Fix for Bug 2984 - [GCCE] Illegal inline assembler in kernel/eka/debug/utrace/src/e32utrace.cpp
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\buffer\t_array.cpp
// Overview:
// Simple array tests.
// API Information:
// RArray, RPointerArray.
// Details:
// - Create fixed length array of 32 and 64 bit integer objects, an array
// of pointers to objects and verify that they are created successfully.
// - Simulate heap allocation failure test for the current thread's heap,
// append some 32 & 64 bit integers to the created arrays and verify the
// returned errors are as expected.
// - Append some 32, 64 bit integers to fixed length arrays of 32 and 64
// bit integer objects respectively, check that KErrNoMemory is returned
// as expected.
// - Verify heap allocation granularity.
// - Simulate heap allocation failure, attempt to insert an object into
// the arrays, verify failure as expected and verify that the array
// contents were not modified.
// - Remove elements from the arrays and verify that the number of
// elements held in the arrays are as expected.
// - Append and remove an element to each array (uncompressed) and check
// that the number of elements held in the arrays are as expected.
// - Simulate heap allocation failure, compress the arrays and verify
// that KErrNoMemory is returned on appending elements to the arrays.
// - Reset the arrays and check the number of elements held in the arrays are 0.
// - Append some 64 bit integer objects to the array of pointers to objects and
// verify that the number of elements held in the array is as expected.
// - Empty the array of pointers, and verify that the heap has not been corrupted by
// any of the tests.
// - Using a variety of random sized arrays, test RArray::FindInOrder and
// RPointerArray::FindInOrder, verify that the results are as expected.
// - Using a variety of random sized arrays, test RArray::FindInSignedKeyOrder
// and RArray::FindInUnsignedKeyOrder, verify that the results are as expected.
// - Using a variety of random sized arrays of a struct, test RArray::FindInUnsignedKeyOrder
// an dRArray::FindInUnsignedKeyOrder, verify that the results are as expected.
// - Using a variety of random sized arrays, test RPointerArray::FindInAddressOrder,
// verify that the results are as expected.
// - Verify that the heap has not been corrupted by any of the tests.
// - Tests for RArray and standard array objects:
// - Append random numbers to the arrays and verify that the arrays are as expected.
// - Append and remove integers to an RArray, check the values are added and removed
// as expected.
// - Append some random numbers, check that the numbers are found in the array using
// sequential and binary search techniques.
// - Append some random numbers, insert them into the arrays allowing duplicates
// entries and without duplicate entries and check the numbers are found as expected.
// - Insert some random numbers into the arrays allowing duplicates, and check the
// numbers are added as expected.
// - Insert a sequence of integers into an array, use the SpecificFindInOrder method
// and verify that results are as expected.
// - Tests for 4 byte RArrays:
// - Append random numbers to the arrays and verify that the arrays are as expected.
// - Append and remove integers to an RArray, check the values are added and removed
// as expected.
// - Append some random numbers, check that the numbers are found in the array using
// sequential and binary search techniques.
// - Append some random numbers, insert them into the arrays allowing duplicates
// entries and without duplicate entries and check the numbers are found as expected.
// - Insert some random numbers into the arrays allowing duplicates, and check the
// numbers are added as expected.
// - Insert a sequence of integers into an array, use the SpecificFindInOrder method
// and verify that results are as expected.
// - Verify that the heap has not been corrupted by any of the tests.
// - Repeat the above test for arrays of unsigned integers, pointers, 64 bit integer
// array objects and array of pointers objects.
// - Test and trap a variety of error conditions that cause the array functions to leave.
// Test on arrays of integers, pointers, unsigned integers and TInts.
// - Verify that the heap has not been corrupted by any of the tests.
// - Perform simple array tests by appending, finding, find in order, insert in order,
// sorting, growing and compressing arrays. Verify results are as expected.
// - Perform a variety of speed tests on array objects.
// - Test whether the heap has been corrupted by all the tests.
// Platforms/Drives/Compatibility:
// All
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#include <e32test.h>
#include <e32math.h>
GLREF_C void DoSpeedTests();
GLREF_C void DoIntArrayTests();
GLREF_C void DoUintArrayTests();
GLREF_C void DoPointerArrayTests();
GLREF_C void DoPointerArrayLeavingInterfaceTest();
GLREF_C void DoPointerArrayAnyTests();
GLREF_C void DoPointerArrayAnyLeavingInterfaceTest();
GLREF_C void DoArrayLeavingInterfaceTest();
GLDEF_C void DoTIntArrayLeavingInterfaceTest();
GLDEF_C void DoTUintArrayLeavingInterfaceTest();
GLREF_C void DoSimpleArrayTests();
GLREF_C void DoRArrayTests();
GLDEF_C RTest test(_L("T_ARRAY"));
static TInt64 seed = MAKE_TINT64(0xb504f333,0xf9de6484);
GLDEF_C TInt Random()
{
// Using this formula ensures repeated numbers wont come up in the tests.
