// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkernsmp\nk_irq.cpp
//
//
/**
@file
@internalTechnology
*/
#include <e32cmn.h>
#include <e32cmn_private.h>
#include "nk_priv.h"
#include <nk_irq.h>
NIrq Irq[NK_MAX_IRQS];
NIrqHandler Handlers[NK_MAX_IRQ_HANDLERS];
NIrqHandler* NIrqHandler::FirstFree;
extern "C" void send_irq_ipi(TSubScheduler*);
void StepCookie(volatile TUint16& p, TInt n)
{
TUint32 x = p<<17;
while(n--)
{
TUint32 y = x;
x<<=1;
y^=x;
x |= ((y>>31)<<17);
}
p = (TUint16)(x>>17);
}
NIrq::NIrq()
: iNIrqLock(TSpinLock::EOrderNIrq)
{
iIState = EWait;
iEventsPending = 0;
iEnabledEvents = 0;
iHwId = 0;
iX = 0;
}
TInt NIrq::BindRaw(NIsr aIsr, TAny* aPtr)
{
// Call only from thread context
TInt r = KErrNone;
Wait();
iNIrqLock.LockOnly();
if (iStaticFlags & EShared)
{
r = KErrAccessDenied;
goto error;
}
if ( (iIState & ERaw) || !iHandlers.IsEmpty())
{
r = KErrInUse;
goto error;
}
iHandlers.iA.iNext = (SDblQueLink*)aIsr;
iHandlers.iA.iPrev = (SDblQueLink*)aPtr;
__e32_atomic_ior_rel32(&iIState, ERaw);
error:
iNIrqLock.UnlockOnly();
Done();
return r;
}
TInt NIrq::UnbindRaw()
{
// Call only from thread context
TInt r = DisableRaw(TRUE);
if (r != KErrNone)
return r;
Wait();
iNIrqLock.LockOnly();
if (iIState & ERaw)
{
iHandlers.iA.iNext = 0;
iHandlers.iA.iPrev = 0;
++iGeneration; // release anyone still waiting in Disable()
__e32_atomic_and_rel32(&iIState, ~(ERaw|EUnbind));
}
iNIrqLock.UnlockOnly();
Done();
return r;
}
TInt NIrq::DisableRaw(TBool aUnbind)
{
TBool wait = FALSE;
TInt r = KErrNone;
TInt irq = __SPIN_LOCK_IRQSAVE(iNIrqLock);
if (!(iIState & ERaw))
r = KErrGeneral;
else
{
wait = TRUE;
if (aUnbind)
__e32_atomic_ior_acq32(&iIState, EUnbind);
if (!(iEnabledEvents & 1))
{
iEnabledEvents |= 1;
HwDisable();
// wait = TRUE;
}
}
__SPIN_UNLOCK_IRQRESTORE(iNIrqLock,irq);
TInt c = NKern::CurrentContext();
if (wait && c!=NKern::EInterrupt)
{
// wait for currently running handler to finish or interrupt to be reenabled
if (c==NKern::EThread)
NKern::ThreadEnterCS();
HwWaitCpus(); // ensure other CPUs have had a chance to accept any outstanding interrupts
TUint32 g = iGeneration;
while ( ((iIState >> 16) || HwPending()) && (iGeneration == g))
{
__chill();
}
if (c==NKern::EThread)
NKern::ThreadLeaveCS();
}
return r;
}
TInt NIrq::EnableRaw()
{
TInt r = KErrNone;
TInt irq = __SPIN_LOCK_IRQSAVE(iNIrqLock);
if (!(iIState & ERaw))
r = KErrGeneral;
else if (iIState & EUnbind)
r = KErrNotReady;
else if (iEnabledEvents & 1)
{
iEnabledEvents = 0;
HwEnable();
++iGeneration;
}
__SPIN_UNLOCK_IRQRESTORE(iNIrqLock,irq);
return r;
}
TInt NIrq::Bind(NIrqHandler* aH)
