// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <plat_priv.h>
#include "mm.h"
#include "mmu.h"
#include "mmapping.h"
#include "mobject.h"
#include "maddressspace.h"
#include "mptalloc.h"
#include "mmanager.h" // needed for DMemoryManager::Pin/Unpin, not nice, but no obvious way to break dependency
#include "cache_maintenance.inl"
//
// DMemoryMapping
//
DMemoryMapping::DMemoryMapping(TUint aType)
: DMemoryMappingBase(aType)
{
}
TInt DMemoryMapping::Construct(TMemoryAttributes aAttributes, TMappingCreateFlags aFlags, TInt aOsAsid, TLinAddr aAddr, TUint aSize, TLinAddr aColourOffset)
{
TRACE(("DMemoryMapping[0x%08x]::Construct(0x%x,0x%x,%d,0x%08x,0x%08x,0x%08x)",this,(TUint32&)aAttributes,aFlags,aOsAsid,aAddr,aSize,aColourOffset));
// setup PDE values...
iBlankPde = Mmu::BlankPde(aAttributes);
// setup flags...
if(aFlags&EMappingCreateReserveAllResources)
Flags() |= EPermanentPageTables;
// allocate virtual memory...
TInt r = AllocateVirtualMemory(aFlags,aOsAsid,aAddr,aSize,aColourOffset);
if(r==KErrNone)
{
// add to address space...
TLinAddr addr = iAllocatedLinAddrAndOsAsid&~KPageMask;
TInt osAsid = iAllocatedLinAddrAndOsAsid&KPageMask;
r = AddressSpace[osAsid]->AddMapping(addr,this);
if(r!=KErrNone)
FreeVirtualMemory();
}
return r;
}
DMemoryMapping::~DMemoryMapping()
{
TRACE(("DMemoryMapping[0x%08x]::~DMemoryMapping()",this));
__NK_ASSERT_DEBUG(!IsAttached());
// remove from address space...
TLinAddr addr = iAllocatedLinAddrAndOsAsid&~KPageMask;
TInt osAsid = iAllocatedLinAddrAndOsAsid&KPageMask;
TAny* removed = AddressSpace[osAsid]->RemoveMapping(addr);
if(removed)
__NK_ASSERT_DEBUG(removed==this);
FreeVirtualMemory();
}
void DMemoryMapping::BTraceCreate()
{
MmuLock::Lock();
TUint32 data[4] = { iStartIndex, iSizeInPages, OsAsid(), Base() };
BTraceContextN(BTrace::EFlexibleMemModel,BTrace::EMemoryMappingCreate,this,Memory(),data,sizeof(data));
MmuLock::Unlock();
}
TInt DMemoryMapping::Map(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TMappingPermissions aPermissions)
{
TRACE(("DMemoryMapping[0x%08x]::Map(0x%08x,0x%x,0x%x,0x%08x)",this,aMemory,aIndex,aCount,aPermissions));
__NK_ASSERT_DEBUG(!IsAttached());
// check reserved resources are compatible (memory objects with reserved resources
// don't expect to have to allocate memory when mapping new pages),,,
if(aMemory->iFlags&DMemoryObject::EReserveResources && !(Flags()&EPermanentPageTables))
return KErrArgument;
// check arguments for coarse mappings...
if(IsCoarse())
{
if(!aMemory->IsCoarse())
return KErrArgument;
if((aCount|aIndex)&(KChunkMask>>KPageShift))
return KErrArgument;
}
TLinAddr base = iAllocatedLinAddrAndOsAsid & ~KPageMask;
TLinAddr top = base + (aCount << KPageShift);
// check user/supervisor memory partitioning...
if (aPermissions & EUser)
{
if (base > KUserMemoryLimit || top > KUserMemoryLimit)
return KErrAccessDenied;
}
else
{
if (base < KUserMemoryLimit || top < KUserMemoryLimit)
return KErrAccessDenied;
}
// check that mapping doesn't straddle KUserMemoryLimit or KGlobalMemoryBase ...
__NK_ASSERT_DEBUG((base < KUserMemoryLimit) == (top <= KUserMemoryLimit));
__NK_ASSERT_DEBUG((base < KGlobalMemoryBase) == (top <= KGlobalMemoryBase));
// check that only global memory is mapped into the kernel process
TBool global = base >= KGlobalMemoryBase;
__NK_ASSERT_DEBUG(global || (iAllocatedLinAddrAndOsAsid & KPageMask) != KKernelOsAsid);
// setup attributes...
PteType() = Mmu::PteType(aPermissions,global);
iBlankPte = Mmu::BlankPte(aMemory->Attributes(),PteType());
// setup base address...
TUint colourOffset = ((aIndex&KPageColourMask)<<KPageShift);
if(colourOffset+aCount*KPageSize > iAllocatedSize)
return KErrTooBig;
__NK_ASSERT_DEBUG(!iLinAddrAndOsAsid || ((iLinAddrAndOsAsid^iAllocatedLinAddrAndOsAsid)&~(KPageColourMask<<KPageShift))==0); // new, OR, only differ in page colour
iLinAddrAndOsAsid = iAllocatedLinAddrAndOsAsid+colourOffset;
// attach to memory object...
TInt r = Attach(aMemory,aIndex,aCount);
// cleanup if error...
if(r!=KErrNone)
iLinAddrAndOsAsid = 0;
return r;
}
void DMemoryMapping::Unmap()
{
Detach();
// we can't clear iLinAddrAndOsAsid here because this may be needed by other code,
// e.g. DFineMapping::MapPages/UnmapPages/RestrictPages/PageIn
}
TInt DMemoryMapping::AllocateVirtualMemory(TMappingCreateFlags aFlags, TInt aOsAsid, TLinAddr aAddr, TUint aSize, TLinAddr aColourOffset)
{
TRACE(("DMemoryMapping[0x%08x]::AllocateVirtualMemory(0x%x,%d,0x%08x,0x%08x,0x%08x)",this,aFlags,aOsAsid,aAddr,aSize,aColourOffset));
__NK_ASSERT_DEBUG((aAddr&KPageMask)==0);
__NK_ASSERT_DEBUG(!iAllocatedLinAddrAndOsAsid);
__NK_ASSERT_DEBUG(!iAllocatedSize);
// setup PDE type...
TUint pdeType = 0;
if(aFlags&EMappingCreateCommonVirtual)
pdeType |= EVirtualSlabTypeCommonVirtual;
if(aFlags&EMappingCreateDemandPaged)
pdeType |= EVirtualSlabTypeDemandPaged;
TInt r;
TUint colourOffset = aColourOffset&(KPageColourMask<<KPageShift);
TLinAddr addr;
TUint size;
if(aFlags&(EMappingCreateFixedVirtual|EMappingCreateAdoptVirtual))
{
// just use the supplied virtual address...
