// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\include\e32math.h
//
//
#ifndef __E32MATH_H__
#define __E32MATH_H__
#include <e32std.h>
/**
@publishedAll
@released
*/
const TInt KMaxPrecision=15;
/**
@publishedAll
@released
This constant specifies the maximum number of significant digits available with floating
point computations. Rounding and string formatting methods will not use more digits than this.
*/
const TInt KPrecisionLimit=12;
/**
@publishedAll
@released
Let D be the set of real numbers exactly representable by an IEEE-754 'double'
For any positive integer n let X_n be the set of real numbers with an exact
decimal representation using n significant digits.
Let r_n : D -> X_n be defined by r_n(x)=y such that
|y-x| = inf { |z-x| : z in X_n }
and (in the case where two such y exist) that the last significant digit in the
decimal representation of y is even.
This constant is the least n such that r_n is injective.
*/
const TInt KIEEEDoubleInjectivePrecision=17;
/**
@publishedAll
@released
*/
const TInt KMantissaBits=53;
/**
@publishedAll
@released
*/
const TInt KMaxExponent=1023;
/**
@publishedAll
@released
*/
const TInt KExponentBias=1022;
/**
@publishedAll
@released
*/
const TInt KSpecialExponent=2047;
//
/**
@publishedAll
@released
The maximum exponent for a 32-bit floating point number.
*/
const TInt KTReal32MaxExponent=128; // changed from 127
/**
@publishedAll
@released
The minimum exponent for a 32-bit floating point number.
*/
const TInt KTReal32MinExponent=-125;
/**
@publishedAll
@released
*/
const TInt KTReal32ExponentBias=126;
/**
@publishedAll
@released
*/
const TInt KTReal32SpecialExponent=255; // changed from KTReal32ExponentBad
/**
@publishedAll
@released
A zero exponent value for a 32-bit floating point number.
*/
const TInt KTReal32ZeroExponent=0;
//
/**
@publishedAll
@released
The maximum exponent for a 64-bit floating point number.
*/
const TInt KTReal64MaxExponent=1024; // changed from 1023
/**
@publishedAll
@released
The minimum exponent for a 64-bit floating point number.
*/
const TInt KTReal64MinExponent=-1021;
/**
@publishedAll
@released
*/
const TInt KTReal64ExponentBias=1022;
/**
@publishedAll
@released
*/
const TInt KTReal64SpecialExponent=2047; // changed from KTReal64BadExponent
/**
@publishedAll
@released
A zero exponent value for a 64-bit floating point number.
*/
const TInt KTReal64ZeroExponent=0;
//
/**
@publishedAll
@released
The minimum value of a 64-bit floating point number.
*/
const TReal KMinTReal=2.2250738585072015E-308; // changed from TReal64
/**
@publishedAll
@released
The maximum value of a 64-bit floating point number.
*/
const TReal KMaxTReal=1.7976931348623157E+308; //
//
/**
@publishedAll
@released
The minimum value of a 32-bit floating point number.
*/
const TReal32 KMinTReal32=1.17549435E-38f;
/**
@publishedAll
@released
The maximum value of a 32-bit floating point number.
*/
const TReal32 KMaxTReal32=3.4028234663852885981170418348452e+38f;
//
/**
@publishedAll
@released
The minimum value of a 64-bit floating point number.
*/
const TReal64 KMinTReal64=2.2250738585072015E-308;
/**
@publishedAll
@released
The maximum value of a 64-bit floating point number.
*/
const TReal64 KMaxTReal64=1.7976931348623157E+308;
//
/**
@publishedAll
@released
*/
const TReal KSqhf=0.70710678118654752440;
/**
@publishedAll
@released
Log 2 to the base "e".
*/
const TReal KRln2=1.4426950408889634;
/**
@publishedAll
@released
Log 10 to the base "e".
*/
const TReal KRln10=0.4342944819032518;
/**
@publishedAll
@released
Log 2 to the base 10.
*/
const TReal KRlg2=0.3010299956639812;
/**
@publishedAll
@released
The mathematical constant Pi.
*/
const TReal KPi=3.1415926535897932;
/**
@publishedAll
@released
The reciprocal of the mathematical constant Pi.
*/
const TReal KPiInv=0.3183098861837907;
/**
@publishedAll
@released
The mathematical constant Pi divided by 2.
