// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\heap\t_fail.cpp
// Overview:
// Test deterministic, random and fail-next heap failure modes.
// API Information:
// RHeap.
// Details:
// - Simulate the EFailNext, EDeterministic, ERandom, ETrueRandom,
// ENone modes of heap allocation failures and the burst variants.
// - Reallocate the size of an existing cell without moving it
// and check the result is as expected.
// - Check whether heap has been corrupted by all the tests.
// Platforms/Drives/Compatibility:
// All
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <hal.h>
#include <f32file.h>
#include <e32panic.h>
#include <e32def.h>
#include <e32def_private.h>
#include <e32ldr.h>
#include <e32ldr_private.h>
#include "d_kheap.h"
LOCAL_D RTest test(_L("T_FAIL"));
RKHeapDevice KHeapDevice;
#if defined _DEBUG
/**
Test we fail burst times for EBurstFailNext
Defined as a macro so that it is easier to determine which test is failing.
@param aCount The number of allocations before it should fail.
@param aBurst The number of allocations that should fail.
*/
#define __UHEAP_TEST_BURST_FAILNEXT(aCount, aBurst) \
__UHEAP_BURSTFAILNEXT(aCount, aBurst); \
TEST_BURST_FAILNEXT(__UHEAP_CHECKFAILURE, aCount, aBurst)
#define __RHEAP_TEST_BURST_FAILNEXT(aHeap, aCount, aBurst) \
__RHEAP_BURSTFAILNEXT(aHeap, aCount, aBurst); \
TEST_BURST_FAILNEXT(__RHEAP_CHECKFAILURE(aHeap), aCount, aBurst)
#define __KHEAP_TEST_BURST_FAILNEXT(aCount, aBurst) \
__KHEAP_BURSTFAILNEXT(aCount, aBurst); \
test_Equal(0, __KHEAP_CHECKFAILURE); \
test_KErrNone(KHeapDevice.TestBurstFailNext(aCount, aBurst)); \
test_Equal(aBurst, __KHEAP_CHECKFAILURE)
#define TEST_BURST_FAILNEXT(aCheckFailure, aCount, aBurst) \
{ \
test_Equal(0, aCheckFailure); \
for (i = 0; i < aCount; i++) \
{ \
if (i < aCount - 1) \
{ \
p = new TInt; \
test_NotNull(p); \
delete p; \
} \
else \
{ \
for (TUint j = 0; j < aBurst; j++) \
{ \
p = new TInt; \
test_Equal(NULL, p); \
test_Equal(j + 1, aCheckFailure); \
} \
} \
} \
p = new TInt; \
test_NotNull(p); \
delete p; \
}
/**
Test we fail burst times for EBurstDeterministic
Defined as a macro so that it is easier to determine which test is failing.
@param aRate The rate of each set of failures.
@param aBurst The number of allocations that should fail.
*/
#define __UHEAP_TEST_BURST_DETERMINISTIC(aRate, aBurst) \
__UHEAP_SETBURSTFAIL(RHeap::EBurstDeterministic, aRate, aBurst); \
TEST_BURST_DETERMINISTIC(__UHEAP_CHECKFAILURE, aRate, aBurst)
#define __RHEAP_TEST_BURST_DETERMINISTIC(aHeap, aRate, aBurst) \
__RHEAP_SETBURSTFAIL(aHeap, RHeap::EBurstDeterministic, aRate, aBurst); \
TEST_BURST_DETERMINISTIC(__RHEAP_CHEAKFAILURE(aHeap), aRate, aBurst)
#define __KHEAP_TEST_BURST_DETERMINISTIC(aRate, aBurst) \
__KHEAP_SETBURSTFAIL(RHeap::EBurstDeterministic, aRate, aBurst); \
test_Equal(0, __KHEAP_CHECKFAILURE); \
test_KErrNone(KHeapDevice.TestBurstDeterministic(aRate, aBurst)); \
test_Equal(aBurst * KHeapFailCycles, __KHEAP_CHECKFAILURE)
#define TEST_BURST_DETERMINISTIC(aCheckFailure, aRate, aBurst) \
{ \
test_Equal(0, aCheckFailure); \
TUint failures = 0; \
for (i = 1; i <= aRate * KHeapFailCycles; i++) \
{ \
if (i % aRate == 0) \
{ \
for (TInt j = 0; j < aBurst; j++) \
{ \
p = new TInt; \
test_Equal(NULL, p); \
test_Equal(++failures, aCheckFailure); \
} \
} \
else \
{ \
p = new TInt; \
test(p!=NULL); \
delete p; \
} \
} \
}
/**
Test we fail burst times for EBurstRandom and EBurstTrueRandom.
