// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <plat_priv.h>
#include "mm.h"
#include "mmu.h"
#include "mmanager.h"
#include "mobject.h"
#include "mmapping.h"
#include "mpager.h"
#include "mswap.h"
/**
Manages the swap via the data paging device.
*/
class DSwapManager
{
public:
/// The state of swap for a logical page in a memory object.
///
/// Note that this does not always correspond to the state of the page in RAM - for example a
/// page can be dirty in RAM but blank in swap if it has never been written out.
enum TSwapState
{
EStateUnreserved = 0, ///< swap space not yet reserved, or page is being decommitted
EStateBlank = 1, ///< swap page has never been written
EStateWritten = 2, ///< swap page has been written out at least once
EStateWriting = 3 ///< swap page is in the process of being written out
};
enum
{
ESwapIndexShift = 2,
ESwapStateMask = (1 << ESwapIndexShift) - 1,
ESwapIndexMask = 0xffffffff & ~ESwapStateMask
};
public:
TInt Create(DPagingDevice* aDevice);
TInt ReserveSwap(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount);
TInt UnreserveSwap(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount);
TBool IsReserved(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount);
TInt ReadSwapPages(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TLinAddr aLinAddr, DPageReadRequest* aRequest, TPhysAddr* aPhysAddrs);
TInt WriteSwapPages(DMemoryObject** aMemory, TUint* aIndex, TUint aCount, TLinAddr aLinAddr, TBool aBackground);
void GetSwapInfo(SVMSwapInfo& aInfoOut);
TInt SetSwapThresholds(const SVMSwapThresholds& aThresholds);
private:
inline TSwapState SwapState(TUint aSwapData);
inline TInt SwapIndex(TUint aSwapData);
inline TUint SwapData(TSwapState aSwapState, TInt aSwapIndex);
TInt AllocSwapIndex(TInt aCount);
void FreeSwapIndex(TInt aSwapIndex);
void CheckSwapThresholdsAndUnlock(TUint aInitial);
void DoDeleteNotify(TUint aSwapIndex);
TInt DoWriteSwapPages(DMemoryObject** aMemory, TUint* aIndex, TUint aCount, TLinAddr aLinAddr, TInt aSwapIndex, TBool aBackground);
private:
DPagingDevice* iDevice; ///< Paging device used to read and write swap pages
NFastMutex iSwapLock; ///< Fast mutex protecting access to all members below
TUint iFreePageCount; ///< Number of swap pages that have not been reserved
TBitMapAllocator* iBitMap; ///< Bitmap of swap pages that have been allocated
TUint iAllocOffset; ///< Next offset to try when allocating a swap page
TUint iSwapThesholdLow;
TUint iSwapThesholdGood;
};
/**
Manager for demand paged memory objects which contain writeable data.
The contents of the memory are written to a backing store whenever its
pages are 'paged out'.
@see DSwapManager
*/
class DDataPagedMemoryManager : public DPagedMemoryManager
{
private:
// from DMemoryManager...
virtual TInt Alloc(DMemoryObject* aMemory, TUint aIndex, TUint aCount);
virtual void Free(DMemoryObject* aMemory, TUint aIndex, TUint aCount);
virtual TInt Wipe(DMemoryObject* aMemory);
virtual void CleanPages(TUint aPageCount, SPageInfo** aPageInfos, TBool aBackground);
// Methods inherited from DPagedMemoryManager
virtual void Init3();
virtual TInt InstallPagingDevice(DPagingDevice* aDevice);
virtual TInt AcquirePageReadRequest(DPageReadRequest*& aRequest, DMemoryObject* aMemory, TUint aIndex, TUint aCount);
virtual TInt AcquirePageWriteRequest(DPageWriteRequest*& aRequest, DMemoryObject** aMemory, TUint* aIndex, TUint aCount);
virtual TInt ReadPages(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TPhysAddr* aPages, DPageReadRequest* aRequest);
virtual TBool IsAllocated(DMemoryObject* aMemory, TUint aIndex, TUint aCount);
public:
void GetSwapInfo(SVMSwapInfo& aInfoOut);
TInt SetSwapThresholds(const SVMSwapThresholds& aThresholds);
private:
TInt WritePages(DMemoryObject** aMemory, TUint* aIndex, TPhysAddr* aPages, TUint aCount, DPageWriteRequest *aRequest, TBool aAnyExecutable, TBool aBackground);
private:
/**
The paging device used for accessing the backing store.