seed = ((TUint) (69069*seed + 41));
return (TInt) seed;
}
#ifdef _DEBUG
RArray<TInt> *TheIntArray;
RPointerArray<TInt64> *ThePtrArray;
RArray<TInt64> *TheSimpleArray;
void DoAllocTests()
{
test.Next(_L("Testing alloc failure"));
TheIntArray = new RArray<TInt>(16);
test(TheIntArray!=NULL);
ThePtrArray = new RPointerArray<TInt64>;
test(ThePtrArray!=NULL);
TheSimpleArray = new RArray<TInt64>;
test(TheSimpleArray!=NULL);
__UHEAP_MARK;
__UHEAP_SETFAIL(RHeap::EDeterministic,1);
TInt64 x = MAKE_TINT64(0xb504f333,0xf9de6484);
TInt64 y = MAKE_TINT64(0xc90fdaa2,0xc2352168);
TInt i;
TInt r=TheIntArray->Append(0);
test(r==KErrNoMemory);
r=ThePtrArray->Append(&x);
test(r==KErrNoMemory);
r=TheSimpleArray->Append(x);
test(r==KErrNoMemory);
__UHEAP_RESET;
r=TheIntArray->Append(0);
test(r==KErrNone);
r=ThePtrArray->Append(&x);
test(r==KErrNone);
r=TheSimpleArray->Append(x);
test(r==KErrNone);
TUint8* p1=new TUint8[1024]; // alloc a big cell to block simple expansion
__UHEAP_SETFAIL(RHeap::EDeterministic,1);
test.Next(_L("Testing granularity"));
TInt n=0;
while(r==KErrNone)
{
n++;
r=TheIntArray->Append(0);
}
test(r==KErrNoMemory);
test(n==16);
test(TheIntArray->Count()==16);
r=KErrNone;
n=0;
while(r==KErrNone)
{
n++;
r=ThePtrArray->Append(&x);
}
test(r==KErrNoMemory);
test(n==8);
test(ThePtrArray->Count()==8); // default
r=KErrNone;
n=0;
while(r==KErrNone)
{
n++;
r=TheSimpleArray->Append(x);
}
test(r==KErrNoMemory);
test(n==8);
test(TheSimpleArray->Count()==8); // default
r=TheIntArray->Insert(1,1);
test(r==KErrNoMemory);
test(TheIntArray->Count()==16);
for (i=0; i<TheIntArray->Count(); i++)
{
test((*TheIntArray)[i]==0);
}
r=ThePtrArray->Insert(&y,1);
test(r==KErrNoMemory);
test(ThePtrArray->Count()==8);
for (i=0; i<ThePtrArray->Count(); i++)
{
test((*ThePtrArray)[i]==&x);
}
r=TheSimpleArray->Insert(y,1);
test(r==KErrNoMemory);
test(TheSimpleArray->Count()==8);
for (i=0; i<TheSimpleArray->Count(); i++)
{
test((*TheSimpleArray)[i]==x);
}
for (i=1; i<16; i++)
{
TheIntArray->Remove(1);
}
for (i=1; i<8; i++)
{
ThePtrArray->Remove(1);
}
for (i=1; i<8; i++)
{
TheSimpleArray->Remove(1);
}
test(TheIntArray->Count()==1);
test(ThePtrArray->Count()==1);
test(TheSimpleArray->Count()==1);
__UHEAP_RESET;
TAny* p2=User::Alloc(48);
TAny* p3=User::Alloc(24);
TAny* p4=User::Alloc(24);
__UHEAP_SETFAIL(RHeap::EDeterministic,1);
r=TheIntArray->Append(0);
test(r==KErrNone);
r=ThePtrArray->Append(&x);
test(r==KErrNone);
r=TheSimpleArray->Append(x);
test(r==KErrNone);
test(TheIntArray->Count()==2);
test(ThePtrArray->Count()==2);
test(TheSimpleArray->Count()==2);
TheIntArray->Remove(1);
ThePtrArray->Remove(1);
TheSimpleArray->Remove(1);
test(TheIntArray->Count()==1);
test(ThePtrArray->Count()==1);
test(TheSimpleArray->Count()==1);
TheIntArray->Compress();
ThePtrArray->Compress();
TheSimpleArray->Compress();
User::Free(p2);
User::Free(p3);
User::Free(p4);
__UHEAP_RESET;
p2=User::Alloc(48);
p3=User::Alloc(24);
p4=User::Alloc(24);
__UHEAP_SETFAIL(RHeap::EDeterministic,1);
r=TheIntArray->Append(0);
test(r==KErrNoMemory);
r=ThePtrArray->Append(&x);
test(r==KErrNoMemory);
r=TheSimpleArray->Append(x);
test(r==KErrNoMemory);
TheIntArray->Reset();
ThePtrArray->Reset();
TheSimpleArray->Reset();
test(TheIntArray->Count()==0);
test(ThePtrArray->Count()==0);