{
// Call only from thread context
TInt r = KErrInUse;
Wait();
if (!(iIState & ERaw))
{
r = KErrNone;
TBool empty = iHandlers.IsEmpty();
TBool shared = iStaticFlags & EShared;
TBool exclusive = iIState & NIrqHandler::EExclusive;
if (!empty)
{
if (!shared || exclusive)
{
r = KErrAccessDenied;
goto error;
}
NIrqHandler* h = _LOFF(iHandlers.First(), NIrqHandler, iIrqLink);
if (h->iHState & NIrqHandler::EExclusive)
{
r = KErrAccessDenied;
goto error;
}
}
aH->iIrq = this;
iHandlers.Add(&aH->iIrqLink);
}
error:
Done();
return r;
}
void NIrq::HwIsr()
{
TRACE_IRQ12(16, this, iVector, iIState);
TBool eoi_done = FALSE;
TUint32 rcf0 = EnterIsr(); // for initial run count
TUint32 rcf1 = iIState; // might have changed while we were waiting in EnterIsr()
if (rcf1 & ERaw)
{
if (!(rcf1 & EUnbind))
{
NIsr f = (NIsr)iHandlers.iA.iNext;
TAny* p = iHandlers.iA.iPrev;
(*f)(p);
}
HwEoi();
IsrDone();
return;
}
if (rcf0 >> 16)
{
HwEoi();
return;
}
if (!(iStaticFlags & ELevel))
{
eoi_done = TRUE;
HwEoi();
}
do {
// Handler list can't be touched now
SDblQueLink* anchor = &iHandlers.iA;
SDblQueLink* p = anchor->iNext;
while (p != anchor)
{
NIrqHandler* h = _LOFF(p, NIrqHandler, iIrqLink);
h->Activate(1);
p = p->iNext;
}
if (!eoi_done)
{
eoi_done = TRUE;
HwEoi();
}
if ((iStaticFlags & ELevel) && iEventsPending)
{
// For a level triggered interrupt make sure interrupt is disabled until
// all pending event handlers have run, to avoid a continuous interrupt.
TInt irq = __SPIN_LOCK_IRQSAVE(iNIrqLock);
if (iEventsPending)
{
iEnabledEvents |= 1;
HwDisable();
}
__SPIN_UNLOCK_IRQRESTORE(iNIrqLock,irq);
}
} while (IsrDone());
}
void NIrqHandler::Activate(TInt aCount)
{
TUint32 orig = DoActivate(aCount);
TRACE_IRQ12(17, this, orig, aCount);
if (orig & (EDisable|EUnbind|EActive))
return; // disabled or already active
if (iTied)
{
// we need to enforce mutual exclusion between the event handler
// and the tied thread or thread group, so the event handler must
// run on the CPU to which the thread or group is currently attached
// once the event has been attached to that CPU, the thread/group
// can't be migrated until the event handler completes.
// need a pending event count for the tied thread/group
// so we know when the thread/group can be migrated
TInt tied_cpu = iTied->BeginTiedEvent();
TInt this_cpu = NKern::CurrentCpu();
if (tied_cpu != this_cpu)
{
__e32_atomic_add_acq32(&iIrq->iEventsPending, 1);
TheSubSchedulers[tied_cpu].QueueEventAndKick(this);
// FIXME: move IRQ over to tied CPU if this is the only handler for that IRQ
// what to do about shared IRQs?