__NK_ASSERT_ALWAYS(aAddr);
__NK_ASSERT_ALWAYS(colourOffset==0);
__NK_ASSERT_DEBUG((aFlags&EMappingCreateAdoptVirtual)==0 || AddressSpace[aOsAsid]->CheckPdeType(aAddr,aSize,pdeType));
addr = aAddr;
size = aSize;
r = KErrNone;
}
else
{
if(aFlags&(EMappingCreateExactVirtual|EMappingCreateCommonVirtual))
{
__NK_ASSERT_ALWAYS(aAddr); // address must be specified
}
else
{
__NK_ASSERT_ALWAYS(!aAddr); // address shouldn't have been specified
}
// adjust for colour...
TUint allocSize = aSize+colourOffset;
TUint allocAddr = aAddr;
if(allocAddr)
{
allocAddr -= colourOffset;
if(allocAddr&(KPageColourMask<<KPageShift))
return KErrArgument; // wrong colour
}
// allocate virtual addresses...
if(aFlags&EMappingCreateUserGlobalVirtual)
{
if(aOsAsid!=(TInt)KKernelOsAsid)
return KErrArgument;
r = DAddressSpace::AllocateUserGlobalVirtualMemory(addr,size,allocAddr,allocSize,pdeType);
}
else
r = AddressSpace[aOsAsid]->AllocateVirtualMemory(addr,size,allocAddr,allocSize,pdeType);
}
if(r==KErrNone)
{
iAllocatedLinAddrAndOsAsid = addr|aOsAsid;
iAllocatedSize = size;
}
TRACE(("DMemoryMapping[0x%08x]::AllocateVirtualMemory returns %d address=0x%08x",this,r,addr));
return r;
}
void DMemoryMapping::FreeVirtualMemory()
{
if(!iAllocatedSize)
return; // no virtual memory to free
TRACE(("DMemoryMapping[0x%08x]::FreeVirtualMemory()",this));
iLinAddrAndOsAsid = 0;
TLinAddr addr = iAllocatedLinAddrAndOsAsid&~KPageMask;
TInt osAsid = iAllocatedLinAddrAndOsAsid&KPageMask;
AddressSpace[osAsid]->FreeVirtualMemory(addr,iAllocatedSize);
iAllocatedLinAddrAndOsAsid = 0;
iAllocatedSize = 0;
}
//
// DCoarseMapping
//
DCoarseMapping::DCoarseMapping()
: DMemoryMapping(ECoarseMapping)
{
}
DCoarseMapping::DCoarseMapping(TUint aFlags)
: DMemoryMapping(ECoarseMapping|aFlags)
{
}
DCoarseMapping::~DCoarseMapping()
{
}
TInt DCoarseMapping::DoMap()
{
TRACE(("DCoarseMapping[0x%08x]::DoMap()", this));
__NK_ASSERT_DEBUG(((iStartIndex|iSizeInPages)&(KChunkMask>>KPageShift))==0); // be extra paranoid about alignment
MmuLock::Lock();
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),Base());
DCoarseMemory* memory = (DCoarseMemory*)Memory(true); // safe because we're called from code which has added mapping to memory
TUint flash = 0;
TUint chunk = iStartIndex >> KPagesInPDEShift;
TUint endChunk = (iStartIndex + iSizeInPages) >> KPagesInPDEShift;
TBool sectionMappingsBroken = EFalse;
while(chunk < endChunk)
{
MmuLock::Flash(flash,KMaxPdesInOneGo*2);
TPte* pt = memory->GetPageTable(PteType(), chunk);
if(!pt)
{
TRACE2(("!PDE %x=%x (was %x)",pPde,KPdeUnallocatedEntry,*pPde));
__NK_ASSERT_DEBUG(*pPde==KPdeUnallocatedEntry);
}
else
{
TPde pde = Mmu::PageTablePhysAddr(pt)|iBlankPde;
#ifdef __USER_MEMORY_GUARDS_ENABLED__
if (IsUserMapping())
pde = PDE_IN_DOMAIN(pde, USER_MEMORY_DOMAIN);
#endif
TRACE2(("!PDE %x=%x (was %x)",pPde,pde,*pPde));
if (Mmu::PdeMapsSection(*pPde))
{
// break previous section mapping...
__NK_ASSERT_DEBUG(*pPde==Mmu::PageToSectionEntry(pt[0],iBlankPde));
sectionMappingsBroken = ETrue;
}
else
__NK_ASSERT_DEBUG(*pPde==KPdeUnallocatedEntry || ((*pPde^pde)&~KPdeMatchMask)==0);
*pPde = pde;
SinglePdeUpdated(pPde);
flash += 3; // increase flash rate because we've done quite a bit more work
}
++pPde;
++chunk;
}
MmuLock::Unlock();
if (sectionMappingsBroken)
{
// We must invalidate the TLB since we broke section mappings created by the bootstrap.
// Since this will only ever happen on boot, we just invalidate the entire TLB for this
// process.
InvalidateTLBForAsid(OsAsid());
}
return KErrNone;
}
void DCoarseMapping::DoUnmap()
{
TRACE(("DCoarseMapping[0x%08x]::DoUnmap()", this));
MmuLock::Lock();
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),Base());
TPde* pPdeEnd = pPde+(iSizeInPages>>(KChunkShift-KPageShift));
TUint flash = 0;
do
{
MmuLock::Flash(flash,KMaxPdesInOneGo);
TPde pde = KPdeUnallocatedEntry;
TRACE2(("!PDE %x=%x",pPde,pde));
*pPde = pde;
SinglePdeUpdated(pPde);
++pPde;
}
while(pPde<pPdeEnd);
MmuLock::Unlock();
InvalidateTLBForAsid(OsAsid());
}
TInt DCoarseMapping::MapPages(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
// shouldn't ever be called because coarse mappings don't have their own page tables...
__NK_ASSERT_DEBUG(0);
return KErrNotSupported;
}
void DCoarseMapping::UnmapPages(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
// shouldn't ever be called because coarse mappings don't have their own page tables...
__NK_ASSERT_DEBUG(0);
}
void DCoarseMapping::RemapPage(TPhysAddr& aPageArray, TUint aIndex, TUint aMapInstanceCount, TBool aInvalidateTLB)
{
// shouldn't ever be called because coarse mappings don't have their own page tables...
__NK_ASSERT_DEBUG(0);
}
void DCoarseMapping::RestrictPagesNA(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
// shouldn't ever be called because coarse mappings don't have their own page tables...
