// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\nkernsa\threadbasic.cpp
//
//
#include <nktest/nkutils.h>
#define SLEEP_TIME 1
#ifndef __SMP__
#define iNThreadBaseSpare7 iSpare7
#endif
struct SThreadInfo1
{
volatile TInt iRunCount;
volatile TInt iBlockEvery;
volatile TBool iStop;
CircBuf* iBuf;
NThread* iThread;
};
TInt WaitForRun(SThreadInfo1& aI, TInt aCount)
{
TUint32 initial = NKern::TickCount();
TUint32 final = initial + 2;
FOREVER
{
if (aI.iRunCount >= aCount)
return aI.iRunCount;
TUint32 x = NKern::TickCount();
if ((x - final) < 0x80000000u)
return KErrTimedOut;
}
}
void BasicThread(TAny* a)
{
SThreadInfo1& info = *(SThreadInfo1*)a;
NThread* pC = NKern::CurrentThread();
while (!info.iStop)
{
TInt r = info.iBuf->TryPut((TUint32)pC);
TEST_RESULT(r==KErrNone, "Buffer full");
TInt c = (TInt)__e32_atomic_add_ord32(&info.iRunCount, 1);
TInt m = (c+1)%info.iBlockEvery;
if (!m)
NKern::WaitForAnyRequest();
}
}
void BasicThread0(TAny*)
{
NThread* pC = NKern::CurrentThread();
TInt my_priority = pC->i_NThread_BasePri;
TInt this_cpu = NKern::CurrentCpu();
CircBuf* buf = CircBuf::New(KNumPriorities * KMaxCpus * 8);
TEST_OOM(buf);
SThreadInfo1* pI = (SThreadInfo1*)malloc(KNumPriorities * KMaxCpus * sizeof(SThreadInfo1));
TEST_OOM(pI);
memclr(pI, KNumPriorities * KMaxCpus * sizeof(SThreadInfo1));
NFastSemaphore exitSem(0);
TInt pri;
TInt cpu;
for_each_cpu(cpu)
{
for (pri = 1; pri < KNumPriorities; ++pri)
{
TInt ix = cpu * KNumPriorities + pri;
SThreadInfo1& info = pI[ix];
info.iBlockEvery = 1;
info.iBuf = buf;
info.iThread = CreateUnresumedThreadSignalOnExit("Basic", &BasicThread, pri, &info, 0, -1, &exitSem, cpu);
TEST_OOM(info.iThread);
}
}
TInt c = buf->Count();
TEST_RESULT1(c==0, "Unexpected count %d", c); // nothing resumed yet
for_each_cpu(cpu)
{
for (pri = 1; pri < KNumPriorities; ++pri)
{
TInt ix = cpu * KNumPriorities + pri;
SThreadInfo1& info = pI[ix];
NKern::ThreadResume(info.iThread);
TInt r = WaitForRun(info, 1);
if (pri>my_priority || cpu!=this_cpu)
{
TEST_RESULT(r==1, "WaitForRun");
c = buf->Count();
TEST_RESULT1(c==1, "Unexpected count %d", c); // thread should have run
TUint32 x = buf->Get();
c = buf->Count();
TEST_RESULT1(c==0, "Unexpected count %d", c);
TEST_RESULT(x==(TUint32)info.iThread, "Wrong thread");
}
else
{
TEST_RESULT(r==KErrTimedOut, "WaitForRun");
c = buf->Count();
TEST_RESULT1(c==0, "Unexpected count %d", c); // thread won't have run since current has priority
}
}
}
NKern::Sleep(10); // let lower priority threads run
c = buf->Count();
TEST_RESULT1(c==my_priority, "Unexpected count %d", c);
for (pri = my_priority; pri >= 1; --pri)
{
TInt ix = this_cpu * KNumPriorities + pri;
SThreadInfo1& info = pI[ix];
TEST_RESULT(info.iRunCount==1, "Bad run count");
TUint32 x = buf->Get();
TEST_RESULT(x==(TUint32)info.iThread, "Wrong thread");
}
for_each_cpu(cpu)
{
for (pri = 1; pri < KNumPriorities; ++pri)
{
TInt ix = cpu * KNumPriorities + pri;
SThreadInfo1& info = pI[ix];
info.iStop = TRUE;
NKern::ThreadRequestSignal(info.iThread);
NKern::FSWait(&exitSem);
}
}
free(pI);
delete buf;
}
void BasicThreadTest1()
{
TEST_PRINT("Testing all thread priorities without timeslice");
TInt pri;
TInt cpu;
for_each_cpu(cpu)
{
for (pri = 1; pri < KNumPriorities; ++pri)
{
TEST_PRINT2("Basic0 pri %d cpu %d", pri, cpu);
CreateThreadAndWaitForExit("Basic0", &BasicThread0, pri, 0, 0, -1, cpu);
}
}
}
void Spinner(TAny*)
{
FOREVER
{
}
}
void BasicThreadTest2()
{
TEST_PRINT("Kill an unresumed thread");
NFastSemaphore exitSem(0);
TInt cpu;
for_each_cpu(cpu)
{
TEST_PRINT1("Thread on CPU %d", cpu);
NThread* t = CreateUnresumedThreadSignalOnExit("Spinner", &Spinner, 33, 0, 0, -1, &exitSem, cpu);
TEST_OOM(t);
NKern::ThreadKill(t);
NKern::FSWait(&exitSem);
TEST_PRINT("OK");
}
}
void TimesliceTestThread(TAny* a)
{
NThread* pC = NKern::CurrentThread();
TUint id = pC->iNThreadBaseSpare7;
CircBuf* buf = (CircBuf*)a;
TUint32 thresh = norm_fast_counter_freq();
TUint32 thresh2 = thresh;
thresh /= 3000;
if (thresh < 10)
thresh = 10;
TUint32 last_interval_begin = norm_fast_counter();
TUint32 last_seen_time = norm_fast_counter();
FOREVER
{
TUint32 nfc = norm_fast_counter();
TUint32 delta = nfc - last_seen_time;
TUint32 interval_length = last_seen_time - last_interval_begin;
if (delta > thresh || interval_length > thresh2)
{