return;
}
}
// event can run on this CPU so run it now
if (aCount)
{
orig = EventBegin();
TRACE_IRQ8(18, this, orig);
(*iFn)(iPtr);
orig = EventDone();
TRACE_IRQ8(19, this, orig);
if (!(orig & EActive))
{
if (iTied)
iTied->EndTiedEvent();
return; // that was last occurrence or event now disabled
}
}
__e32_atomic_add_ord32(&iIrq->iEventsPending, 1);
// add event to this cpu
SubScheduler().QueueEventAndKick(this);
}
NIrqHandler::NIrqHandler()
{
iIrqLink.iNext = 0;
iIrq = 0;
iTied = 0;
iHState = EDisable|EBind|ENotReady|EEventHandlerIrq;
iFn = 0;
iPtr = 0;
memclr(iNIrqHandlerSpare, sizeof(iNIrqHandlerSpare));
}
void NIrqHandler::Free()
{
NKern::Lock();
NEventHandler::TiedLock.LockOnly();
if (!iTied) // Only free if iTied has been cleared
{
iIrqLink.iNext = FirstFree;
FirstFree = this;
}
NEventHandler::TiedLock.UnlockOnly();
NKern::Unlock();
}
NIrqHandler* NIrqHandler::Alloc()
{
NKern::Lock();
NEventHandler::TiedLock.LockOnly();
NIrqHandler* p = FirstFree;
if (p)
FirstFree = (NIrqHandler*)p->iIrqLink.iNext;
NEventHandler::TiedLock.UnlockOnly();
NKern::Unlock();
if (p)
new (p) NIrqHandler();
return p;
}
TInt NIrqHandler::Enable(TInt aHandle)
{
// call from any context
TBool reactivate = FALSE;
TInt r = KErrNotReady;
NIrq* pI = iIrq;
if (!pI)
return KErrNotReady;
TInt irq = __SPIN_LOCK_IRQSAVE(pI->iNIrqLock); // OK since NIrq's are never deleted
if (iIrq==pI && TUint(aHandle)==iHandle) // check handler not unbound
{
TUint32 orig = DoSetEnabled(); // clear EDisable and EBind provided neither EUnbind nor ENotReady set
if (!(orig & (EUnbind|ENotReady)))
{
r = KErrNone;
if (orig & EDisable) // check not already enabled
{
++iGeneration;
TUint32 n = pI->iEnabledEvents;
pI->iEnabledEvents += 2;
if (n==0)
pI->HwEnable(); // enable HW interrupt if this is first handler to be enabled
if ((orig >> 16) && !(orig & EActive))
// replay remembered interrupt(s)
reactivate = TRUE;
}
}
}
if (reactivate)
{
pI->iNIrqLock.UnlockOnly();
Activate(0);
pI->iNIrqLock.LockOnly();
}
__SPIN_UNLOCK_IRQRESTORE(pI->iNIrqLock,irq);
return r;
}
TInt NIrqHandler::Disable(TBool aUnbind, TInt aHandle)
{
// call from any context
NIrq* pI = iIrq;
if (!pI)
return KErrGeneral;
TInt irq = __SPIN_LOCK_IRQSAVE(pI->iNIrqLock); // OK since NIrq's are never deleted
if (iIrq != pI || TUint(aHandle)!=iHandle) // check handler not unbound
{
__SPIN_UNLOCK_IRQRESTORE(pI->iNIrqLock,irq);
return KErrGeneral;
}
TInt r = aUnbind ? KErrGeneral : KErrNone;
TUint32 f = aUnbind ? EUnbind|EDisable : EDisable;
TUint32 orig = __e32_atomic_ior_acq32(&iHState, f);
TUint32 g = iGeneration;
if (!(orig & EDisable)) // check not already disabled
{
pI->iEnabledEvents -= 2;
if (!pI->iEnabledEvents)
pI->HwDisable(); // disable HW interrupt if no more enabled handlers
}
if (aUnbind && !(orig & EUnbind))
{
volatile TUint16& cookie = *(volatile TUint16*)(((TUint8*)&iHandle)+2);
StepCookie(cookie, 1);
r = KErrNone;
}
__SPIN_UNLOCK_IRQRESTORE(pI->iNIrqLock,irq);
if (NKern::CurrentContext() != NKern::EInterrupt)
{
// wait for currently running handler to finish or interrupt to be reenabled
while ((iHState & EActive) && (iGeneration == g))
{
__chill();
}
}
return r;
}
TInt NIrqHandler::Unbind(TInt aId, NSchedulable* aTied)
{
TInt r = Disable(TRUE, aId); // waits for any current activation of ISR to finish
if (r==KErrNone || aTied) // returns KErrGeneral if someone else already unbound this interrupt handler
{
// Possible race condition here between tied thread termination and interrupt unbind.
// We need to be sure that the iTied field must be NULL before the tied thread/group
// is destroyed.