Even though it is random it should always fail within aRate allocations.
Defined as a macro so that it is easier to determine which test is failing.
@param aRate The limiting rate of each set of failures.
@param aBurst The number of allocations that should fail.
*/
#define __UHEAP_TEST_BURST_RANDOM(aRate, aBurst) \
__UHEAP_SETBURSTFAIL(RHeap::EBurstRandom, aRate, aBurst); \
TEST_BURST_RANDOM(aRate, aBurst)
#define __RHEAP_TEST_BURST_RANDOM(aHeap, aRate, aBurst) \
__RHEAP_SETBURSTFAIL(aHeap, RHeap::EBurstRandom, aRate, aBurst); \
TEST_BURST_RANDOM(aRate, aBurst)
#define __UHEAP_TEST_BURST_TRUERANDOM(aRate, aBurst) \
__UHEAP_SETBURSTFAIL(RHeap::EBurstTrueRandom, aRate, aBurst); \
TEST_BURST_RANDOM(aRate, aBurst)
#define __RHEAP_TEST_BURST_TRUERANDOM(aHeap, aRate, aBurst) \
__RHEAP_SETBURSTFAIL(aHeap, RHeap::EBurstTrueRandom, aRate, aBurst); \
TEST_BURST_RANDOM(aRate, aBurst)
#define TEST_BURST_RANDOM(aRate, aBurst) \
failed = 0; \
for (i = 0; i < aRate * KHeapFailCycles; i++) \
{ \
p = new TInt; \
if (p == NULL) \
{/* we've started failing so check that we fail burst times*/ \
failed++; \
for (TInt j = 1; j < aBurst; j++) \
{ \
p = new TInt; \
test_Equal(NULL, p); \
} \
} \
delete p; \
} \
test_NotNull(failed);
struct SBurstPanicParams
{
TInt iRate;
TUint iBurst;
};
TInt TestBurstPanicThread(TAny* aParams)
{
SBurstPanicParams* burstParams = (SBurstPanicParams*) aParams;
__UHEAP_SETBURSTFAIL(RHeap::EBurstDeterministic, burstParams->iRate, burstParams->iBurst); \
return KErrNone;
}
#define __UHEAP_TEST_BURST_PANIC(aRate, aBurst) \
{ \
RThread thread; \
TRequestStatus status; \
SBurstPanicParams threadParams; \
threadParams.iRate = aRate; \
threadParams.iBurst = aBurst; \
test_KErrNone(thread.Create(_L("TestBurstPanicThread"), TestBurstPanicThread, 0x1000, NULL, (TAny*)&threadParams)); \
thread.Logon(status); \
thread.Resume(); \
User::WaitForRequest(status); \
test_Equal(EExitPanic, thread.ExitType()); \
test_Equal(ETHeapBadDebugFailParameter, status.Int()); \
CLOSE_AND_WAIT(thread); \
}
GLDEF_C TInt E32Main(void)
{
test.Title();
test.Start(_L("Test the heap debug failure mechanisms"));
// Prepare for __UHEAP tests
__UHEAP_RESET;
__UHEAP_MARK;
// Make sure that we can retrieve the failure type set with __UHEAP_SETFAIL
test.Next(_L("Set and get user heap failure simulation mode"));
__UHEAP_SETFAIL(RHeap::EFailNext, 1);
test(User::__DbgGetAllocFail(EFalse) == RHeap::EFailNext);
__UHEAP_SETFAIL(RHeap::ENone, 0);
// Make sure that we can retrieve the failure type set with __KHEAP_SETFAIL
test.Next(_L("Set and get kernel heap failure simulation mode"));
__KHEAP_SETFAIL(RHeap::EFailNext, 1);
test(User::__DbgGetAllocFail(ETrue) == RHeap::EFailNext);
__KHEAP_SETFAIL(RHeap::ENone, 0);
// Prepare for __RHEAP tests
TInt pageSize;
test_KErrNone(HAL::Get(HAL::EMemoryPageSize, pageSize));
RChunk heapChunk;
test_KErrNone(heapChunk.CreateLocal(pageSize<<1, pageSize<<1));
RHeap* rHeap = UserHeap::ChunkHeap(NULL, 0, pageSize);