*/
const TReal KPiBy2=1.5707963267948966;
/**
@publishedAll
@released
Not used.
*/
const TReal KDrpi=0.6366197723675813;
/**
@publishedAll
@released
The square root of 3.
*/
const TReal KSqt3=1.7320508075688773;
/**
@publishedAll
@released
*/
const TReal KMsq3=0.2679491924311227;
/**
@publishedAll
@released
The multiplying factor to convert radians to degrees.
*/
const TReal KRadToDeg=57.29577951308232;
/**
@publishedAll
@released
The multiplying factor to convert degrees to radians.
*/
const TReal KDegToRad=0.017453292519943296;
class TRealX
/**
@publishedAll
@released
A class encapsulating an extended precision real value.
This class provides 64 bit precision and a dynamic range of approximately
1E-9863 to 1E+9863. All member functions are optimized for speed.
*/
{
public:
enum TRealXOrder {ELessThan=1,EEqual=2,EGreaterThan=4,EUnordered=8};
public:
IMPORT_C TRealX();
IMPORT_C TRealX(TInt aInt);
IMPORT_C TRealX(TUint aInt);
IMPORT_C TRealX(TUint aExp, TUint aMantHi, TUint aMantLo);
IMPORT_C TRealX(const TInt64 &aInt);
IMPORT_C TRealX(TReal32 aReal) __SOFTFP;
IMPORT_C TRealX(TReal64 aReal) __SOFTFP;
IMPORT_C TRealX &operator=(TInt aInt);
IMPORT_C TRealX &operator=(TUint aInt);
IMPORT_C TRealX &operator=(const TInt64& aInt);
IMPORT_C TRealX &operator=(TReal32 aReal) __SOFTFP;
IMPORT_C TRealX &operator=(TReal64 aReal) __SOFTFP;
IMPORT_C TInt Set(TInt aInt);
IMPORT_C TInt Set(TUint aInt);
IMPORT_C TInt Set(const TInt64& aInt);
IMPORT_C TInt Set(TReal32 aReal) __SOFTFP;
IMPORT_C TInt Set(TReal64 aReal) __SOFTFP;
IMPORT_C operator TInt() const;
IMPORT_C operator TUint() const;
IMPORT_C operator TInt64() const;
IMPORT_C operator TReal32() const __SOFTFP;
IMPORT_C operator TReal64() const __SOFTFP;
IMPORT_C TInt GetTReal(TReal32 &aVal) const;
IMPORT_C TInt GetTReal(TReal64 &aVal) const;
IMPORT_C void SetZero(TBool aNegative=EFalse);
IMPORT_C void SetNaN();
IMPORT_C void SetInfinite(TBool aNegative);
IMPORT_C TBool IsZero() const;
IMPORT_C TBool IsNaN() const;
IMPORT_C TBool IsInfinite() const;
IMPORT_C TBool IsFinite() const;
IMPORT_C const TRealX &operator+=(const TRealX &aVal);
IMPORT_C const TRealX &operator-=(const TRealX &aVal);
IMPORT_C const TRealX &operator*=(const TRealX &aVal);
IMPORT_C const TRealX &operator/=(const TRealX &aVal);
IMPORT_C const TRealX &operator%=(const TRealX &aVal);
IMPORT_C TInt AddEq(const TRealX &aVal);
IMPORT_C TInt SubEq(const TRealX &aVal);
IMPORT_C TInt MultEq(const TRealX &aVal);
IMPORT_C TInt DivEq(const TRealX &aVal);
IMPORT_C TInt ModEq(const TRealX &aVal);
IMPORT_C TRealX operator+() const;
IMPORT_C TRealX operator-() const;
IMPORT_C TRealX &operator++();
IMPORT_C TRealX operator++(TInt);
IMPORT_C TRealX &operator--();
IMPORT_C TRealX operator--(TInt);
IMPORT_C TRealX operator+(const TRealX &aVal) const;
IMPORT_C TRealX operator-(const TRealX &aVal) const;
IMPORT_C TRealX operator*(const TRealX &aVal) const;
IMPORT_C TRealX operator/(const TRealX &aVal) const;
IMPORT_C TRealX operator%(const TRealX &aVal) const;
IMPORT_C TInt Add(TRealX& aResult,const TRealX &aVal) const;
IMPORT_C TInt Sub(TRealX& aResult,const TRealX &aVal) const;
IMPORT_C TInt Mult(TRealX& aResult,const TRealX &aVal) const;
IMPORT_C TInt Div(TRealX& aResult,const TRealX &aVal) const;
IMPORT_C TInt Mod(TRealX& aResult,const TRealX &aVal) const;
IMPORT_C TRealXOrder Compare(const TRealX& aVal) const;
inline TBool operator==(const TRealX &aVal) const;
inline TBool operator!=(const TRealX &aVal) const;
inline TBool operator>=(const TRealX &aVal) const;
inline TBool operator<=(const TRealX &aVal) const;
inline TBool operator>(const TRealX &aVal) const;
inline TBool operator<(const TRealX &aVal) const;
public:
/**
The mantissa.