last_interval_begin = nfc;
TUint32 x = (id<<24) | interval_length;
TInt r = buf->TryPut(x);
if (r != KErrNone)
break;
}
last_seen_time = nfc;
}
}
void TimesliceTest()
{
// NThread* pC = NKern::CurrentThread();
// TInt my_priority = pC->i_NThread_BasePri;
// TInt this_cpu = NKern::CurrentCpu();
CircBuf* buf = CircBuf::New(1024);
TEST_OOM(buf);
NFastSemaphore exitSem(0);
TInt cpu;
TInt i;
TInt id = 0;
NThread* t[KMaxCpus*3];
TInt timeslice[3] =
{
__microseconds_to_timeslice_ticks(20000),
__microseconds_to_timeslice_ticks(23000),
__microseconds_to_timeslice_ticks(19000)
};
TInt expected[3] =
{
__microseconds_to_norm_fast_counter(20000),
__microseconds_to_norm_fast_counter(23000),
__microseconds_to_norm_fast_counter(19000)
};
for_each_cpu(cpu)
{
for (i=0; i<3; ++i)
{
t[id] = CreateThreadSignalOnExit("Timeslice", &TimesliceTestThread, 10, buf, 0, timeslice[i], &exitSem, cpu);
TEST_OOM(t[id]);
t[id]->iNThreadBaseSpare7 = id;
++id;
}
nfcfspin(__microseconds_to_norm_fast_counter(1000));
}
for (i=0; i<id; ++i)
{
NKern::FSWait(&exitSem);
TEST_PRINT("Thread exited");
}
TUint32 x;
TUint32 xtype = 0;
TUint32 ncpus = NKern::NumberOfCpus();
TUint32 xcpu = (ncpus>1) ? 1 : 0;
while (buf->TryGet(x)==KErrNone)
{
TUint32 id = x>>24;
TUint32 time = x&0xffffff;
TEST_PRINT2("Id %d Time %d", id, time);
TUint32 xid = xcpu*3 + xtype;
if (xcpu==0 && ++xtype==3)
xtype=0;
if (++xcpu == ncpus)
xcpu=0;
TEST_RESULT2(id==xid, "Expected id %d got id %d", xid, id);
TUint32 exp = expected[id%3];
TUint32 tol = exp/100;
if (tol < 2)
tol = 2;
TUint32 diff = (time > exp) ? time - exp : exp - time;
TEST_RESULT2(diff < tol, "Out of Tolerance: exp %d got %d", exp, time);
}
delete buf;
}
struct SThreadInfo2
{
enum {ENumTimes=8};
TInt Add(TUint32 aTime, TUint32 aId);
NFastMutex* iMutex;
TInt iSpin1;
TInt iSpin2;
TInt iSpin3;
NThread* iThread2;
volatile TInt iCount;
volatile TUint32 iId[ENumTimes];
volatile TUint32 iTime[ENumTimes];
};
TInt SThreadInfo2::Add(TUint32 aTime, TUint32 aId)
{
TInt c = __e32_atomic_tas_ord32(&iCount, ENumTimes, 0, 1);
if (c>=ENumTimes)
return KErrOverflow;
iTime[c] = aTime;
iId[c] = aId;
return KErrNone;
}
/*
If Thread1 and Thread2 on different CPUs:
Point0
PointA just after Point0
PointB PointA + spin1
PointE PointA + spin1
PointC PointB + spin2
PointD PointB + spin2
PointF PointE + spin3
If Thread1 and Thread2 on same CPU, no mutex:
Point0
PointA just after Point0
PointB PointA + spin1 or PointA + spin1 + timeslice if spin1>=timeslice
PointE PointA + spin1 or PointA + timeslice whichever is later
If Thread1 and Thread2 on same CPU, mutex:
Point0
PointA just after Point0
PointB PointA + spin1
PointC PointB + spin2
PointE PointA + spin1 +spin2 or PointA + timeslice whichever is later
PointD PointA + spin1 + spin2 if (spin1+spin2)<timeslice, otherwise PointA + spin1 + spin2 + timeslice
*/
void TimesliceTest2Thread1(TAny* a)
{
SThreadInfo2& info = *(SThreadInfo2*)a;
TEST_RESULT(info.Add(norm_fast_counter(),1)==KErrNone, "Add failed"); // Point A
if (info.iMutex)
NKern::FMWait(info.iMutex);
nfcfspin(info.iSpin1);
NKern::ThreadResume(info.iThread2);
TEST_RESULT(info.Add(norm_fast_counter(),1)==KErrNone, "Add failed"); // Point B
nfcfspin(info.iSpin2);
TEST_RESULT(info.Add(norm_fast_counter(),1)==KErrNone, "Add failed"); // Point C
if (info.iMutex)
NKern::FMSignal(info.iMutex);
TEST_RESULT(info.Add(norm_fast_counter(),1)==KErrNone, "Add failed"); // Point D
nfcfspin(__microseconds_to_norm_fast_counter(100000));
}
void TimesliceTest2Thread2(TAny* a)
{
SThreadInfo2& info = *(SThreadInfo2*)a;
TEST_RESULT(info.Add(norm_fast_counter(),2)==KErrNone, "Add failed"); // Point E
nfcfspin(info.iSpin3);
TEST_RESULT(info.Add(norm_fast_counter(),2)==KErrNone, "Add failed"); // Point F
nfcfspin(__microseconds_to_norm_fast_counter(100000));
}
void DoTimesliceTest2(TInt aCpu, TInt aSpin1, TInt aSpin2, TInt aSpin3, TBool aUseMutex)
{
TEST_PRINT5("TT2: C=%1d S1=%d S2=%d S3=%d M=%1d", aCpu, aSpin1, aSpin2, aSpin3, aUseMutex);
TInt this_cpu = NKern::CurrentCpu();
NFastSemaphore exitSem(0);
NFastMutex mutex;
SThreadInfo2 info;
info.iMutex = aUseMutex ? &mutex : 0;
info.iSpin1 = aSpin1;
info.iSpin2 = aSpin2;
info.iSpin3 = aSpin3;
info.iCount = 0;
TInt timeslice = __microseconds_to_timeslice_ticks(5000);