__NK_ASSERT_DEBUG(0);
}
TInt DCoarseMapping::PageIn(RPageArray::TIter aPages, TPinArgs& aPinArgs, TUint aMapInstanceCount)
{
MmuLock::Lock();
if(!IsAttached())
{
MmuLock::Unlock();
return KErrNotFound;
}
DCoarseMemory* memory = (DCoarseMemory*)Memory(true); // safe because we've checked mapping IsAttached
return memory->PageIn(this, aPages, aPinArgs, aMapInstanceCount);
}
TBool DCoarseMapping::MovingPageIn(TPhysAddr& aPageArrayPtr, TUint aIndex)
{
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(IsAttached());
DCoarseMemory* memory = (DCoarseMemory*)Memory(true); // safe because we've checked mapping IsAttached
TBool success = memory->MovingPageIn(this, aPageArrayPtr, aIndex);
if (success)
{
TLinAddr addr = Base() + (aIndex - iStartIndex) * KPageSize;
InvalidateTLBForPage(addr);
}
return success;
}
TPte* DCoarseMapping::FindPageTable(TLinAddr aLinAddr, TUint aMemoryIndex)
{
TRACE(("DCoarseMapping::FindPageTable(0x%x, %d)", aLinAddr, aMemoryIndex));
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(IsAttached());
DCoarseMemory* memory = (DCoarseMemory*)Memory(true); // safe because we've checked mapping IsAttached
return memory->FindPageTable(this, aLinAddr, aMemoryIndex);
}
//
// DFineMapping
//
DFineMapping::DFineMapping()
: DMemoryMapping(0)
{
}
DFineMapping::~DFineMapping()
{
TRACE(("DFineMapping[0x%08x]::~DFineMapping()",this));
FreePermanentPageTables();
}
#ifdef _DEBUG
void DFineMapping::ValidatePageTable(TPte* aPt, TLinAddr aAddr)
{
if(aPt)
{
// check page table is correct...
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPt);
__NK_ASSERT_DEBUG(pti->CheckFine(aAddr&~KChunkMask,OsAsid()));
DMemoryObject* memory = Memory();
if(memory)
{
if(memory->IsDemandPaged() && !IsPinned() && !(Flags()&EPageTablesAllocated))
__NK_ASSERT_DEBUG(pti->IsDemandPaged());
else
__NK_ASSERT_DEBUG(!pti->IsDemandPaged());
}
}
}
#endif
TPte* DFineMapping::GetPageTable(TLinAddr aAddr)
{
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
// get address of PDE which refers to the page table...
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),aAddr);
// get page table...
TPte* pt = Mmu::PageTableFromPde(*pPde);
#ifdef _DEBUG
ValidatePageTable(pt, aAddr);
#endif
return pt;
}
TPte* DFineMapping::GetOrAllocatePageTable(TLinAddr aAddr)
{
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
// get address of PDE which refers to the page table...
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),aAddr);
// get page table...
TPte* pt = Mmu::PageTableFromPde(*pPde);
if(!pt)
{
pt = AllocatePageTable(aAddr,pPde);
#ifdef _DEBUG
ValidatePageTable(pt, aAddr);
#endif
}
return pt;
}
TPte* DFineMapping::GetOrAllocatePageTable(TLinAddr aAddr, TPinArgs& aPinArgs)
{
__NK_ASSERT_DEBUG(aPinArgs.iPinnedPageTables);
if(!aPinArgs.HaveSufficientPages(KNumPagesToPinOnePageTable))
return 0;
TPte* pinnedPt = 0;
for(;;)
{
TPte* pt = GetOrAllocatePageTable(aAddr);
if(pinnedPt && pinnedPt!=pt)
{
// previously pinned page table not needed...
PageTableAllocator::UnpinPageTable(pinnedPt,aPinArgs);
// make sure we have memory for next pin attempt...
MmuLock::Unlock();
aPinArgs.AllocReplacementPages(KNumPagesToPinOnePageTable);
MmuLock::Lock();
if(!aPinArgs.HaveSufficientPages(KNumPagesToPinOnePageTable)) // if out of memory...
{
// make sure we free any unneeded page table we allocated...
if(pt)
FreePageTable(Mmu::PageDirectoryEntry(OsAsid(),aAddr));
return 0;
}
}
if(!pt)
return 0; // out of memory
if(pt==pinnedPt)
{
// we got a page table and it was pinned...
*aPinArgs.iPinnedPageTables++ = pt;
++aPinArgs.iNumPinnedPageTables;
return pt;
}
// don't pin page table if it's not paged (e.g. unpaged part of ROM)...
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pt);
if(!pti->IsDemandPaged())
return pt;
// pin the page table...
pinnedPt = pt;
PageTableAllocator::PinPageTable(pinnedPt,aPinArgs);
}
}
TInt DFineMapping::AllocateVirtualMemory(TMappingCreateFlags aFlags, TInt aOsAsid, TLinAddr aAddr, TUint aSize, TLinAddr aColourOffset)
{
TInt r = DMemoryMapping::AllocateVirtualMemory(aFlags,aOsAsid,aAddr,aSize,aColourOffset);
if(r==KErrNone && (Flags()&EPermanentPageTables))
{
r = AllocatePermanentPageTables();
if(r!=KErrNone)
FreeVirtualMemory();
}
return r;
}
void DFineMapping::FreeVirtualMemory()
{
FreePermanentPageTables();
DMemoryMapping::FreeVirtualMemory();
}
TPte* DFineMapping::AllocatePageTable(TLinAddr aAddr, TPde* aPdeAddress, TBool aPermanent)
{
TRACE2(("DFineMapping[0x%08x]::AllocatePageTable(0x%08x,0x%08x,%d)",this,aAddr,aPdeAddress,aPermanent));
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
for(;;)
{
// mapping is going, so we don't need a page table any more...
if(BeingDetached())
return 0;
// get paged state...
TBool demandPaged = false;
if(!aPermanent)
{
DMemoryObject* memory = Memory();
__NK_ASSERT_DEBUG(memory); // can't be NULL because not BeingDetached()
demandPaged = memory->IsDemandPaged();
}
// get page table...
TPte* pt = Mmu::PageTableFromPde(*aPdeAddress);
if(pt!=0)
{
// we have a page table...
__NK_ASSERT_DEBUG(SPageTableInfo::FromPtPtr(pt)->CheckFine(aAddr&~KChunkMask,iAllocatedLinAddrAndOsAsid&KPageMask));
if(aPermanent)
{
__NK_ASSERT_DEBUG(BeingDetached()==false);
__NK_ASSERT_ALWAYS(!demandPaged);
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pt);
pti->IncPermanenceCount();
}
return pt;
}
// allocate a new page table...
MmuLock::Unlock();
::PageTables.Lock();
TPte* newPt = ::PageTables.Alloc(demandPaged);
if(!newPt)
{
// out of memory...
::PageTables.Unlock();
MmuLock::Lock();
return 0;
}
// check if new page table is still needed...
MmuLock::Lock();
pt = Mmu::PageTableFromPde(*aPdeAddress);
if(pt)
{
// someone else has already allocated a page table,
// so free the one we just allocated and try again...
MmuLock::Unlock();
::PageTables.Free(newPt);
}
else if(BeingDetached())
{
// mapping is going, so we don't need a page table any more...