test_NotNull(rHeap);
__RHEAP_RESET(rHeap);
__RHEAP_MARK(rHeap);
// Prepare for __KHEAP tests by:
// Turning off lazy dll unloading
RLoader l;
test(l.Connect()==KErrNone);
test(l.CancelLazyDllUnload()==KErrNone);
l.Close();
// Loading the kernel heap test driver
test.Next(_L("Load/open d_kheap test driver"));
TInt r = User::LoadLogicalDevice(KHeapTestDriverName);
test( r==KErrNone || r==KErrAlreadyExists);
if( KErrNone != (r=KHeapDevice.Open()) )
{
User::FreeLogicalDevice(KHeapTestDriverName);
test.Printf(_L("Could not open LDD"));
test(0);
}
__KHEAP_RESET;
__KHEAP_MARK;
//=============================================================================
test.Next(_L("Test __UHEAP EFailNext"));
TInt *p;
TInt *q;
p=new int;
test(p!=NULL);
delete p;
__UHEAP_FAILNEXT(1);
p=new int;
test(p==NULL);
p=new int;
test(p!=NULL);
delete p;
__UHEAP_FAILNEXT(2);
p=new int;
q=new int;
test(p!=NULL);
test(q==NULL);
delete p;
__UHEAP_FAILNEXT(10);
TUint i;
for (i=0; i<9; i++)
{
p=new int;
test(p!=NULL);
delete p;
}
p=new int;
test(p==NULL);
for (i=0; i<30; i++)
{
p=new int;
test(p!=NULL);
delete p;
}
// Test EFailNext with burst macro should default to burst of 1
__UHEAP_SETBURSTFAIL(RAllocator::EFailNext, 5, 5);
for (i = 0; i < 4; i++)
{
p = new TInt;
test_NotNull(p);
delete p;
}
p = new TInt;
test_Equal(NULL, p);
p = new TInt;
test_NotNull(p);
delete p;
//=============================================================================
test.Next(_L("Test __UHEAP BurstFailNext"));
__UHEAP_TEST_BURST_FAILNEXT(2, 1);
__UHEAP_TEST_BURST_FAILNEXT(10, 12);
__UHEAP_TEST_BURST_FAILNEXT(5, 50);
__UHEAP_TEST_BURST_FAILNEXT(50, 5);
// test using burst with non-burst macro should default to burst=1
__UHEAP_SETFAIL(RHeap::EBurstFailNext, 5);
for (i = 0; i < 4; i++)
{
p = new TInt;
test_NotNull(p);
delete p;
}
q = new TInt;
test_Equal(NULL, q);
q = new TInt;
test_NotNull(q);
delete q;
test.Next(_L("Test __RHEAP BurstFailNext"));
RHeap* origHeap = User::SwitchHeap(rHeap);
__RHEAP_TEST_BURST_FAILNEXT(rHeap, 2, 1);
__RHEAP_TEST_BURST_FAILNEXT(rHeap, 10, 12);
__RHEAP_TEST_BURST_FAILNEXT(rHeap, 5, 50);
__RHEAP_TEST_BURST_FAILNEXT(rHeap, 50, 5);
User::SwitchHeap(origHeap);
test.Next(_L("Test __KHEAP BurstFailNext"));
__KHEAP_TEST_BURST_FAILNEXT(1, 1);
__KHEAP_TEST_BURST_FAILNEXT(10, 12);
__KHEAP_TEST_BURST_FAILNEXT(5, 50);
__KHEAP_TEST_BURST_FAILNEXT(50, 5);
__KHEAP_RESET;
//=============================================================================
test.Next(_L("Test __UHEAP EDeterministic"));
__UHEAP_SETFAIL(RHeap::EDeterministic, 1);
for (i=0; i<20; i++)
{
p=new int;
test(p==NULL);
}
__UHEAP_SETFAIL(RHeap::EDeterministic, 2);
for (i=0; i<20; i++)
{
p=new int;
q=new int;
test(p!=NULL);
test(q==NULL);
delete p;
}
__UHEAP_SETFAIL(RHeap::EDeterministic, 11);
for (i=1; i<=100; i++)
{
p=new int;
if (i%11==0)
test(p==NULL);
else
test(p!=NULL);
delete p;
}
// Test using burst macro for non-burst fail type
// The burst value will be ignored.