NThread* t1 = CreateUnresumedThreadSignalOnExit("Thread1", &TimesliceTest2Thread1, 10, &info, 0, timeslice, &exitSem, this_cpu);
TEST_OOM(t1);
info.iThread2 = CreateUnresumedThreadSignalOnExit("Thread2", &TimesliceTest2Thread2, 10, &info, 0, timeslice, &exitSem, aCpu);
TEST_OOM(info.iThread2);
NKern::ThreadResume(t1);
TEST_RESULT(info.Add(norm_fast_counter(),0)==KErrNone, "Add failed"); // Point 0
NKern::FSWait(&exitSem);
NKern::FSWait(&exitSem);
TEST_RESULT1(info.iCount==7, "Wrong count %d", info.iCount);
TInt i;
TUint32 pointA=0, pointB=0, pointC=0, pointD=0, pointE=0, pointF=0;
TInt n1=0, n2=0;
TUint32 delta = __microseconds_to_norm_fast_counter(100);
TUint32 ts = __microseconds_to_norm_fast_counter(5000);
for (i=0; i<info.iCount; ++i)
{
if (i>0)
{
TUint32 id = info.iId[i];
TUint32 x = info.iTime[i] - info.iTime[0];
TEST_PRINT2("%d: %d", id, x);
if (id==1)
{
switch(++n1)
{
case 1: pointA = x; break;
case 2: pointB = x; break;
case 3: pointC = x; break;
case 4: pointD = x; break;
}
}
else
{
switch(++n2)
{
case 1: pointE = x; break;
case 2: pointF = x; break;
}
}
}
}
TEST_RESULT(RANGE_LQ(pointA, delta), "pointA");
if (aCpu != this_cpu)
{
TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointB, TUint32(aSpin1)+delta), "pointB");
TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointE, TUint32(aSpin1)+delta), "pointE");
TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointC, pointB+aSpin2+delta), "pointC");
TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointD, pointB+aSpin2+delta), "pointD");
TEST_RESULT(RANGE_CHECK(pointE+aSpin3, pointF, pointE+aSpin3+delta), "pointF");
}
else if (aUseMutex)
{
TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointB, aSpin1+delta), "pointB");
TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointC, pointB+aSpin2+delta), "pointC");
TUint32 xpe = aSpin1 + aSpin2;
TUint32 xpd = xpe;
if (xpe < ts)
xpe = ts;
else
xpd += ts;
TEST_RESULT(RANGE_CHECK(xpe, pointE, xpe+delta), "pointE");
TEST_RESULT(RANGE_CHECK(xpd, pointD, xpd+delta), "pointD");
}
else
{
TUint32 xpb = aSpin1;
TUint32 xpe = aSpin1;
if (xpb >= ts)
xpb += ts;
else
xpe = ts;
TEST_RESULT(RANGE_CHECK(xpb, pointB, xpb+delta), "pointB");
TEST_RESULT(RANGE_CHECK(xpe, pointE, xpe+delta), "pointE");
}
}
void TimesliceTest2()
{
TInt cpu;
TInt ms = __microseconds_to_norm_fast_counter(1000);
for_each_cpu(cpu)
{
DoTimesliceTest2(cpu, 1*ms, 10*ms, 10*ms, FALSE);
DoTimesliceTest2(cpu, 2*ms, 10*ms, 10*ms, FALSE);
DoTimesliceTest2(cpu, 7*ms, 20*ms, 20*ms, FALSE);
DoTimesliceTest2(cpu, 1*ms, 1*ms, 10*ms, TRUE);
DoTimesliceTest2(cpu, 1*ms, 2*ms, 10*ms, TRUE);
DoTimesliceTest2(cpu, 2*ms, 2*ms, 10*ms, TRUE);
DoTimesliceTest2(cpu, 7*ms, 7*ms, 10*ms, TRUE);
DoTimesliceTest2(cpu, 7*ms, 7*ms, 50*ms, TRUE);
}
}
struct SThreadInfo3
{
enum TTestType
{
ESpin,
ECount,
EWaitFS,
EWaitFM,
EExit,
EHoldFM,
};
TTestType iType;
TAny* iObj;
TInt iPri;
TInt iCpu;
volatile TInt iCount;
volatile TInt iCurrCpu;
volatile TBool iStop;
NFastSemaphore* iExitSem;
TInt iExitCpu;
void Set(TTestType aType, TAny* aObj, TInt aPri, TInt aCpu)
{iType=aType; iObj=aObj; iPri=aPri; iCpu=aCpu; iCount=0; iCurrCpu=-1; iStop=FALSE; iExitSem=0; iExitCpu=-1;}
NThread* CreateThread(const char* aName, NFastSemaphore* aExitSem);
static void ExitHandler(TAny* aP, NThread* aT, TInt aC);
};
void BasicThread3(TAny* a)
{
SThreadInfo3& info = *(SThreadInfo3*)a;
switch (info.iType)
{
case SThreadInfo3::ESpin:
FOREVER
{
info.iCurrCpu = NKern::CurrentCpu();
}
case SThreadInfo3::ECount:
FOREVER
{
info.iCurrCpu = NKern::CurrentCpu();
__e32_atomic_add_ord32(&info.iCount, 1);
}
case SThreadInfo3::EWaitFS:
NKern::FSSetOwner((NFastSemaphore*)info.iObj, 0);
NKern::FSWait((NFastSemaphore*)info.iObj);
break;
case SThreadInfo3::EWaitFM:
NKern::FMWait((NFastMutex*)info.iObj);
NKern::FMSignal((NFastMutex*)info.iObj);
break;
case SThreadInfo3::EExit:
break;
case SThreadInfo3::EHoldFM:
NKern::FMWait((NFastMutex*)info.iObj);
while (!info.iStop)
{
info.iCurrCpu = NKern::CurrentCpu();
__e32_atomic_add_ord32(&info.iCount, 1);
}
NKern::FMSignal((NFastMutex*)info.iObj);
break;
}
}
void SThreadInfo3::ExitHandler(TAny* aP, NThread* aT, TInt aC)
{
SThreadInfo3& info = *(SThreadInfo3*)aP;
switch (aC)
{
case EInContext:
info.iExitCpu = NKern::CurrentCpu();
break;
case EBeforeFree:
{
NKern::ThreadSuspend(aT, 1);
NKern::ThreadResume(aT);