MmuLock::Unlock();
::PageTables.Free(newPt);
::PageTables.Unlock();
MmuLock::Lock();
return 0;
}
else
{
// setup new page table...
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(newPt);
pti->SetFine(aAddr&~KChunkMask,iAllocatedLinAddrAndOsAsid&KPageMask);
TPde pde = Mmu::PageTablePhysAddr(newPt)|iBlankPde;
#ifdef __USER_MEMORY_GUARDS_ENABLED__
if (IsUserMapping())
pde = PDE_IN_DOMAIN(pde, USER_MEMORY_DOMAIN);
#endif
TRACE2(("!PDE %x=%x",aPdeAddress,pde));
__NK_ASSERT_DEBUG(((*aPdeAddress^pde)&~KPdeMatchMask)==0 || *aPdeAddress==KPdeUnallocatedEntry);
*aPdeAddress = pde;
SinglePdeUpdated(aPdeAddress);
MmuLock::Unlock();
}
// loop back and recheck...
::PageTables.Unlock();
MmuLock::Lock();
}
}
void DFineMapping::FreePageTable(TPde* aPdeAddress)
{
TRACE2(("DFineMapping[0x%08x]::FreePageTable(0x%08x)",this,aPdeAddress));
// get page table lock...
::PageTables.Lock();
MmuLock::Lock();
// find page table...
TPte* pt = Mmu::PageTableFromPde(*aPdeAddress);
if(pt)
{
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pt);
if(pti->PageCount() || pti->PermanenceCount())
{
// page table still in use, so don't free it...
pt = 0;
}
else
{
// page table not used, so unmap it...
TPde pde = KPdeUnallocatedEntry;
TRACE2(("!PDE %x=%x",aPdeAddress,pde));
*aPdeAddress = pde;
SinglePdeUpdated(aPdeAddress);
}
}
MmuLock::Unlock();
if(pt)
::PageTables.Free(pt);
::PageTables.Unlock();
}
void DFineMapping::RemapPage(TPhysAddr& aPageArray, TUint aIndex, TUint aMapInstanceCount, TBool aInvalidateTLB)
{
TRACE2(("DFineMemoryMapping[0x%08x]::RemapPage(0x%x,0x%x,%d,%d)",this,aPageArray,aIndex,aMapInstanceCount,aInvalidateTLB));
__NK_ASSERT_DEBUG(aIndex >= iStartIndex);
__NK_ASSERT_DEBUG(aIndex < iStartIndex + iSizeInPages);
TLinAddr addr = Base() + ((aIndex - iStartIndex) << KPageShift);
TUint pteIndex = (addr >> KPageShift) & (KChunkMask >> KPageShift);
// get address of page table...
MmuLock::Lock();
TPte* pPte = GetPageTable(addr);
// check the page is still mapped and mapping isn't being detached
// or hasn't been reused for another purpose...
if(!pPte || BeingDetached() || aMapInstanceCount != MapInstanceCount())
{
// can't map pages to this mapping any more so just exit.
MmuLock::Unlock();
return;
}
// remap the page...
pPte += pteIndex;
Mmu::RemapPage(pPte, aPageArray, iBlankPte);
MmuLock::Unlock();
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
// clean TLB...
if (aInvalidateTLB)
{
InvalidateTLBForPage(addr + OsAsid());
}
#endif
}
TInt DFineMapping::MapPages(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
TRACE2(("DFineMapping[0x%08x]::MapPages(?,%d) index=0x%x count=0x%x",this,aMapInstanceCount,aPages.Index(),aPages.Count()));
__NK_ASSERT_DEBUG(aPages.Count());
__NK_ASSERT_DEBUG(aPages.Index()>=iStartIndex);
__NK_ASSERT_DEBUG(aPages.IndexEnd()-iStartIndex<=iSizeInPages);
TLinAddr addr = Base()+(aPages.Index()-iStartIndex)*KPageSize;
for(;;)
{
TUint pteIndex = (addr>>KPageShift)&(KChunkMask>>KPageShift);
// calculate max number of pages to do...
TUint n = (KChunkSize>>KPageShift)-pteIndex; // pages left in page table
if(n>KMaxPagesInOneGo)
n = KMaxPagesInOneGo;
// get some pages...
TPhysAddr* pages;
n = aPages.Pages(pages,n);
if(!n)
break;
// get address of page table...
MmuLock::Lock();
TPte* pPte = GetOrAllocatePageTable(addr);
// check mapping isn't being unmapped, or been reused for another purpose...
if(BeingDetached() || aMapInstanceCount!=MapInstanceCount())
{
// can't map pages to this mapping any more, so free any page table
// we just got (if it's not used)...
if(!pPte)
MmuLock::Unlock();
else
{
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pPte);
TBool keepPt = pti->PermanenceCount() || pti->PageCount();
MmuLock::Unlock();
if(!keepPt)
FreePageTable(Mmu::PageDirectoryEntry(OsAsid(),addr));
}
// then end...
return KErrNone;
}
// check for OOM...
if(!pPte)
{
MmuLock::Unlock();
return KErrNoMemory;
}
// map some pages...
pPte += pteIndex;
TBool keepPt = Mmu::MapPages(pPte, n, pages, iBlankPte);
MmuLock::Unlock();
// free page table if no longer needed...
if(!keepPt)
FreePageTable(Mmu::PageDirectoryEntry(OsAsid(),addr));
// move on...
aPages.Skip(n);
addr += n*KPageSize;
}
return KErrNone;
}
void DFineMapping::UnmapPages(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
TRACE2(("DFineMapping[0x%08x]::UnmapPages(?,%d) index=0x%x count=0x%x",this,aMapInstanceCount,aPages.Index(),aPages.Count()));
__NK_ASSERT_DEBUG(aPages.Count());
TLinAddr addr = Base()+(aPages.Index()-iStartIndex)*KPageSize;
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
TLinAddr startAddr = addr;
#endif
for(;;)
{
TUint pteIndex = (addr>>KPageShift)&(KChunkMask>>KPageShift);
// calculate max number of pages to do...
TUint n = (KChunkSize>>KPageShift)-pteIndex; // pages left in page table
if(n>KMaxPagesInOneGo)
n = KMaxPagesInOneGo;
// get some pages...
TPhysAddr* pages;
n = aPages.Pages(pages,n);
if(!n)
break;
MmuLock::Lock();
// check that mapping hasn't been reused for another purpose...
if(aMapInstanceCount!=MapInstanceCount())
{
MmuLock::Unlock();
break;
}
// get address of PTE for pages...
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),addr);
TPte* pPte = Mmu::PageTableFromPde(*pPde);
if(pPte)
{
// unmap some pages...
pPte += pteIndex;
TBool keepPt = Mmu::UnmapPages(pPte,n,pages);
MmuLock::Unlock();
// free page table if no longer needed...
if(!keepPt)
FreePageTable(pPde);
}
else
{
// no page table found...