*/
// Represented as two adjacent 32 bit values, rather than one 64 value.
// This is to avoid EABI introduced padding overheads and BC breakages.
// This representation works because the mantissa is always accessed from
// assembler code as two 32 bit quantities. The C++ code that accesses it
// now constructs an automatic TInt64 with the two components.
TUint32 iMantLo;
TUint32 iMantHi;
/**
The sign: 0 for +, 1 for -
*/
TInt8 iSign;
/**
Flags: 0 for exact, 1 for rounded down, 2 for rounded up
*/
TUint8 iFlag;
/**
Exponent: biased by 32767, iExp=0 => zero, +65535 => infinity or NaN
*/
TUint16 iExp;
};
struct SPoly
/**
@publishedAll
@released
A structure containing the set of coefficients for a polynomial.
@see Math::Poly
*/
{
TInt num;
TReal c[1];
};
class Math
/**
@publishedAll
@released
A collection of mathematical functions.
*/
{
public:
IMPORT_C static TInt ACos(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt ASin(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrcY,const TReal &aSrcX);
IMPORT_C static TInt Cos(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Exp(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Frac(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Int(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Int(TInt16 &aTrg,const TReal &aSrc);
IMPORT_C static TInt Int(TInt32 &aTrg,const TReal &aSrc);
IMPORT_C static TInt Log(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Ln(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Mod(TReal &aTrg,const TReal &aSrc,const TReal &aModulus);
IMPORT_C static TReal Poly(TReal aVal,const SPoly *aPoly) __SOFTFP;
IMPORT_C static TInt Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower);
IMPORT_C static TInt Pow10(TReal &aTrg,const TInt exp);
IMPORT_C static TInt Rand(TInt64 &aSeed);
IMPORT_C static TReal FRand(TInt64 &aSeed) __SOFTFP;
IMPORT_C static TUint32 Random();
IMPORT_C static void Random(TDes8& aRandomValue);
IMPORT_C static void RandomL(TDes8& aRandomValue);
IMPORT_C static TUint32 RandomL();
IMPORT_C static TInt Round(TReal &aTrg,const TReal &aSrc,TInt aDecimalPlaces);
IMPORT_C static TInt Sin(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Sqrt(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TInt Tan(TReal &aTrg,const TReal &aSrc);
IMPORT_C static TBool IsZero(const TReal &aVal);
IMPORT_C static TBool IsNaN(const TReal &aVal);
IMPORT_C static TBool IsInfinite(const TReal &aVal);
IMPORT_C static TBool IsFinite(const TReal &aVal);
IMPORT_C static void PolyX(TRealX& aY, const TRealX& aX, TInt aDeg, const TRealX *aCoef);
static TInt MultPow10X(TRealX& aTrg, TInt aPower);
IMPORT_C static void Mul64(Int64 aX, Int64 aY, Int64& aOutH, Uint64& aOutL);
IMPORT_C static void UMul64(Uint64 aX, Uint64 aY, Uint64& aOutH, Uint64& aOutL);
IMPORT_C static Int64 DivMod64(Int64 aDividend, Int64 aDivisor, Int64& aRemainder);
IMPORT_C static Uint64 UDivMod64(Uint64 aDividend, Uint64 aDivisor, Uint64& aRemainder);
private:
IMPORT_C static void SetZero(TReal &aVal,TInt aSign=0);
IMPORT_C static void SetNaN(TReal &aVal);
IMPORT_C static void SetInfinite(TReal &aVal,TInt aSign);
};
#include <e32math.inl>
#endif // __E32MATH_H__