NKern::ThreadResume(aT);
NKern::ThreadSuspend(aT, 1);
NKern::ThreadSuspend(aT, 1);
NKern::ThreadSuspend(aT, 1);
NKern::ThreadResume(aT);
NKern::ThreadForceResume(aT);
NKern::ThreadKill(aT);
NKern::ThreadSetPriority(aT, 63);
TEST_RESULT(aT->iPriority == 63, "Priority change when dead");
TUint32 aff = NKern::ThreadSetCpuAffinity(aT, 0xffffffffu);
TEST_RESULT(aff==TUint32(info.iExitCpu), "CPU affinity when dead");
aff = NKern::ThreadSetCpuAffinity(aT, info.iExitCpu);
TEST_RESULT(aff==0xffffffffu, "CPU affinity when dead");
break;
}
case EAfterFree:
NKern::FSSignal(info.iExitSem);
break;
}
}
NThread* SThreadInfo3::CreateThread(const char* aName, NFastSemaphore* aExitSem)
{
iExitSem = aExitSem;
iExitCpu = -1;
NThread* t = ::CreateThread(aName, &BasicThread3, iPri, this, 0, FALSE, -1, &SThreadInfo3::ExitHandler, this, iCpu);
TEST_OOM(t);
return t;
}
#define CHECK_RUNNING(info, cpu) \
do {TInt c1 = (info).iCount; NKern::Sleep(SLEEP_TIME); TEST_RESULT((info).iCount!=c1, "Not running"); TEST_RESULT((info).iCurrCpu==(cpu), "Wrong CPU"); } while(0)
#define CHECK_NOT_RUNNING(info, same_cpu) \
do {if (!same_cpu) NKern::Sleep(SLEEP_TIME); TInt c1 = (info).iCount; NKern::Sleep(SLEEP_TIME); TEST_RESULT((info).iCount==c1, "Running"); } while(0)
void DoBasicThreadTest3SemMutex(TInt aCpu, TInt aCpu2, TBool aMutex)
{
SThreadInfo3 info;
NThread* t;
NFastSemaphore xs(0);
NFastSemaphore s;
NFastMutex m;
if (aMutex)
{
TEST_PRINT("Operations while blocked on mutex");
}
else
{
TEST_PRINT("Operations while blocked on semaphore");
}
SThreadInfo3::TTestType type = aMutex ? SThreadInfo3::EWaitFM : SThreadInfo3::EWaitFS;
TAny* obj = aMutex ? (TAny*)&m : (TAny*)&s;
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single2", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - thread should exit
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single3", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - still suspended
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadResume(t); // resume - should now exit
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single4", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
if (aMutex)
NKern::FMSignal(&m);
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single5", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex and suspended
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
if (aMutex)
NKern::FMSignal(&m);
if (aCpu2>=0)
{
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single6", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked thread
aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - thread should exit
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU");
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single3", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked and suspended thread
aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - still suspended
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadResume(t); // resume - should now exit
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU");
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single4", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked thread
NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU");
if (aMutex)
NKern::FMSignal(&m);
info.Set(type, obj, 63, aCpu);
t = info.CreateThread("Single5", &xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
if (aMutex)
NKern::FMWait(&m);
NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex
NKern::Sleep(SLEEP_TIME);
if (!aMutex)
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked and suspended thread
NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex and suspended
NKern::FSWait(&xs);
if (!aMutex)
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU");
if (aMutex)
NKern::FMSignal(&m);
}
}
void DoBasicThreadTest3SemPri(TInt aCpu, TInt aCpu2)
{
(void)aCpu2;
TEST_PRINT("Change priority + semaphore");
TInt this_cpu = NKern::CurrentCpu();
TBool same_cpu = (aCpu == this_cpu);
SThreadInfo3 info;
NThread* t;
SThreadInfo3 info2;
NThread* t2;
NFastSemaphore xs(0);
NFastSemaphore s;
info.Set(SThreadInfo3::EWaitFS, &s, 10, aCpu);
t = info.CreateThread("SemPri1A", &xs);
NKern::ThreadResume(t); // resume thread - should wait on semaphore
NKern::Sleep(SLEEP_TIME);
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