MmuLock::Unlock();
}
// move on...
aPages.Skip(n);
addr += n*KPageSize;
}
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
// clean TLB...
TLinAddr endAddr = addr;
addr = startAddr+OsAsid();
do InvalidateTLBForPage(addr);
while((addr+=KPageSize)<endAddr);
#endif
}
void DFineMapping::RestrictPagesNA(RPageArray::TIter aPages, TUint aMapInstanceCount)
{
TRACE2(("DFineMapping[0x%08x]::RestrictPages(?,%d) index=0x%x count=0x%x",this,aMapInstanceCount,aPages.Index(),aPages.Count()));
__NK_ASSERT_DEBUG(aPages.Count());
TLinAddr addr = Base()+(aPages.Index()-iStartIndex)*KPageSize;
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
TLinAddr startAddr = addr;
#endif
for(;;)
{
TUint pteIndex = (addr>>KPageShift)&(KChunkMask>>KPageShift);
// calculate max number of pages to do...
TUint n = (KChunkSize>>KPageShift)-pteIndex; // pages left in page table
if(n>KMaxPagesInOneGo)
n = KMaxPagesInOneGo;
// get some pages...
TPhysAddr* pages;
n = aPages.Pages(pages,n);
if(!n)
break;
MmuLock::Lock();
// check that mapping hasn't been reused for another purpose...
if(aMapInstanceCount!=MapInstanceCount())
{
MmuLock::Unlock();
break;
}
// get address of PTE for pages...
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),addr);
TPte* pPte = Mmu::PageTableFromPde(*pPde);
if(pPte)
{
// restrict some pages...
pPte += pteIndex;
Mmu::RestrictPagesNA(pPte,n,pages);
}
MmuLock::Unlock();
// move on...
aPages.Skip(n);
addr += n*KPageSize;
}
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
// clean TLB...
TLinAddr endAddr = addr;
addr = startAddr+OsAsid();
do InvalidateTLBForPage(addr);
while((addr+=KPageSize)<endAddr);
#endif
}
TInt DFineMapping::PageIn(RPageArray::TIter aPages, TPinArgs& aPinArgs, TUint aMapInstanceCount)
{
TRACE2(("DFineMapping[0x%08x]::PageIn(?,?,%d) index=0x%x count=0x%x",this,aMapInstanceCount,aPages.Index(),aPages.Count()));
__NK_ASSERT_DEBUG(aPages.Count());
__NK_ASSERT_DEBUG(aPages.Index()>=iStartIndex);
__NK_ASSERT_DEBUG(aPages.IndexEnd()-iStartIndex<=iSizeInPages);
TInt r = KErrNone;
TLinAddr addr = Base()+(aPages.Index()-iStartIndex)*KPageSize;
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
TLinAddr startAddr = addr;
#endif
TBool pinPageTable = aPinArgs.iPinnedPageTables!=0; // check if we need to pin the first page table
for(;;)
{
TUint pteIndex = (addr>>KPageShift)&(KChunkMask>>KPageShift);
if(pteIndex==0)
pinPageTable = aPinArgs.iPinnedPageTables!=0; // started a new page table, check if we need to pin it
// calculate max number of pages to do...
TUint n = (KChunkSize>>KPageShift)-pteIndex; // pages left in page table
if(n>KMaxPagesInOneGo)
n = KMaxPagesInOneGo;
// get some pages...
TPhysAddr* pages;
n = aPages.Pages(pages,n);
if(!n)
break;
// make sure we have memory to pin the page table if required...
if(pinPageTable)
aPinArgs.AllocReplacementPages(KNumPagesToPinOnePageTable);
// get address of page table...
MmuLock::Lock();
TPte* pPte;
if(pinPageTable)
pPte = GetOrAllocatePageTable(addr,aPinArgs);
else
pPte = GetOrAllocatePageTable(addr);
// check mapping isn't being unmapped or hasn't been reused...
if(BeingDetached() || aMapInstanceCount != MapInstanceCount())
{
// can't map pages to this mapping any more, so free any page table
// we just got (if it's not used)...
if(!pPte)
MmuLock::Unlock();
else
{
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pPte);
TBool keepPt = pti->PermanenceCount() || pti->PageCount();
MmuLock::Unlock();
if(!keepPt)
FreePageTable(Mmu::PageDirectoryEntry(OsAsid(),addr));
}
// then end...
r = KErrNotFound;
break;
}
// check for OOM...
if(!pPte)
{
MmuLock::Unlock();
r = KErrNoMemory;
break;
}
// map some pages...
pPte += pteIndex;
TPte blankPte = iBlankPte;
if(aPinArgs.iReadOnly)
blankPte = Mmu::MakePteInaccessible(blankPte,true);
TBool keepPt = Mmu::PageInPages(pPte, n, pages, blankPte);
MmuLock::Unlock();
// free page table if no longer needed...
if(!keepPt)
FreePageTable(Mmu::PageDirectoryEntry(OsAsid(),addr));
// move on...
aPages.Skip(n);
addr += n*KPageSize;
pinPageTable = false;
}
#ifndef COARSE_GRAINED_TLB_MAINTENANCE
// clean TLB...
TLinAddr endAddr = addr;
addr = startAddr+OsAsid();
do InvalidateTLBForPage(addr);
while((addr+=KPageSize)<endAddr);
#endif
return r;
}
TBool DFineMapping::MovingPageIn(TPhysAddr& aPageArrayPtr, TUint aIndex)
{
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(IsAttached());
__NK_ASSERT_DEBUG(!BeingDetached());
TLinAddr addr = Base() + (aIndex - iStartIndex) * KPageSize;
TUint pteIndex = (addr >> KPageShift) & (KChunkMask >> KPageShift);
// get address of page table...
TPte* pPte = GetPageTable(addr);
// Check the page is still mapped.
if (!pPte)
return EFalse;
// map some pages...
pPte += pteIndex;
Mmu::RemapPage(pPte, aPageArrayPtr, iBlankPte);
InvalidateTLBForPage(addr);
return ETrue;
}
TInt DFineMapping::DoMap()
{
TRACE(("DFineMapping[0x%08x]::DoMap()", this));
DMemoryObject* memory = Memory(true); // safe because we're called from code which has added mapping to memory
if(memory->IsDemandPaged())
{
// do nothing, allow pages to be mapped on demand...
return KErrNone;
}
RPageArray::TIter pageIter;
memory->iPages.FindStart(iStartIndex,iSizeInPages,pageIter);
// map pages...
TInt r = KErrNone;
for(;;)
{
// find some pages...
