SharedIo buffers in DLogicalDevice destructor
test.Next(_L("Unload driver (whilst global buffer still mapped in)"));
r=User::FreeLogicalDevice(KSharedIoTestLddName);
test(r==KErrNone);
test.End();
return(0);
}