info2.Set(SThreadInfo3::ECount, 0, 11, aCpu);
t2 = info2.CreateThread("SemPri1B", &xs);
NKern::ThreadResume(t2); // resume thread - should run in preference to first thread
CHECK_RUNNING(info2, aCpu);
NKern::ThreadSetPriority(t, 63); // change priority while blocked
NKern::FSSignal(&s); // signal semaphore - should run and exit immediately
NKern::FSWait(&xs);
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
CHECK_RUNNING(info2, aCpu);
info.Set(SThreadInfo3::EWaitFS, &s, 63, aCpu);
t = info.CreateThread("SemPri1C", &xs);
NKern::ThreadResume(t); // resume thread - should wait on semaphore
NKern::Sleep(SLEEP_TIME);
TEST_RESULT(s.iCount<0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
NKern::ThreadSetPriority(t, 1); // change priority while blocked
NKern::FSSignal(&s); // signal semaphore - shouldn't run because priority lower than 1B
NKern::Sleep(SLEEP_TIME);
TEST_RESULT(s.iCount==0, "Sem count");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU");
CHECK_RUNNING(info2, aCpu);
NKern::ThreadKill(t2);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::FSWait(&xs);
NKern::FSWait(&xs);
TEST_RESULT(info2.iExitCpu==aCpu, "Exit CPU");
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
}
void DoBasicThreadTest3MutexPri(TInt aCpu, TInt aCpu2, TBool aKill)
{
TEST_PRINT1("Change priority + mutex ... kill=%d", aKill);
TInt this_cpu = NKern::CurrentCpu();
TBool same_cpu = (aCpu == this_cpu);
// TBool same_cpu2 = (aCpu2 == this_cpu);
SThreadInfo3 info;
NThread* t;
SThreadInfo3 info2;
NThread* t2;
SThreadInfo3 info3;
NThread* t3;
NFastSemaphore xs(0);
NFastMutex m;
info.Set(SThreadInfo3::EHoldFM, &m, 10, aCpu);
t = info.CreateThread("MutexPri1A", &xs);
NKern::ThreadResume(t); // start first thread - it should grab mutex then spin
CHECK_RUNNING(info, aCpu);
TEST_RESULT(t->iPriority==10, "Priority");
info2.Set(SThreadInfo3::EWaitFM, &m, 12, aCpu);
t2 = info2.CreateThread("MutexPri1B", &xs);
info3.Set(SThreadInfo3::ECount, 0, 11, aCpu);
t3 = info3.CreateThread("MutexPri1C", &xs);
NKern::ThreadResume(t3); // start t3 - should preempt t1
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t2); // start t2 - should wait on mutex, increasing t1's priority in the process
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(info2.iExitCpu==-1, "Exit CPU");
TEST_RESULT(t->iPriority==12, "Priority");
NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should lower t1's as well so t1 stops running
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadResume(t2); // resume t2 - t1 should now regain inherited priority
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
TEST_RESULT(info2.iExitCpu==-1, "Exit CPU");
NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should have no effect on t1
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 15); // raise t2's priority - should have no effect on t1
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should have no effect on t1
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadResume(t2); // resume t2 - should have no effect on t1
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
TEST_RESULT(info2.iExitCpu==-1, "Exit CPU");
if (aCpu2>=0)
{
NKern::ThreadSetCpuAffinity(t2, aCpu2); // move t2 - should have no effect on t1
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadResume(t2); // resume t2 - t1 should now regain inherited priority
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should lower t1's as well so t1 stops running
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(t->iPriority==15, "Priority");
TEST_RESULT(info2.iExitCpu==-1, "Exit CPU");
}
TInt xcpu = (aCpu2>=0) ? aCpu2: aCpu;
if (aKill)
{
NKern::ThreadKill(t2); // kill t2 - t1 should lose inherited priority
NKern::FSWait(&xs);
CHECK_RUNNING(info3, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(t->iPriority==10, "Priority");
TEST_RESULT(info2.iExitCpu==xcpu, "Exit CPU");
info.iStop = TRUE;
NKern::ThreadKill(t3);
NKern::FSWait(&xs);
NKern::FSWait(&xs);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
}
else
{
info.iStop = TRUE; // tell t1 to release mutex and exit
NKern::FSWait(&xs); // t2 should also exit
TEST_RESULT(info2.iExitCpu==xcpu, "Exit CPU");
TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); // t1 won't exit until we kill t3