NKern::Lock();
NEventHandler::TiedLock.LockOnly(); // this guarantees pH->iTied cannot change
NSchedulable* t = iTied;
if (t)
{
// We need to guarantee the object pointed to by t cannot be deleted until we
// have finished with it.
t->AcqSLock();
if (iTiedLink.iNext)
{
iTiedLink.Deque();
iTiedLink.iNext = 0;
iTied = 0;
}
if (aTied && aTied==t)
iTied = 0;
t->RelSLock();
}
NEventHandler::TiedLock.UnlockOnly();
NKern::Unlock();
}
if (r==KErrNone)
{
DoUnbind();
Free();
}
return r;
}
void NIrqHandler::DoUnbind()
{
// Call only from thread context
NIrq* pI = iIrq;
pI->Wait();
iIrqLink.Deque();
iIrq = 0;
pI->Done();
}
TBool TSubScheduler::QueueEvent(NEventHandler* aEvent)
{
TInt irq = __SPIN_LOCK_IRQSAVE(iEventHandlerLock);
TBool pending = iEventHandlersPending;
iEventHandlersPending = TRUE;
iEventHandlers.Add(aEvent);
__SPIN_UNLOCK_IRQRESTORE(iEventHandlerLock,irq);
return !pending;
}
void TSubScheduler::QueueEventAndKick(NEventHandler* aEvent)
{
if (QueueEvent(aEvent))
{
// extra barrier ?
send_irq_ipi(this);
}
}
extern "C" void run_event_handlers(TSubScheduler* aS)
{
while (aS->iEventHandlersPending)
{
TInt irq = __SPIN_LOCK_IRQSAVE(aS->iEventHandlerLock);
if (aS->iEventHandlers.IsEmpty())
{
aS->iEventHandlersPending = FALSE;
__SPIN_UNLOCK_IRQRESTORE(aS->iEventHandlerLock, irq);
break;
}
NIrqHandler* h = (NIrqHandler*)aS->iEventHandlers.First()->Deque();
if (aS->iEventHandlers.IsEmpty())
aS->iEventHandlersPending = FALSE;
TInt type = h->iHType;
NSchedulable* tied = h->iTied;
if (type == NEventHandler::EEventHandlerNTimer)
{
NEventFn f = h->iFn;
TAny* p = h->iPtr;
mb(); // make sure dequeue observed and iFn,iPtr,iTied sampled before state change observed
h->i8888.iHState1 = NTimer::EIdle; // can't touch timer again after this
__SPIN_UNLOCK_IRQRESTORE(aS->iEventHandlerLock, irq);
(*f)(p);
if (tied)
tied->EndTiedEvent();
continue;
}
__SPIN_UNLOCK_IRQRESTORE(aS->iEventHandlerLock, irq);
TBool requeue = TRUE;
switch (h->iHType)
{
case NEventHandler::EEventHandlerIrq:
{
TUint32 orig;
// event can run on this CPU so run it now
// if event tied, migration of tied thread/group will have been blocked
orig = h->EventBegin();
TRACE_IRQ8(20, h, orig);
(*h->iFn)(h->iPtr);
TRACE_IRQ4(21, h);
if (!(h->iHState & NIrqHandler::ERunCountMask)) // if run count still nonzero, definitely still active
{
NIrq* pI = h->iIrq;
irq = __SPIN_LOCK_IRQSAVE(pI->iNIrqLock);
orig = h->EventDone();
TRACE_IRQ8(22, h, orig);
if (!(orig & NIrqHandler::EActive))
{
// handler is no longer active - can't touch it again
// pI is OK since NIrq's are never deleted/reused
requeue = FALSE;
if (__e32_atomic_add_rel32(&pI->iEventsPending, TUint32(-1)) == 1)
{
if (pI->iEnabledEvents & 1)
{
pI->iEnabledEvents &= ~1;
if (pI->iEnabledEvents)
pI->HwEnable();
}
}
}
__SPIN_UNLOCK_IRQRESTORE(pI->iNIrqLock,irq);
}
break;
}
default:
__KTRACE_OPT(KPANIC,DEBUGPRINT("h=%08x",h));
__NK_ASSERT_ALWAYS(0);
}
if (tied && !requeue)
{
// If the tied thread/group has no more tied events outstanding
// and has a migration pending, trigger the migration now.
// Atomically change the tied_cpu to the target CPU here. An IDFC
// can then effect the migration.