RPageArray::TIter pageList;
TUint n = pageIter.Find(pageList);
if(!n)
break; // done
// map some pages...
r = MapPages(pageList,MapInstanceCount());
// done with pages...
pageIter.FindRelease(n);
if(r!=KErrNone)
break;
}
memory->iPages.FindEnd(iStartIndex,iSizeInPages);
return r;
}
void DFineMapping::DoUnmap()
{
TRACE2(("DFineMapping[0x%08x]::DoUnmap()",this));
TLinAddr startAddr = Base();
TUint count = iSizeInPages;
TLinAddr addr = startAddr;
TPde* pPde = Mmu::PageDirectoryEntry(OsAsid(),addr);
for(;;)
{
TUint pteIndex = (addr>>KPageShift)&(KChunkMask>>KPageShift);
// calculate number of pages to do...
TUint n = (KChunkSize>>KPageShift)-pteIndex; // pages left in page table
if(n>count)
n = count;
// get page table...
MmuLock::Lock();
TPte* pPte = Mmu::PageTableFromPde(*pPde);
if(!pPte)
{
// no page table found, so nothing to do...
MmuLock::Unlock();
}
else
{
// unmap some pages...
pPte += pteIndex;
if(n>KMaxPagesInOneGo)
n = KMaxPagesInOneGo;
TBool keepPt = Mmu::UnmapPages(pPte, n);
MmuLock::Unlock();
// free page table if no longer needed...
if(!keepPt)
FreePageTable(pPde);
}
// move on...
addr += n*KPageSize;
count -= n;
if(!count)
break;
if(!(addr&KChunkMask))
++pPde;
}
#ifdef COARSE_GRAINED_TLB_MAINTENANCE
InvalidateTLBForAsid(OsAsid());
#else
// clean TLB...
TLinAddr endAddr = addr;
addr = LinAddrAndOsAsid();
do InvalidateTLBForPage(addr);
while((addr+=KPageSize)<endAddr);
#endif
}
TInt DFineMapping::AllocatePermanentPageTables()
{
TRACE2(("DFineMapping[0x%08x]::AllocatePermanentPageTables()",this));
__NK_ASSERT_DEBUG(((Flags()&EPageTablesAllocated)==0));
__NK_ASSERT_DEBUG(iBlankPde);
TLinAddr addr = iAllocatedLinAddrAndOsAsid&~KPageMask;
TInt osAsid = iAllocatedLinAddrAndOsAsid&KPageMask;
TPde* pStartPde = Mmu::PageDirectoryEntry(osAsid,addr);
TPde* pEndPde = Mmu::PageDirectoryEntry(osAsid,addr+iAllocatedSize-1);
TPde* pPde = pStartPde;
while(pPde<=pEndPde)
{
MmuLock::Lock();
TPte* pPte = AllocatePageTable(addr,pPde,true);
if(!pPte)
{
// out of memory...
MmuLock::Unlock();
FreePermanentPageTables(pStartPde,pPde-1);
return KErrNoMemory;
}
MmuLock::Unlock();
addr += KChunkSize;
++pPde;
}
TRACE2(("DFineMapping[0x%08x]::AllocatePermanentPageTables() done",this));
Flags() |= DMemoryMapping::EPageTablesAllocated;
return KErrNone;
}
void DFineMapping::FreePermanentPageTables(TPde* aFirstPde, TPde* aLastPde)
{
Flags() &= ~DMemoryMapping::EPageTablesAllocated;
MmuLock::Lock();
TUint flash = 0;
TPde* pPde = aFirstPde;
while(pPde<=aLastPde)
{
TPte* pPte = Mmu::PageTableFromPde(*pPde);
__NK_ASSERT_DEBUG(pPte);
SPageTableInfo* pti = SPageTableInfo::FromPtPtr(pPte);
if(pti->DecPermanenceCount() || pti->PageCount())
{
// still in use...
MmuLock::Flash(flash,KMaxPageInfoUpdatesInOneGo*2);
}
else
{
// page table no longer used for anything...
MmuLock::Unlock();
FreePageTable(pPde);
MmuLock::Lock();
}
++pPde;
}
MmuLock::Unlock();
}
void DFineMapping::FreePermanentPageTables()
{
if((Flags()&EPageTablesAllocated)==0)
return;
TRACE2(("DFineMapping[0x%08x]::FreePermanentPageTables()",this));
TLinAddr addr = iAllocatedLinAddrAndOsAsid&~KPageMask;
TInt osAsid = iAllocatedLinAddrAndOsAsid&KPageMask;
TPde* pPde = Mmu::PageDirectoryEntry(osAsid,addr);
TPde* pEndPde = Mmu::PageDirectoryEntry(osAsid,addr+iAllocatedSize-1);
FreePermanentPageTables(pPde,pEndPde);
}
TPte* DFineMapping::FindPageTable(TLinAddr aLinAddr, TUint aMemoryIndex)
{
TRACE(("DFineMapping::FindPageTable(0x%x, %d)", aLinAddr, aMemoryIndex));
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(IsAttached());
return GetPageTable(aLinAddr);
}
//
// DPhysicalPinMapping
//
DPhysicalPinMapping::DPhysicalPinMapping()
: DMemoryMappingBase(EPinned|EPhysicalPinningMapping)
{
}
TInt DPhysicalPinMapping::PhysAddr(TUint aIndex, TUint aCount, TPhysAddr& aPhysicalAddress, TPhysAddr* aPhysicalPageList)
{
__NK_ASSERT_ALWAYS(IsAttached());
__NK_ASSERT_ALWAYS(TUint(aIndex+aCount)>aIndex && TUint(aIndex+aCount)<=iSizeInPages);
aIndex += iStartIndex;
DCoarseMemory* memory = (DCoarseMemory*)Memory(true); // safe because we should only be called whilst memory is Pinned
TInt r = memory->PhysAddr(aIndex,aCount,aPhysicalAddress,aPhysicalPageList);
if(r!=KErrNone)
return r;
if(memory->IsDemandPaged() && !IsReadOnly())
{
// the memory is demand paged and writeable so we need to mark it as dirty
// as we have to assume that the memory will be modified via the physical
// addresses we return...
MmuLock::Lock();
TPhysAddr* pages = aPhysicalPageList;
TUint count = aCount;
while(count)
{
SPageInfo* pi = SPageInfo::FromPhysAddr(*(pages++));
pi->SetDirty();
if((count&(KMaxPageInfoUpdatesInOneGo-1))==0)
MmuLock::Flash(); // flash lock every KMaxPageInfoUpdatesInOneGo iterations of the loop
--count;
}
MmuLock::Unlock();
}
return KErrNone;
}
TInt DPhysicalPinMapping::Pin(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TMappingPermissions aPermissions)
{
PteType() = Mmu::PteType(aPermissions,true);
return Attach(aMemory,aIndex,aCount);
}
void DPhysicalPinMapping::Unpin()
{
Detach();
}
TInt DPhysicalPinMapping::MapPages(RPageArray::TIter /*aPages*/, TUint /*aMapInstanceCount*/)
{
// shouldn't ever be called because these mappings are always pinned...
__NK_ASSERT_DEBUG(0);
return KErrNotSupported;
}
void DPhysicalPinMapping::UnmapPages(RPageArray::TIter /*aPages*/, TUint /*aMapInstanceCount*/)
{
// nothing to do...