test(TheSimpleArray->Count()==0);
delete p1;
User::Free(p2);
User::Free(p3);
User::Free(p4);
__UHEAP_RESET;
test.Next(_L("ResetAndDestroy"));
TInt64 *i1=new TInt64;
TInt64 *i2=new TInt64;
TInt64 *i3=new TInt64;
TInt64 *i4=new TInt64;
ThePtrArray->Append(i1);
ThePtrArray->Append(i2);
ThePtrArray->Append(i3);
ThePtrArray->Append(i4);
test(ThePtrArray->Count()==4);
ThePtrArray->ResetAndDestroy();
__UHEAP_MARKEND;
TheIntArray->Close();
delete TheIntArray;
ThePtrArray->Close();
delete ThePtrArray;
TheSimpleArray->Close();
delete TheSimpleArray;
}
#endif
class RHeapMonitor : public RAllocator
{
public:
static RHeapMonitor& Install();
void Uninstall();
RHeapMonitor();
public:
virtual TAny* Alloc(TInt);
virtual void Free(TAny*);
virtual TAny* ReAlloc(TAny*, TInt, TInt);
virtual TInt AllocLen(const TAny*) const;
virtual TInt Compress();
virtual void Reset();
virtual TInt AllocSize(TInt&) const;
virtual TInt Available(TInt&) const;
virtual TInt DebugFunction(TInt, TAny*, TAny*);
virtual TInt Extension_(TUint, TAny*&, TAny*);
public:
RAllocator* iOrig;
TInt iAllocs;
TInt iFailedAllocs;
TInt iFrees;
TInt iReallocs;
TInt iFailedReallocs;
};
RHeapMonitor::RHeapMonitor()
{
iOrig = &User::Allocator();
iAllocs = 0;
iFailedAllocs = 0;
iFrees = 0;
iReallocs = 0;
iFailedReallocs = 0;
}
RHeapMonitor& RHeapMonitor::Install()
{
RHeapMonitor* m = new RHeapMonitor;
test(m!=0);
RAllocator* orig = User::SwitchAllocator(m);
test(orig == m->iOrig);
return *m;
}
void RHeapMonitor::Uninstall()
{
RAllocator* m = User::SwitchAllocator(iOrig);
test(m == this);
delete this;
}
TAny* RHeapMonitor::Alloc(TInt a)
{
++iAllocs;
TAny* p = iOrig->Alloc(a);
if (!p) ++iFailedAllocs;
return p;
}
void RHeapMonitor::Free(TAny* a)
{
if (a) ++iFrees;
iOrig->Free(a);
}
TAny* RHeapMonitor::ReAlloc(TAny* aCell, TInt aSize, TInt aMode)
{
if (aCell && aSize>0)
++iReallocs;
else if (aCell)
++iFrees;
else
++iAllocs;
TAny* p = iOrig->ReAlloc(aCell, aSize, aMode);
if (!p && aSize>0)
{
if (aCell)
++iFailedReallocs;
else
++iFailedAllocs;
}
return p;
}
TInt RHeapMonitor::AllocLen(const TAny* a) const
{
return iOrig->AllocLen(a);
}
TInt RHeapMonitor::Compress()
{
return iOrig->Compress();
}
void RHeapMonitor::Reset()
{
iOrig->Reset();
}
TInt RHeapMonitor::AllocSize(TInt& a) const
{
return iOrig->AllocSize(a);
}
TInt RHeapMonitor::Available(TInt& a) const
{
return iOrig->Available(a);
}
TInt RHeapMonitor::DebugFunction(TInt aFunc, TAny* a1, TAny* a2)
{
return iOrig->DebugFunction(aFunc, a1, a2);
}
TInt RHeapMonitor::Extension_(TUint, TAny*&, TAny*)
{
return KErrExtensionNotSupported;
}
template<class T>
void TestReserveT()
{
RHeapMonitor& m = RHeapMonitor::Install();
TInt r;
RArray<T> a(1);
test(a.Count()==0);
test(m.iAllocs==0);
test(a.Append(1)==KErrNone);
test(m.iAllocs==1);
test(m.iReallocs==0);
test(a.Append(2)==KErrNone);
test(m.iReallocs==1); // should have realloc'd
a.Close();
test(m.iFrees==1);
test(m.iAllocs==1);
test(m.iReallocs==1);
test(a.Count()==0);
test(a.Reserve(2)==KErrNone);
test(m.iAllocs==2);
TRAP(r,a.ReserveL(2));
test(r==KErrNone);
test(m.iFrees==1);
test(m.iAllocs==2);
test(m.iReallocs==1);
test(a.Append(1)==KErrNone);
test(m.iFrees==1);
test(m.iAllocs==2);
test(m.iReallocs==1);
test(a.Append(2)==KErrNone);
test(m.iFrees==1);
test(m.iAllocs==2);