NKern::ThreadKill(t3);
NKern::FSWait(&xs);
NKern::FSWait(&xs);
CHECK_NOT_RUNNING(info, same_cpu);
TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU");
}
CHECK_NOT_RUNNING(info3, same_cpu);
TEST_RESULT(info3.iExitCpu==aCpu, "Exit CPU");
}
void DoBasicThreadTest3(TInt aCpu, TInt aCpu2)
{
TEST_PRINT2("aCpu=%d aCpu2=%d", aCpu, aCpu2);
TInt this_cpu = NKern::CurrentCpu();
TBool same_cpu = (aCpu == this_cpu);
TBool same_cpu2 = (aCpu2 == this_cpu);
TBool same_cpux = (aCpu2>=0) ? same_cpu2 : same_cpu;
SThreadInfo3 info;
NThread* t;
NFastSemaphore xs(0);
info.Set(SThreadInfo3::ECount, 0, 11, aCpu);
t = info.CreateThread("Single1", &xs);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSuspend(t, 1); // suspend newly created thread before it has been resumed
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - should still be suspended
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - now running
CHECK_RUNNING(info, aCpu);
NKern::ThreadResume(t); // resume while running - should be no-op
CHECK_RUNNING(info, aCpu);
NKern::ThreadSuspend(t, 1); // suspend running thread
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume
CHECK_RUNNING(info, aCpu);
NKern::ThreadSuspend(t, 3); // suspend running thread multiple times
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - still suspended twice
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - still suspended once
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - now running
CHECK_RUNNING(info, aCpu);
NKern::ThreadSuspend(t, 3); // suspend multiple times
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadForceResume(t); // force resume - cancel all suspensions at once
CHECK_RUNNING(info, aCpu);
NKern::ThreadSuspend(t, 1); // suspend running thread
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSuspend(t, 3); // suspend multiple times when already suspended
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - still suspended three times
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - still suspended twice
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - still suspended once
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume - now running
CHECK_RUNNING(info, aCpu);
if (aCpu2>=0)
{
NKern::ThreadSetCpuAffinity(t, aCpu2); // move running thread to another CPU
CHECK_RUNNING(info, aCpu2);
NKern::ThreadSetCpuAffinity(t, aCpu); // move it back
CHECK_RUNNING(info, aCpu);
NKern::ThreadSuspend(t, 2); // suspend
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetCpuAffinity(t, aCpu2); // move suspended thread to another CPU
CHECK_NOT_RUNNING(info, same_cpu2);
NKern::ThreadResume(t); // resume - still suspended
CHECK_NOT_RUNNING(info, same_cpu2);
NKern::ThreadResume(t); // resume - now running on other CPU
CHECK_RUNNING(info, aCpu2);
}
NKern::ThreadKill(t);
CHECK_NOT_RUNNING(info, same_cpux);
NKern::FSWait(&xs);
TEST_RESULT(info.iExitCpu == ((aCpu2>=0)?aCpu2:aCpu), "Exit CPU");
SThreadInfo3 info2;
NThread* t2;
info.Set(SThreadInfo3::ECount, 0, 10, aCpu);
t = info.CreateThread("Pair1A", &xs);
CHECK_NOT_RUNNING(info, same_cpu);
info2.Set(SThreadInfo3::ECount, 0, 11, aCpu);
t2 = info2.CreateThread("Pair1B", &xs);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadResume(t); // resume new thread
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadResume(t2); // resume higher priority thread - should preempt
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t, 12); // increase priority of ready but not running thread - should preempt
CHECK_RUNNING(info, aCpu);
NKern::ThreadSetPriority(t, 10); // lower priority of running thread - should yield
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t2, 9); // lower priority of running thread - should yield
CHECK_RUNNING(info, aCpu);
NKern::ThreadSetPriority(t2, 11); // increase priority of ready but not running thread - should preempt
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t2, 14); // increase priority of running thread - stays running
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t, 13); // check priority increase has occurred
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t2, 11); //
CHECK_RUNNING(info, aCpu);
NKern::ThreadSetPriority(t, 10); //
CHECK_NOT_RUNNING(info, same_cpu);
if (aCpu2>=0)
{