}
void DPhysicalPinMapping::RemapPage(TPhysAddr& /*aPageArrayPtr*/, TUint /*aIndex*/, TUint /*aMapInstanceCount*/, TBool /*aInvalidateTLB*/)
{
// shouldn't ever be called because physically pinned mappings block page moving.
__NK_ASSERT_DEBUG(0);
}
void DPhysicalPinMapping::RestrictPagesNA(RPageArray::TIter /*aPages*/, TUint /*aMapInstanceCount*/)
{
// nothing to do...
}
TInt DPhysicalPinMapping::PageIn(RPageArray::TIter /*aPages*/, TPinArgs& /*aPinArgs*/, TUint /*aMapInstanceCount*/)
{
// nothing to do...
return KErrNone;
}
TInt DPhysicalPinMapping::MovingPageIn(TPhysAddr& /*aPageArrayPtr*/, TUint /*aIndex*/)
{
// Should never be asked to page in a page that is being moved as physical
// pin mappings don't own any page tables.
__NK_ASSERT_DEBUG(0);
return KErrAbort;
}
TInt DPhysicalPinMapping::DoMap()
{
// nothing to do...
return KErrNone;
}
void DPhysicalPinMapping::DoUnmap()
{
// nothing to do...
}
//
// DVirtualPinMapping
//
DVirtualPinMapping::DVirtualPinMapping()
: iMaxCount(0)
{
// Clear flag so it is possible to distingish between virtual and physical pin mappings.
Flags() &= ~EPhysicalPinningMapping;
}
DVirtualPinMapping::~DVirtualPinMapping()
{
TRACE(("DVirtualPinMapping[0x%08x]::~DVirtualPinMapping()",this));
FreePageTableArray();
}
DVirtualPinMapping* DVirtualPinMapping::New(TUint aMaxCount)
{
TRACE(("DVirtualPinMapping::New(0x%x)",aMaxCount));
DVirtualPinMapping* self = new DVirtualPinMapping;
if(aMaxCount)
{
// pages have been reserved for our use.
// Create the array for storing pinned paged tables now, so we
// don't risk out-of-memory errors trying to do so later...
if(self->AllocPageTableArray(aMaxCount)!=KErrNone)
{
// failed, so cleanup...
self->Close();
self = 0;
}
else
{
// success, so remember the pages that have been reserved for us...
self->iMaxCount = aMaxCount;
self->Flags() |= EPinningPagesReserved;
}
}
TRACE(("DVirtualPinMapping::New(0x%x) returns 0x%08x",aMaxCount,self));
return self;
}
TUint DVirtualPinMapping::MaxPageTables(TUint aPageCount)
{
return (aPageCount+2*KChunkSize/KPageSize-2)>>(KChunkShift-KPageShift);
}
TInt DVirtualPinMapping::AllocPageTableArray(TUint aCount)
{
__NK_ASSERT_ALWAYS(iAllocatedPinnedPageTables==0);
TUint maxPt = MaxPageTables(aCount);
if(maxPt>KSmallPinnedPageTableCount)
{
iAllocatedPinnedPageTables = new TPte*[maxPt];
if(!iAllocatedPinnedPageTables)
return KErrNoMemory;
}
return KErrNone;
}
void DVirtualPinMapping::FreePageTableArray()
{
delete [] iAllocatedPinnedPageTables;
iAllocatedPinnedPageTables = 0;
}
TPte** DVirtualPinMapping::PageTableArray()
{
return iAllocatedPinnedPageTables ? iAllocatedPinnedPageTables : iSmallPinnedPageTablesArray;
}
TInt DVirtualPinMapping::Pin( DMemoryObject* aMemory, TUint aIndex, TUint aCount, TMappingPermissions aPermissions,
DMemoryMappingBase* aMapping, TUint aMappingInstanceCount)
{
// Virtual pinning ensures a page is always mapped to a particular virtual address
// and therefore require a non-pinning mapping of the virtual address to pin.
__NK_ASSERT_ALWAYS(aMapping && !aMapping->IsPinned());
if(iMaxCount)
{
if(aCount>iMaxCount)
return KErrArgument;
}
else
{
TInt r = AllocPageTableArray(aCount);
if(r!=KErrNone)
return r;
}
iPinVirtualMapping = aMapping;
iPinVirtualMapInstanceCount = aMappingInstanceCount;
TInt r = DPhysicalPinMapping::Pin(aMemory,aIndex,aCount,aPermissions);
iPinVirtualMapping = 0;
return r;
}
void DVirtualPinMapping::Unpin()
{
Detach();
}
void DVirtualPinMapping::UnpinPageTables(TPinArgs& aPinArgs)
{
TPte** pPt = PageTableArray();
TPte** pPtEnd = pPt+iNumPinnedPageTables;
MmuLock::Lock();
while(pPt<pPtEnd)
PageTableAllocator::UnpinPageTable(*pPt++,aPinArgs);
MmuLock::Unlock();
iNumPinnedPageTables = 0;
if(!iMaxCount)
FreePageTableArray();
}
void DVirtualPinMapping::RemapPage(TPhysAddr& /*aPageArrayPtr*/, TUint /*aIndex*/, TUint /*aMapInstanceCount*/, TBool /*aInvalidateTLB*/)
{
__NK_ASSERT_DEBUG(0);
}
TInt DVirtualPinMapping::PageIn(RPageArray::TIter aPages, TPinArgs& aPinArgs, TUint aMapInstanceCount)
{
if(iPinVirtualMapping)
return iPinVirtualMapping->PageIn(aPages, aPinArgs, iPinVirtualMapInstanceCount);
return KErrNone;
}
TInt DVirtualPinMapping::MovingPageIn(TPhysAddr& /*aPageArrayPtr*/, TUint /*aIndex*/)
{
// Should never be asked to page in a page that is being moved as virtual
// pin mappings don't own any page tables.
__NK_ASSERT_DEBUG(0);
return KErrAbort;
}
TInt DVirtualPinMapping::DoPin(TPinArgs& aPinArgs)
{
// setup for page table pinning...
aPinArgs.iPinnedPageTables = PageTableArray();
// do pinning...
TInt r = DPhysicalPinMapping::DoPin(aPinArgs);
// save results...
iNumPinnedPageTables = aPinArgs.iNumPinnedPageTables;
__NK_ASSERT_DEBUG(iNumPinnedPageTables<=MaxPageTables(iSizeInPages));
// cleanup if error...
if(r!=KErrNone)
UnpinPageTables(aPinArgs);
return r;
}
void DVirtualPinMapping::DoUnpin(TPinArgs& aPinArgs)
{
DPhysicalPinMapping::DoUnpin(aPinArgs);
UnpinPageTables(aPinArgs);
}
//
// DMemoryMappingBase
//
DMemoryMappingBase::DMemoryMappingBase(TUint aType)
{
Flags() = aType; // rest of members cleared by DBase
}
TInt DMemoryMappingBase::Attach(DMemoryObject* aMemory, TUint aIndex, TUint aCount)
{
TRACE(("DMemoryMappingBase[0x%08x]::Attach(0x%08x,0x%x,0x%x)",this,aMemory,aIndex,aCount));
__NK_ASSERT_DEBUG(!IsAttached());
TInt r;
if(++iMapInstanceCount>1)
{// This mapping is being reused...