test(m.iReallocs==1); // shouldn't have realloc'd
test(a.Append(3)==KErrNone);
test(m.iFrees==1);
test(m.iAllocs==2);
test(m.iReallocs==2); // should have realloc'd
a.Close();
test(m.iFrees==2);
test(m.iAllocs==2);
test(m.iReallocs==2);
test(a.Count()==0);
test(a.Reserve(2)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==2);
test(a.Append(1)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==2);
test(a.Append(2)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==2);
test(a.Reserve(0x20000000)==KErrNoMemory);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==2);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==2);
test(a.Reserve(8)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==3);
test(a.Append(3)==KErrNone);
test(a.Append(4)==KErrNone);
test(a.Append(5)==KErrNone);
test(a.Append(6)==KErrNone);
test(a.Append(7)==KErrNone);
test(a.Append(8)==KErrNone);
test(a.Count()==8);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==3);
TInt i;
for (i=0; i<=8; ++i)
{
test(a.Reserve(i)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==3);
}
test(a.Append(9)==KErrNone);
test(m.iFrees==2);
test(m.iAllocs==3);
test(m.iReallocs==4);
a.Close();
test(m.iFrees==3);
test(m.iAllocs==3);
test(m.iReallocs==4);
#ifdef _DEBUG
__UHEAP_FAILNEXT(1);
test(a.Count()==0);
test(a.Reserve(0)==KErrNone);
test(m.iFrees==3);
test(m.iAllocs==3);
test(m.iReallocs==4);
test(m.iFailedAllocs==0);
test(a.Reserve(1)==KErrNoMemory);
test(m.iFrees==3);
test(m.iAllocs==4);
test(m.iReallocs==4);
test(m.iFailedAllocs==1);
test(a.Reserve(1)==KErrNone);
test(m.iFrees==3);
test(m.iAllocs==5);
test(m.iReallocs==4);
test(m.iFailedAllocs==1);
a.Close();
test(m.iFrees==4);
test(m.iAllocs==5);
test(m.iReallocs==4);
test(m.iFailedAllocs==1);
#endif
m.Uninstall();
TUint count = 0x80000000u / sizeof(T);
// don't do this in the heap monitored section because
// throwing a C++ exception allocates and frees memory
TRAP(r,a.ReserveL(count));
test(r==KErrNoMemory);
}
void TestReserve()
{
test.Start(_L("Test Reserve()"));
__UHEAP_MARK;
TestReserveT<TInt>();
TestReserveT<TInt64>();
__UHEAP_MARKEND;
test.End();
}
GLDEF_C TInt E32Main()
{
CTrapCleanup* trapHandler=CTrapCleanup::New();
test(trapHandler!=NULL);
test.Title();
test.Start(_L("Simple array tests"));
#ifdef _DEBUG
DoAllocTests();
#endif
TestReserve();
__UHEAP_MARK;
DoRArrayTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
DoIntArrayTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
DoUintArrayTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
DoPointerArrayTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
TRAPD(ret,DoArrayLeavingInterfaceTest());
test(ret==KErrNone);
__UHEAP_MARKEND;
__UHEAP_MARK;
TRAP(ret,DoPointerArrayLeavingInterfaceTest());
test(ret==KErrNone);
__UHEAP_MARKEND;
__UHEAP_MARK;
TRAP(ret,DoTIntArrayLeavingInterfaceTest());
test(ret==KErrNone);
__UHEAP_MARKEND;
__UHEAP_MARK;
TRAP(ret,DoTUintArrayLeavingInterfaceTest());
test(ret==KErrNone);
__UHEAP_MARKEND;
__UHEAP_MARK;
DoSimpleArrayTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
DoPointerArrayAnyTests();
__UHEAP_MARKEND;
__UHEAP_MARK;
TRAP(ret,DoPointerArrayAnyLeavingInterfaceTest());
test(ret==KErrNone);
__UHEAP_MARKEND;
__UHEAP_MARK;
DoSpeedTests();
__UHEAP_MARKEND;
test.End();
delete trapHandler;
return KErrNone;
}