NKern::ThreadSetCpuAffinity(t, aCpu2); // move ready but not running thread to other CPU
CHECK_RUNNING(info, aCpu2);
CHECK_RUNNING(info2, aCpu);
NKern::ThreadSetCpuAffinity(t, aCpu); // move it back
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetCpuAffinity(t2, aCpu2); // move running thread to other CPU - let other thread run on this one
CHECK_RUNNING(info, aCpu);
CHECK_RUNNING(info2, aCpu2);
NKern::ThreadSetCpuAffinity(t2, aCpu); // move it back
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
}
NKern::ThreadSuspend(t2, 1); // suspend running thread
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadSetPriority(t2, 9); // lower priority while suspended
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadResume(t2); // resume - can't now start running again
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadSuspend(t2, 1); // suspend again
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadSetPriority(t2, 11); // increase priority while suspended
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadResume(t2); // resume - starts running again
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSuspend(t, 1); // suspend ready but not running thread
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadSetPriority(t2, 1); // lower running thread priority - stays running
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
NKern::ThreadResume(t); // resume other thread - now preempts
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadSetPriority(t2, 11); // increase other thread priority - should preempt
CHECK_RUNNING(info2, aCpu);
CHECK_NOT_RUNNING(info, same_cpu);
if (aCpu2>=0)
{
NKern::ThreadSuspend(t2, 1); // suspend running thread
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu);
NKern::ThreadSetCpuAffinity(t2, aCpu2); // move suspended thread to other CPU
CHECK_RUNNING(info, aCpu);
CHECK_NOT_RUNNING(info2, same_cpu2);
NKern::ThreadResume(t2); // resume - should start running on other CPU
CHECK_RUNNING(info, aCpu);
CHECK_RUNNING(info2, aCpu2);
}
NKern::ThreadKill(t2);
CHECK_NOT_RUNNING(info2, same_cpux);
CHECK_RUNNING(info, aCpu);
NKern::ThreadKill(t);
NKern::FSWait(&xs);
NKern::FSWait(&xs);
TEST_RESULT(info2.iExitCpu == ((aCpu2>=0)?aCpu2:aCpu), "Exit CPU");
TEST_RESULT(info.iExitCpu == aCpu, "Exit CPU");
DoBasicThreadTest3SemMutex(aCpu, aCpu2, FALSE);
DoBasicThreadTest3SemMutex(aCpu, aCpu2, TRUE);
DoBasicThreadTest3SemPri(aCpu, aCpu2);
DoBasicThreadTest3MutexPri(aCpu, aCpu2, FALSE);
DoBasicThreadTest3MutexPri(aCpu, aCpu2, TRUE);
}
void BasicThreadTest3()
{
TEST_PRINT("Testing miscellaneous thread operations");
DoBasicThreadTest3(0,1);
DoBasicThreadTest3(1,0);
}
#ifdef __SMP__
struct SThreadGroupTest1Info
{
volatile TUint32* iSharedCount;
volatile TUint32 iThreadCount;
volatile TBool iDone;
TUint32 iLimit;
};
TUint32 Inc(TUint32 a)
{
return a+1;
}
NThreadGroup TG1;
//////////////////////////////////////////////////////////////////////////////
// This thread function increments its iThreadCount until it reaches iLimit
// Each time around the loop it increments iSharedCount with interrupts
// disabled, but without otherwise taking any precautions to be atomic.
//
// If the thread is in the group, then this should behave the same as on a
// uniprocessor system: the increment is atomic. Otherwise, some updates will
// be lost.
void ThreadGroupTest1Thread(TAny* aPtr)
{
SThreadGroupTest1Info& a = *(SThreadGroupTest1Info*)aPtr;
a.iThreadCount = 0;
NKern::ThreadSetPriority(NKern::CurrentThread(), 12);
FOREVER
{
TUint32 x = ++a.iThreadCount;
TInt irq = NKern::DisableAllInterrupts();
TUint32 y = *a.iSharedCount;
y = Inc(y);
*a.iSharedCount = y;
NKern::RestoreInterrupts(irq);
if (x>=a.iLimit)
break;
}
a.iDone = TRUE;
NKern::WaitForAnyRequest();
}
//////////////////////////////////////////////////////////////////////////////
// ThreadGroupTest1
//
// Attempt to prove various properties of thread group scheduling by creating
// a number of copies of a thread that manipulate a shared counter.
//
// 1) Priority scheduling is strictly observed within a group - lower priority
// threads do not run if any higher priority threads are runnable, no matter
// the number of available CPUs.
// 2) Only one thread in a group is ever running at one time, regardless of
// priorities or the number of available CPUs.