// Non-pinned mappings can be reused however this is only exercised
// by aligned shared buffers whose memory is managed by the unpaged
// or hardware memory manager. Reusing mappings to paged or movable
// memory hasn't tested and may need reusing mappings and its
// interactions with the fault handler, pinning etc to be tested.
__NK_ASSERT_DEBUG( IsPinned() ||
aMemory->iManager == TheUnpagedMemoryManager ||
aMemory->iManager == TheHardwareMemoryManager);
// make sure new instance count is seen by other threads which may be operating
// on old mapping instance (this will stop them changing the mapping any more)...
MmuLock::Lock();
MmuLock::Unlock();
// clear unmapping flag from previous use...
__e32_atomic_and_ord16(&Flags(), (TUint16)~(EDetaching|EPageUnmapVetoed));
}
__NK_ASSERT_DEBUG((Flags()&(EDetaching|EPageUnmapVetoed))==0);
// set region being mapped...
iStartIndex = aIndex;
iSizeInPages = aCount;
// reserve any pages required for pinning demand paged memory.
// We must do this before we add the mapping to the memory object
// because once that is done the pages we are mapping will be prevented
// from being paged out. That could leave the paging system without
// enough pages to correctly handle page faults...
TPinArgs pinArgs;
pinArgs.iReadOnly = IsReadOnly();
if(IsPinned() && aMemory->IsDemandPaged())
{
pinArgs.iUseReserve = Flags()&EPinningPagesReserved;
r = pinArgs.AllocReplacementPages(aCount);
if(r!=KErrNone)
return r;
}
// link into memory object...
r = aMemory->AddMapping(this);
if(r==KErrNone)
{
// pin pages if needed...
if(IsPinned())
r = DoPin(pinArgs);
// add pages to this mapping...
if(r==KErrNone)
r = DoMap();
// revert if error...
if(r!=KErrNone)
Detach();
}
// free any left over pinning pages...
pinArgs.FreeReplacementPages();
return r;
}
void DMemoryMappingBase::Detach()
{
TRACE(("DMemoryMappingBase[0x%08x]::Detach()",this));
__NK_ASSERT_DEBUG(IsAttached());
// set EDetaching flag, which prevents anyone modifying pages in this
// mapping, except to remove them...
MmuLock::Lock();
__e32_atomic_ior_ord16(&Flags(), (TUint16)EDetaching);
MmuLock::Unlock();
// remove all pages from this mapping...
DoUnmap();
// unpin pages if needed...
TPinArgs pinArgs;
if(IsPinned())
DoUnpin(pinArgs);
// unlink from memory object...
iMemory->RemoveMapping(this);
// free any spare pages produced by unpinning...
pinArgs.FreeReplacementPages();
}
TInt DMemoryMappingBase::DoPin(TPinArgs& aPinArgs)
{
DMemoryObject* memory = Memory(true); // safe because we're called from code which has added mapping to memory
return memory->iManager->Pin(memory,this,aPinArgs);
}
void DMemoryMappingBase::DoUnpin(TPinArgs& aPinArgs)
{
DMemoryObject* memory = Memory(true); // safe because we're called from code which will be removing this mapping from memory afterwards
memory->iManager->Unpin(memory,this,aPinArgs);
}
void DMemoryMappingBase::LinkToMemory(DMemoryObject* aMemory, TMappingList& aMappingList)
{
TRACE(("DMemoryMappingBase[0x%08x]::LinkToMemory(0x%08x,?)",this,aMemory));
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(aMappingList.LockIsHeld());
__NK_ASSERT_ALWAYS(!IsAttached());
__NK_ASSERT_DEBUG(!BeingDetached());
aMappingList.Add(this);
iMemory = aMemory;
iMemory->SetMappingAddedFlag();
}
void DMemoryMappingBase::UnlinkFromMemory(TMappingList& aMappingList)
{
TRACE(("DMemoryMappingBase[0x%08x]::UnlinkMapping(?)",this));
// unlink...
MmuLock::Lock();
aMappingList.Lock();
__NK_ASSERT_DEBUG(IsAttached());
__NK_ASSERT_DEBUG(BeingDetached());
aMappingList.Remove(this);
DMemoryObject* memory = iMemory;
iMemory = 0;
aMappingList.Unlock();
MmuLock::Unlock();
// if mapping had vetoed any page decommits...
if(Flags()&DMemoryMapping::EPageUnmapVetoed)
{
// then queue cleanup of decommitted pages...
memory->iManager->QueueCleanup(memory,DMemoryManager::ECleanupDecommitted);
}
}
//
// Debug
//
void DMemoryMappingBase::Dump()
{
#ifdef _DEBUG
Kern::Printf("DMemoryMappingBase[0x%08x]::Dump()",this);
Kern::Printf(" IsAttached() = %d",(bool)IsAttached());
Kern::Printf(" iMemory = 0x%08x",iMemory);
Kern::Printf(" iStartIndex = 0x%x",iStartIndex);
Kern::Printf(" iSizeInPages = 0x%x",iSizeInPages);
Kern::Printf(" Flags() = 0x%x",Flags());
Kern::Printf(" PteType() = 0x%x",PteType());
#endif // _DEBUG
}
void DMemoryMapping::Dump()
{
#ifdef _DEBUG
Kern::Printf("DMemoryMapping[0x%08x]::Dump()",this);
Kern::Printf(" Base() = 0x08%x",iLinAddrAndOsAsid&~KPageMask);
Kern::Printf(" OsAsid() = %d",iLinAddrAndOsAsid&KPageMask);
Kern::Printf(" iBlankPde = 0x%08x",iBlankPde);
Kern::Printf(" iBlankPte = 0x%08x",iBlankPte);
Kern::Printf(" iAllocatedLinAddrAndOsAsid = 0x%08x",iAllocatedLinAddrAndOsAsid);
Kern::Printf(" iAllocatedSize = 0x%x",iAllocatedSize);
DMemoryMappingBase::Dump();
#endif // _DEBUG
}
void DVirtualPinMapping::Dump()
{
#ifdef _DEBUG
Kern::Printf("DVirtualPinMapping[0x%08x]::Dump()",this);
Kern::Printf(" iMaxCount = %d",iMaxCount);
Kern::Printf(" iNumPinnedPageTables = %d",iNumPinnedPageTables);
DMemoryMappingBase::Dump();
#endif // _DEBUG
}