__UHEAP_SETBURSTFAIL(RHeap::EDeterministic, 2, 3);
for (i=0; i<20; i++)
{
p=new int;
q=new int;
test(p!=NULL);
test(q==NULL);
delete p;
}
//=============================================================================
test.Next(_L("Test __UHEAP EBurstDeterministic"));
__UHEAP_TEST_BURST_DETERMINISTIC(1, 1);
__UHEAP_TEST_BURST_DETERMINISTIC(2, 1);
__UHEAP_TEST_BURST_DETERMINISTIC(11, 2);
__UHEAP_TEST_BURST_DETERMINISTIC(2, 3); // Test with burst > rate.
// Test setting EBurstDeterministic with non-burst MACRO
// it should still work but default to a burst rate of 1
__UHEAP_SETFAIL(RHeap::EBurstDeterministic, 2);
for (i=0; i<20; i++)
{
p = new int;
q = new int;
test_NotNull(p);
test_Equal(NULL, q);
delete p;
}
test.Next(_L("Test __RHEAP EBurstDeterministic"));
origHeap = User::SwitchHeap(rHeap);
__UHEAP_TEST_BURST_DETERMINISTIC(1, 1);
__UHEAP_TEST_BURST_DETERMINISTIC(2, 1);
__UHEAP_TEST_BURST_DETERMINISTIC(11, 2);
__UHEAP_TEST_BURST_DETERMINISTIC(2, 3); // Test with burst > rate.
User::SwitchHeap(origHeap);
test.Next(_L("Test __KHEAP EBurstDeterministic"));
__KHEAP_TEST_BURST_DETERMINISTIC(1, 1);
__KHEAP_TEST_BURST_DETERMINISTIC(2, 1);
__KHEAP_TEST_BURST_DETERMINISTIC(11, 2);
__KHEAP_TEST_BURST_DETERMINISTIC(2, 3); // Test with burst > rate.
__KHEAP_RESET;
//=============================================================================
test.Next(_L("Test __UHEAP ERandom"));
__UHEAP_SETFAIL(RHeap::ERandom, 1);
for (i=1; i<=100; i++)
{
p=new int;
test(p==NULL);
}
__UHEAP_SETFAIL(RHeap::ERandom, 2);
for (i=1; i<=100; i++)
{
p=new int;
q=new int;
test(p==NULL || q==NULL);
delete p;
delete q;
}
__UHEAP_SETFAIL(RHeap::ERandom, 10);
TInt failed=0;
for (i=0; i<10; i++)
{
p=new int;
if (p==NULL) failed++;
delete p;
}
test(failed);
for (i=0; i<10; i++)
{
p=new int;
if (p==NULL) failed++;
delete p;
}
test(failed>=2);
// Test using the burst macro for ERandom.
// Can't really check that it only fails once as being random
// it may fail again immediately after a previous failure.
__UHEAP_SETBURSTFAIL(RHeap::ERandom, 10, 5);
TEST_BURST_RANDOM(10, 1);
//=============================================================================
test.Next(_L("Test __UHEAP EBurstRandom"));
__UHEAP_TEST_BURST_RANDOM(10, 2);
__UHEAP_TEST_BURST_RANDOM(15, 5);
__UHEAP_TEST_BURST_RANDOM(10, 20);
// Test using EBurstRandom with non-burst macro.
// Can't really check that it only fails once as being random
// it may fail again immediately after a previous failure.
__UHEAP_SETFAIL(RHeap::EBurstRandom, 10);
__UHEAP_TEST_BURST_RANDOM(10, 1);
test.Next(_L("Test __RHEAP EBurstRandom"));
origHeap = User::SwitchHeap(rHeap);
__RHEAP_TEST_BURST_RANDOM(rHeap, 10, 2);
__RHEAP_TEST_BURST_RANDOM(rHeap, 15, 5);
__RHEAP_TEST_BURST_RANDOM(rHeap, 10, 20);
User::SwitchHeap(origHeap);
// No random modes for kernel heap
//=============================================================================
test.Next(_L("Test __UHEAP ETrueRandom"));
__UHEAP_SETFAIL(RHeap::ETrueRandom, 10);
failed=0;
for (i=0; i<10; i++)
{
p=new int;
if (p==NULL) failed++;
delete p;
}
test(failed);
for (i=0; i<10; i++)
{
p=new int;
if (p==NULL) failed++;
delete p;
}
test(failed>=2);
// Test using ETrueRandom with burst macro.
// Can't really check that it only fails once as being random
// it may fail again immediately after a previous failure.