// Note that the tied code can't run in parallel with us until
// the tied_cpu is changed. However it could run as soon as the
// tied_cpu is changed (e.g. if added to ready list after change)
tied->EndTiedEvent();
}
if (requeue)
{
// still pending so put it back on the queue
// leave interrupt disabled (if so) and migration of tied thread/group blocked
aS->QueueEvent(h);
}
}
}
/******************************************************************************
* Public interrupt management functions
******************************************************************************/
void NKern::InterruptInit0()
{
TInt i;
TUint16 cookie = 1;
NIrqHandler::FirstFree = 0;
for (i=NK_MAX_IRQ_HANDLERS-1; i>=0; --i)
{
StepCookie(cookie, 61);
NIrqHandler* h = &::Handlers[i];
__KTRACE_OPT(KBOOT,DEBUGPRINT("NIrqHandler[%d] at %08x", i, h));
h->iGeneration = 0;
h->iHandle = (cookie << 16) | i;
h->iIrqLink.iNext = NIrqHandler::FirstFree;
NIrqHandler::FirstFree = h;
}
NIrq::HwInit0();
}
EXPORT_C TInt NKern::InterruptInit(TInt aId, TUint32 aFlags, TInt aVector, TUint32 aHwId, TAny* aExt)
{
__KTRACE_OPT(KBOOT,DEBUGPRINT("NKII: ID=%02x F=%08x V=%03x HWID=%08x X=%08x", aId, aFlags, aVector, aHwId, aExt));
TRACE_IRQ12(0, (aId|(aVector<<16)), aFlags, aHwId);
if (TUint(aId) >= TUint(NK_MAX_IRQS))
return KErrArgument;
NIrq* pI = &Irq[aId];
__KTRACE_OPT(KBOOT,DEBUGPRINT("NIrq[%02x] at %08x", aId, pI));
TRACE_IRQ8(1, aId, pI);
new (pI) NIrq;
pI->iX = (NIrqX*)aExt;
pI->iIndex = (TUint16)aId;
pI->iHwId = aHwId;
pI->iVector = aVector;
pI->iStaticFlags = (TUint16)(aFlags & 0x13);
if (aFlags & NKern::EIrqInit_Count)
pI->iIState |= NIrq::ECount;
pI->HwInit();
__e32_atomic_and_rel32(&pI->iIState, ~NIrq::EWait);
return KErrNone;
}
EXPORT_C TInt NKern::InterruptBind(TInt aId, NIsr aIsr, TAny* aPtr, TUint32 aFlags, NSchedulable* aTied)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIB: ID=%02x ISR=%08x(%08x) F=%08x T=%T", aId, aIsr, aPtr, aFlags, aTied));
TRACE_IRQ12(2, aId, aIsr, aPtr);
TRACE_IRQ12(3, aId, aFlags, aTied);
CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::InterruptBind");
if (TUint(aId) >= TUint(NK_MAX_IRQS))
{
TRACE_IRQ8(4, aId, KErrArgument);
return KErrArgument;
}
NIrq* pI = &Irq[aId];
NIrqHandler* pH = 0;
NSchedulable* pT = 0;
if (aFlags & NKern::EIrqBind_Tied)
{
if (!aTied)
aTied = NKern::CurrentThread();
pT = aTied;
}
TInt r = KErrNoMemory;
TInt handle = 0;
NKern::ThreadEnterCS();
if (!(aFlags & NKern::EIrqBind_Raw))
{
pH = NIrqHandler::Alloc();
if (!pH)
goto out;
pH->iFn = aIsr;
pH->iPtr = aPtr;
__e32_atomic_add_ord32(&pH->iGeneration, 1);
if (aFlags & EIrqBind_Exclusive)
pH->iHState |= NIrqHandler::EExclusive;
if (aFlags & EIrqBind_Count)
pH->iHState |= NIrqHandler::ECount;
r = pI->Bind(pH);
if (r==KErrNone)
{
handle = pH->iHandle;
// We assume that aTied cannot disappear entirely before we return
if (pT)
{
NKern::Lock();
r = pT->AddTiedEvent(pH);
NKern::Unlock();
}
if (r!=KErrNone)
{
// unbind
pH->DoUnbind();
}
}
if (r!=KErrNone)
pH->Free();
}
else
{
if (aFlags & NKern::EIrqBind_Tied)
r = KErrNotSupported;