This is set by #InstallPagingDevice.
*/
DPagingDevice* iDevice;
/**
The instance of #DSwapManager being used by this manager.
*/
DSwapManager* iSwapManager;
public:
/**
The single instance of this manager class.
*/
static DDataPagedMemoryManager TheManager;
};
DDataPagedMemoryManager DDataPagedMemoryManager::TheManager;
DPagedMemoryManager* TheDataPagedMemoryManager = &DDataPagedMemoryManager::TheManager;
/**
Create a swap manager.
@param aDevice The demand paging device for access to the swap.
*/
TInt DSwapManager::Create(DPagingDevice* aDevice)
{
__ASSERT_COMPILE(!(ESwapIndexMask & ESwapStateMask));
__NK_ASSERT_DEBUG(iDevice == NULL);
iDevice = aDevice;
// Create the structures required to track the swap usage.
TUint swapPages = (iDevice->iSwapSize << iDevice->iReadUnitShift) >> KPageShift;
// Can't have more swap pages than we can map.
__NK_ASSERT_DEBUG(swapPages<=DMemoryObject::KMaxPagingManagerData);
__NK_ASSERT_DEBUG(swapPages<=(KMaxTUint>>ESwapIndexShift));
if ((TheMmu.TotalPhysicalRamPages() << 2) < swapPages)
{// The swap is limited to a maximum of 4 times the amount of RAM.
return KErrTooBig;
}
iBitMap = TBitMapAllocator::New(swapPages, ETrue);
if (iBitMap == NULL)
{// Not enough RAM to keep track of the swap.
return KErrNoMemory;
}
iFreePageCount = swapPages;
iAllocOffset = 0;
return KErrNone;
}
inline DSwapManager::TSwapState DSwapManager::SwapState(TUint aSwapData)
{
TSwapState state = (TSwapState)(aSwapData & ESwapStateMask);
__NK_ASSERT_DEBUG(state >= EStateWritten || (aSwapData & ~ESwapStateMask) == 0);
return state;
}
inline TInt DSwapManager::SwapIndex(TUint aSwapData)
{
return aSwapData >> ESwapIndexShift;
}
inline TUint DSwapManager::SwapData(TSwapState aSwapState, TInt aSwapIndex)
{
return (aSwapIndex << ESwapIndexShift) | aSwapState;
}
/**
Allocate one or more page's worth of space within the swap area.
The location is represented by a page-based index into the swap area.
@param aCount The number of page's worth of space to allocate.
@return The swap index of the first location allocated.
*/
TInt DSwapManager::AllocSwapIndex(TInt aCount)
{
__NK_ASSERT_DEBUG(aCount > 0 && aCount <= KMaxPagesToClean);
NKern::FMWait(&iSwapLock);
// search for run of aCount from iAllocOffset to end
TInt carry = 0;
TInt l = KMaxTInt;
TInt swapIndex = iBitMap->AllocAligned(aCount, 0, 0, EFalse, carry, l, iAllocOffset);
// if search failed, retry from beginning
if (swapIndex < 0)
{
iAllocOffset = 0;
carry = 0;
swapIndex = iBitMap->AllocAligned(aCount, 0, 0, EFalse, carry, l, iAllocOffset);
}
// if we found one then mark it as allocated and update iAllocOffset
if (swapIndex >= 0)
{
__NK_ASSERT_DEBUG(swapIndex <= (iBitMap->iSize - aCount));
iBitMap->Alloc(swapIndex, aCount);
iAllocOffset = (swapIndex + aCount) % iBitMap->iSize;
}
NKern::FMSignal(&iSwapLock);
__NK_ASSERT_DEBUG(swapIndex >= 0 || aCount > 1); // can't fail to allocate single page
return swapIndex;
}
/**
Free one page's worth of space within the swap area.
The index must have been previously allocated with AllocSwapIndex().
*/
void DSwapManager::FreeSwapIndex(TInt aSwapIndex)
{
__NK_ASSERT_DEBUG(aSwapIndex >= 0 && aSwapIndex < iBitMap->iSize);
DoDeleteNotify(aSwapIndex);
NKern::FMWait(&iSwapLock);
iBitMap->Free(aSwapIndex);
NKern::FMSignal(&iSwapLock);
}
/**
Reserve some swap pages for the requested region of the memory object
@param aMemory The memory object to reserve pages for.