//
// Parameters:
// aCount: how many threads to create
// aJoin: whether to have threads join the group
void ThreadGroupTest1(TInt aCount, TBool aJoin, TBool aMigrate, TBool aReJoin)
{
TEST_PRINT4("ThreadGroupTest1 aCount=%d aJoin=%d aMigrate=%d aReJoin=%d", aCount, aJoin, aMigrate, aReJoin);
NFastSemaphore exitSem(0);
NThread* t[16];
SThreadGroupTest1Info info[16];
volatile TUint32 shared=0;
memclr(t,sizeof(t));
memclr(&info,sizeof(info));
TInt i;
NThreadGroup* group = aJoin ? &TG1 : 0;
SNThreadGroupCreateInfo ginfo;
ginfo.iCpuAffinity = 0xffffffff;
ginfo.iDestructionDfc = 0; //FIXME
TInt r = KErrNone;
if (group)
r = NKern::GroupCreate(group, ginfo);
TEST_RESULT(r==KErrNone, "");
NThreadGroup* g;
g = NKern::LeaveGroup();
TEST_RESULT(!g, "");
char name[8]={0x54, 0x47, 0x54, 0x31, 0, 0, 0, 0};
for (i=0; i<aCount; ++i)
{
info[i].iThreadCount = KMaxTUint32;
info[i].iSharedCount = &shared;
info[i].iLimit = 10000000;
name[4] = (char)('a'+i);
t[i] = CreateUnresumedThreadSignalOnExit(name, &ThreadGroupTest1Thread, 17, &info[i], 0, __microseconds_to_timeslice_ticks(2000), &exitSem, 0xffffffff, group);
TEST_OOM(t[i]);
}
if (group)
{
NKern::JoinGroup(group);
}
for (i=0; i<aCount; ++i)
{
// Each thread starts with count KMaxTUint32
TEST_RESULT(info[i].iThreadCount == KMaxTUint32, "");
NKern::ThreadResume(t[i]);
// Property 1:
// After resuming, the thread is higher priority than this one.
// It sets the count to 0 then lowers its priority to less than this.
// Thus, if we are in a group with it, then we should get preempted while
// it sets its count, then regain control after it does. If we were not in
// a group, we could observe other values of iThreadCount at this point as
// it may not have run at all (scheduled on another CPU which is busy with
// a higher priority thread) or may have run for longer (on another CPU)
if (group)
{
TEST_RESULT(info[i].iThreadCount == 0, "");
}
TEST_PRINT2("Thread %d Count=%d", i, info[i].iThreadCount);
}
if (group)
{
TEST_PRINT2("Group Count=%d, SharedCount=%d", group->iThreadCount, shared);
TEST_RESULT(group->iThreadCount == aCount+1, "");
g = NKern::LeaveGroup();
TEST_RESULT(g==group, "");
g = NKern::LeaveGroup();
TEST_RESULT(!g, "");
}
else
{
TEST_PRINT1("SharedCount=%d", shared);
}
if (aMigrate)
{
TInt cpu = 0;
TInt ncpus = NKern::NumberOfCpus();
TUint32 s0 = shared - 1;
FOREVER
{
TInt dead = 0;
for (i=0; i<aCount; ++i)
if (info[i].iDone)
++dead;
if (dead == aCount)
break;
if (shared != s0)
{
if (++cpu == ncpus)
cpu = 1;
NKern::ThreadSetCpuAffinity(t[aCount-1], cpu);
s0 = shared;
}
nfcfspin(__microseconds_to_norm_fast_counter(2797));
if (aReJoin)
{
NKern::JoinGroup(group);
TEST_RESULT(NKern::CurrentCpu()==cpu,"");
TUint32 s1 = shared;
nfcfspin(__microseconds_to_norm_fast_counter(2797));
TEST_RESULT(shared==s1,"");
NThreadGroup* gg = NKern::LeaveGroup();
TEST_RESULT(gg==group,"");
NKern::ThreadSetCpuAffinity(NKern::CurrentThread(), 0xffffffff);
}
}
}
for (i=0; i<aCount; ++i)
{
NKern::ThreadRequestSignal(t[i]);
}
for (i=0; i<aCount; ++i)
{
NKern::FSWait(&exitSem);
}
TUint32 total = 0;
for (i=0; i<aCount; ++i)
{
TEST_PRINT2("Thread %d Count=%d", i, info[i].iThreadCount);
TEST_RESULT(info[i].iThreadCount == info[i].iLimit, "");
total += info[i].iLimit;
}
TEST_PRINT1("SharedCount=%d", shared);
if (aJoin)
{
// Property 2:
// If the threads were all in a group, then disabling interrupts would
// suffice to make the increment atomic, and the total count should be
// the same as the sum of the per-thread counts
TEST_RESULT(shared == total, "");
}
else
{
// Property 2 continued:
// If the threads were not in a group, then disabling interrupts is not
// enough, and it's overwhelmingly likely that at least one increment
// will've been missed.
TEST_RESULT(shared < total, "");
}
if (group)
NKern::GroupDestroy(group);
}
#endif
void BasicThreadTests()
{
BasicThreadTest1();
BasicThreadTest2();
TimesliceTest();
TimesliceTest2();
BasicThreadTest3();
#ifdef __SMP__
ThreadGroupTest1(2,0,FALSE,FALSE);
ThreadGroupTest1(2,1,FALSE,FALSE);
ThreadGroupTest1(3,0,FALSE,FALSE);
ThreadGroupTest1(3,1,FALSE,FALSE);
ThreadGroupTest1(3,1,TRUE,FALSE);
ThreadGroupTest1(3,1,TRUE,TRUE);
#endif
}