else
r = pI->BindRaw(aIsr, aPtr);
}
out:
if (r==KErrNone)
{
// clear ENotReady so handler can be enabled
__e32_atomic_and_rel32(&pH->iHState, ~NIrqHandler::ENotReady);
r = handle;
}
NKern::ThreadLeaveCS();
__KTRACE_OPT(KNKERN,DEBUGPRINT("<NKIB: %08x", r));
TRACE_IRQ8(4, aId, r);
return r;
}
TInt NIrq::FromHandle(TInt& aHandle, NIrq*& aIrq, NIrqHandler*& aHandler)
{
TRACE_IRQ4(5, aHandle);
aIrq = 0;
aHandler = 0;
NIrqHandler* pH = 0;
NIrqHandler* pH2 = 0;
NIrq* pI = 0;
SDblQueLink* anchor = 0;
TUint32 i;
TInt r = KErrArgument;
if (aHandle & NKern::EIrqCookieMask)
{
i = aHandle & NKern::EIrqIndexMask;
if (i>=NK_MAX_IRQ_HANDLERS)
goto out;
pH = &::Handlers[i];
if (pH->iHandle != TUint(aHandle))
goto out;
aHandler = pH;
aIrq = pH->iIrq;
r = KErrNone;
goto out;
}
if (TUint32(aHandle)>=NK_MAX_IRQS)
goto out;
pI = &::Irq[aHandle];
if (pI->iIState & NIrq::ERaw)
{
aIrq = pI;
r = KErrNone;
goto out;
}
if (pI->iStaticFlags & NIrq::EShared)
goto out;
anchor = &pI->iHandlers.iA;
pH = _LOFF(anchor->iNext, NIrqHandler, iIrqLink);
i = pH - ::Handlers;
if (i>=NK_MAX_IRQ_HANDLERS)
goto out;
pH2 = &::Handlers[i];
if (pH2 != pH)
goto out;
if (pH->iIrq != pI || anchor->iPrev != anchor->iNext)
goto out;
aHandle = pH->iHandle;
aHandler = pH;
aIrq = pI;
r = KErrNone;
out:
TRACE_IRQ4(6, r);
TRACE_IRQ12(7, aHandle, aIrq, aHandler);
return r;
}
EXPORT_C TInt NKern::InterruptUnbind(TInt aId)
{
TRACE_IRQ4(8, aId);
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIU: ID=%08x", aId));
CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::InterruptUnbind");
NIrq* pI;
NIrqHandler* pH;
TInt r = NIrq::FromHandle(aId, pI, pH);
if (r!=KErrNone)
return r;
NKern::ThreadEnterCS();
if (!pH)
{
// raw ISR
r = pI->UnbindRaw();
}
else
{
r = pH->Unbind(aId, 0);
}
NKern::ThreadLeaveCS();
TRACE_IRQ4(9, r);
return r;
}
EXPORT_C TInt NKern::InterruptEnable(TInt aId)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIE: ID=%08x", aId));
TRACE_IRQ4(10, aId);
NIrq* pI;
NIrqHandler* pH;
TInt r = NIrq::FromHandle(aId, pI, pH);
if (r==KErrNone)
r = pH ? pH->Enable(aId) : pI->EnableRaw();
TRACE_IRQ4(11, r);
return r;
}
EXPORT_C TInt NKern::InterruptDisable(TInt aId)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKID: ID=%08x", aId));
TRACE_IRQ4(12, aId);
NIrq* pI;
NIrqHandler* pH;
TInt r = NIrq::FromHandle(aId, pI, pH);
if (r==KErrNone)
r = pH ? pH->Disable(FALSE, aId) : pI->DisableRaw(FALSE);
TRACE_IRQ4(13, r);
return r;
}
EXPORT_C TInt NKern::InterruptClear(TInt aId)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIC: ID=%08x", aId));
return KErrNotSupported;
}
EXPORT_C TInt NKern::InterruptSetPriority(TInt aId, TInt aPri)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIS: ID=%08x PRI=%08x", aId, aPri));
return KErrNotSupported;
}
EXPORT_C TInt NKern::InterruptSetCpuMask(TInt aId, TUint32 aMask)
{
__KTRACE_OPT(KNKERN,DEBUGPRINT(">NKIM: ID=%08x M=%08x", aId, aMask));
return KErrNotSupported;
}
EXPORT_C void NKern::Interrupt(TInt aId)
{
__NK_ASSERT_ALWAYS(TUint(aId) < TUint(NK_MAX_IRQS));
NIrq* pI = &Irq[aId];
pI->HwIsr();
}