@param aStartIndex The page index in the memory object of the start of the region.
@param aPageCount The number of pages to reserve.
@return KErrNone on success, KErrNoMemory if not enough swap space available.
@pre aMemory's lock is held.
@post aMemory's lock is held.
*/
TInt DSwapManager::ReserveSwap(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount)
{
__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
NKern::FMWait(&iSwapLock);
TUint initFree = iFreePageCount;
if (iFreePageCount < aPageCount)
{
NKern::FMSignal(&iSwapLock);
Kern::AsyncNotifyChanges(EChangesOutOfMemory);
return KErrNoMemory;
}
iFreePageCount -= aPageCount;
CheckSwapThresholdsAndUnlock(initFree);
// Mark each page as allocated and uninitialised.
const TUint indexEnd = aStartIndex + aPageCount;
for (TUint index = aStartIndex; index < indexEnd; index++)
{
// Grab MmuLock to stop manager data being accessed.
MmuLock::Lock();
__NK_ASSERT_DEBUG(SwapState(aMemory->PagingManagerData(index)) == EStateUnreserved);
aMemory->SetPagingManagerData(index, EStateBlank);
MmuLock::Unlock();
}
return KErrNone;
}
/**
Unreserve swap pages for the requested region of the memory object.
@param aMemory The memory object to unreserve pages for.
@param aStartIndex The page index in the memory object of the start of the region.
@param aPageCount The number of pages to unreserve.
@return The number of pages freed.
@pre aMemory's lock is held.
@post aMemory's lock is held.
*/
TInt DSwapManager::UnreserveSwap(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount)
{
__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
TUint freedPages = 0;
const TUint indexEnd = aStartIndex + aPageCount;
for (TUint index = aStartIndex; index < indexEnd; index++)
{
// Grab MmuLock to stop manager data being accessed.
MmuLock::Lock();
TUint swapData = aMemory->PagingManagerData(index);
TSwapState state = SwapState(swapData);
if (state != EStateUnreserved)
{
freedPages++;
aMemory->SetPagingManagerData(index, EStateUnreserved);
}
MmuLock::Unlock();
if (state == EStateWritten)
FreeSwapIndex(SwapIndex(swapData));
else if (state == EStateWriting)
{
// Wait for cleaning to finish before deallocating swap space
PageCleaningLock::Lock();
PageCleaningLock::Unlock();
#ifdef _DEBUG
MmuLock::Lock();
__NK_ASSERT_DEBUG(SwapState(aMemory->PagingManagerData(index)) == EStateUnreserved);
MmuLock::Unlock();
#endif
}
}
NKern::FMWait(&iSwapLock);
TUint initFree = iFreePageCount;
iFreePageCount += freedPages;
CheckSwapThresholdsAndUnlock(initFree);
return freedPages;
}
/**
Determine whether the specified pages in the memory object have swap reserved for them.
@param aMemory The memory object that owns the pages.
@param aStartIndex The first index of the pages to check.
@param aPageCount The number of pages to check.
@return ETrue if swap is reserved for all the pages, EFalse otherwise.
*/
TBool DSwapManager::IsReserved(DMemoryObject* aMemory, TUint aStartIndex, TUint aPageCount)
{// MmuLock required to protect manager data.
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(aStartIndex < aMemory->iSizeInPages);
__NK_ASSERT_DEBUG(aStartIndex + aPageCount <= aMemory->iSizeInPages);
const TUint indexEnd = aStartIndex + aPageCount;
for (TUint index = aStartIndex; index < indexEnd; index++)
{
if (SwapState(aMemory->PagingManagerData(index)) == EStateUnreserved)
{// This page is not allocated by swap manager.
return EFalse;
}
}
return ETrue;
}
/**
Read from the swap the specified pages associated with the memory object.
@param aMemory The memory object to read the pages for
@param aIndex The index of the first page within the memory object.
@param aCount The number of pages to read.
@param aLinAddr The address to copy the pages to.
@param aRequest The request to use for the read.
@param aPhysAddrs An array of the physical addresses for each page to read in.