__UHEAP_SETBURSTFAIL(RHeap::ETrueRandom, 10, 2);
TEST_BURST_RANDOM(10, 1);
//=============================================================================
test.Next(_L("Test __UHEAP EBurstTrueRandom"));
__UHEAP_TEST_BURST_TRUERANDOM(10, 2);
__UHEAP_TEST_BURST_TRUERANDOM(15, 5);
__UHEAP_TEST_BURST_TRUERANDOM(10, 20);
// Test using EBurstRandom with non-burst macro.
// Can't really check that it only fails once as being random
// it may fail again immediately after a previous failure.
__UHEAP_SETFAIL(RHeap::EBurstTrueRandom, 10);
TEST_BURST_RANDOM(10, 1);
test.Next(_L("Test __RHEAP EBurstTrueRandom"));
origHeap = User::SwitchHeap(rHeap);
__RHEAP_TEST_BURST_TRUERANDOM(rHeap, 10, 2);
__RHEAP_TEST_BURST_TRUERANDOM(rHeap, 15, 5);
__RHEAP_TEST_BURST_TRUERANDOM(rHeap, 10, 20);
User::SwitchHeap(origHeap);
// No random modes for kernel heap
//=============================================================================
test.Next(_L("Test __UHEAP ENone"));
__UHEAP_SETFAIL(RHeap::ENone, 0);
for (i=0; i<100; i++)
{
p=new int;
test(p!=NULL);
delete p;
}
// Test using ENone with burst macro.
__UHEAP_SETBURSTFAIL(RHeap::ENone, 0, 0);
for (i=0; i<100; i++)
{
p = new TInt;
test_NotNull(p);
delete p;
}
//=============================================================================
test.Next(_L("Test __UHEAP Reset"));
__UHEAP_SETFAIL(RHeap::EDeterministic, 1);
for (i=0; i<10; i++)
{
p=new int;
test(p==NULL);
}
__UHEAP_RESET;
p=new int;
test(p!=NULL);
delete p;
// Test using EReset with non-burst macro.
__UHEAP_SETFAIL(RHeap::EDeterministic, 1);
for (i=0; i<10; i++)
{
p=new int;
test(p==NULL);
}
__UHEAP_SETFAIL(RHeap::EReset, 1);
p=new int;
test(p!=NULL);
delete p;
// Test using EReset with burst macro.
__UHEAP_SETFAIL(RHeap::EDeterministic, 1);
for (i=0; i<10; i++)
{
p=new int;
test(p==NULL);
}
__UHEAP_SETBURSTFAIL(RHeap::EReset, 1, 1);
p=new int;
test(p!=NULL);
delete p;
//=============================================================================
test.Next(_L("Test ETHeapBadDebugFailParameter panics"));
__UHEAP_TEST_BURST_PANIC(50, KMaxTUint16 + 1);
__UHEAP_TEST_BURST_PANIC(KMaxTUint16 + 1, 2);
__UHEAP_TEST_BURST_PANIC(-50, 3);
// Test maximum aRate and aBurst values don't panic.
__UHEAP_TEST_BURST_FAILNEXT(2, KMaxTUint16); // Use failnext as quicker
__UHEAP_TEST_BURST_FAILNEXT(KMaxTUint16, 2);
//=============================================================================
test.Next(_L("Test __UHEAP User::ReAlloc without cell moving"));
TAny* a = User::Alloc(256);
test(a!=NULL);
__UHEAP_FAILNEXT(1);
TAny* a2 = User::ReAlloc(a,192);
test(a2==a);
a2 = User::ReAlloc(a,128);
test(a2==a);
a2 = User::ReAlloc(a,256);
test(a2==NULL);
a2 = User::ReAlloc(a,256);
test(a2==a);
User::Free(a);
//=============================================================================
// Clean up
__RHEAP_MARKEND(rHeap);
rHeap->Close();
__KHEAP_MARKEND;
// Ensure all kernel heap debug failures are not active for future tests etc.
__KHEAP_RESET;
KHeapDevice.Close();
User::FreeLogicalDevice(KHeapTestDriverName);
__UHEAP_MARKEND;
test.End();
return(KErrNone);
}
#else
GLDEF_C TInt E32Main()
//
// __KHEAP_SETFAIL etc. not available in release mode, so don't test
//
{
test.Title();
test.Start(_L("No tests in release mode"));
test.End();
return(KErrNone);
}
#endif