*/
TInt DSwapManager::ReadSwapPages(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TLinAddr aLinAddr, DPageReadRequest* aRequest, TPhysAddr* aPhysAddrs)
{
__ASSERT_CRITICAL;
TInt r = KErrNone;
const TUint readUnitShift = iDevice->iReadUnitShift;
TUint readSize = KPageSize >> readUnitShift;
TThreadMessage message;
const TUint indexEnd = aIndex + aCount;
for (TUint index = aIndex; index < indexEnd; index++, aLinAddr += KPageSize, aPhysAddrs++)
{
START_PAGING_BENCHMARK;
MmuLock::Lock(); // MmuLock required for atomic access to manager data.
TUint swapData = aMemory->PagingManagerData(index);
TSwapState state = SwapState(swapData);
if (state == EStateUnreserved)
{// This page is not committed to the memory object
MmuLock::Unlock();
return KErrNotFound;
}
else if (state == EStateBlank)
{// This page has not been written to yet so don't read from swap
// just wipe it if required.
TUint allocFlags = aMemory->RamAllocFlags();
MmuLock::Unlock();
TBool wipePages = !(allocFlags & Mmu::EAllocNoWipe);
if (wipePages)
{
TUint8 wipeByte = (allocFlags & Mmu::EAllocUseCustomWipeByte) ?
(allocFlags >> Mmu::EAllocWipeByteShift) & 0xff :
0x03;
memset((TAny*)aLinAddr, wipeByte, KPageSize);
}
}
else
{
// It is not possible to get here if the page is in state EStateWriting as if so it must
// be present in RAM, and so will not need to be read in.
__NK_ASSERT_DEBUG(state == EStateWritten);
// OK to release as if the object's data is decommitted the pager
// will check that data is still valid before mapping it.
MmuLock::Unlock();
TUint readStart = (SwapIndex(swapData) << KPageShift) >> readUnitShift;
START_PAGING_BENCHMARK;
r = iDevice->Read(&message, aLinAddr, readStart, readSize, DPagingDevice::EDriveDataPaging);
if (r != KErrNone)
__KTRACE_OPT(KPANIC, Kern::Printf("DSwapManager::ReadSwapPages: error reading media at %08x + %x: %d", readStart << readUnitShift, readSize << readUnitShift, r));
__NK_ASSERT_DEBUG(r!=KErrNoMemory); // not allowed to allocate memory, therefore can't fail with KErrNoMemory
END_PAGING_BENCHMARK(EPagingBmReadDataMedia);
__NK_ASSERT_ALWAYS(r == KErrNone);
}
END_PAGING_BENCHMARK(EPagingBmReadDataPage);
}
return r;
}
/**
Write the specified memory object's pages from the RAM into the swap.
@param aMemory The memory object who owns the pages.
@param aIndex The index within the memory object.
@param aCount The number of pages to write out.
@param aLinAddr The location of the pages to write out.
@param aBackground Whether this is being called in the background by the page cleaning thread
as opposed to on demand when a free page is required.
@pre Called with page cleaning lock held
*/
TInt DSwapManager::WriteSwapPages(DMemoryObject** aMemory, TUint* aIndex, TUint aCount, TLinAddr aLinAddr, TBool aBackground)
{
__ASSERT_CRITICAL; // so we can pass the paging device a stack-allocated TThreadMessage
__NK_ASSERT_DEBUG(PageCleaningLock::IsHeld());
START_PAGING_BENCHMARK;
TUint i;
TUint swapData[KMaxPagesToClean + 1];
MmuLock::Lock();
for (i = 0 ; i < aCount ; ++i)
{
swapData[i] = aMemory[i]->PagingManagerData(aIndex[i]);
TSwapState s = SwapState(swapData[i]);
// It's not possible to write a page while it's already being written, because we always hold
// the PageCleaning mutex when we clean
__NK_ASSERT_DEBUG(s == EStateUnreserved || s == EStateBlank || s == EStateWritten);
if (s == EStateBlank || s == EStateWritten)
aMemory[i]->SetPagingManagerData(aIndex[i], SwapData(EStateWriting, 0));
}
MmuLock::Unlock();
// By the time we get here, some pages may have been decommitted, so write out only those runs
// of pages which are still committed.
TInt r = KErrNone;
TInt startIndex = -1;
swapData[aCount] = SwapData(EStateUnreserved, 0); // end of list marker
for (i = 0 ; i < (aCount + 1) ; ++i)
{
if (SwapState(swapData[i]) != EStateUnreserved)
{
if (startIndex == -1)
startIndex = i;
// Free swap page corresponding to old version of the pages we are going to write
if (SwapState(swapData[i]) == EStateWritten)
FreeSwapIndex(SwapIndex(swapData[i]));
}
else
{
if (startIndex != -1)
{
// write pages from startIndex to i exclusive
TInt count = i - startIndex;
__NK_ASSERT_DEBUG(count > 0 && count <= KMaxPagesToClean);
// Get a new swap location for these pages, writing them all together if possible
TInt swapIndex = AllocSwapIndex(count);
if (swapIndex >= 0)
r = DoWriteSwapPages(&aMemory[startIndex], &aIndex[startIndex], count, aLinAddr + (startIndex << KPageShift), swapIndex, aBackground);
else
{
// Otherwise, write them individually
for (TUint j = startIndex ; j < i ; ++j)
{
swapIndex = AllocSwapIndex(1);
__NK_ASSERT_DEBUG(swapIndex >= 0);
r = DoWriteSwapPages(&aMemory[j], &aIndex[j], 1, aLinAddr + (j << KPageShift), swapIndex, aBackground);
if (r != KErrNone)
break;
}
}
startIndex = -1;
}
}
}
END_PAGING_BENCHMARK_N(EPagingBmWriteDataPage, aCount);
return r;
}
TInt DSwapManager::DoWriteSwapPages(DMemoryObject** aMemory, TUint* aIndex, TUint aCount, TLinAddr aLinAddr, TInt aSwapIndex, TBool aBackground)
{
const TUint readUnitShift = iDevice->iReadUnitShift;
const TUint writeSize = aCount << (KPageShift - readUnitShift);
const TUint writeOffset = aSwapIndex << (KPageShift - readUnitShift);
TThreadMessage msg;
START_PAGING_BENCHMARK;
TInt r = iDevice->Write(&msg, aLinAddr, writeOffset, writeSize, aBackground);
if (r != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf("DSwapManager::WriteSwapPages: error writing media from %08x to %08x + %x: %d", aLinAddr, writeOffset << readUnitShift, writeSize << readUnitShift, r));
}
__NK_ASSERT_DEBUG(r!=KErrNoMemory); // not allowed to allocate memory, therefore can't fail with KErrNoMemory
__NK_ASSERT_ALWAYS(r == KErrNone);
END_PAGING_BENCHMARK(EPagingBmWriteDataMedia);
TUint i;
TUint swapData[KMaxPagesToClean];
MmuLock::Lock();
for (i = 0 ; i < aCount ; ++i)
{
// Re-check the swap state in case page was decommitted while we were writing
swapData[i] = aMemory[i]->PagingManagerData(aIndex[i]);
TSwapState s = SwapState(swapData[i]);
__NK_ASSERT_DEBUG(s == EStateUnreserved || s == EStateWriting);
if (s == EStateWriting)
{
// Store the new swap location and mark the page as saved.
aMemory[i]->SetPagingManagerData(aIndex[i], SwapData(EStateWritten, aSwapIndex + i));
}
}
MmuLock::Unlock();
for (i = 0 ; i < aCount ; ++i)
{
TSwapState s = SwapState(swapData[i]);
if (s == EStateUnreserved)
{
// The page was decommitted while we were cleaning it, so free the swap page we
// allocated and continue, leaving this page in the unreserved state.
FreeSwapIndex(aSwapIndex + i);
}
}
return KErrNone;
}
/**
Notify the media driver that the page written to swap is no longer required.
*/
void DSwapManager::DoDeleteNotify(TUint aSwapIndex)
{
__ASSERT_CRITICAL; // so we can pass the paging device a stack-allocated TThreadMessage
#ifdef __PAGING_DELETE_NOTIFY_ENABLED
const TUint readUnitShift = iDevice->iReadUnitShift;
const TUint size = KPageSize >> readUnitShift;
TUint offset = (aSwapIndex << KPageShift) >> readUnitShift;
TThreadMessage msg;
START_PAGING_BENCHMARK;
// Ignore the return value as this is just an optimisation that is not supported on all media.
(void)iDevice->DeleteNotify(&msg, offset, size);
END_PAGING_BENCHMARK(EPagingBmDeleteNotifyDataPage);
#endif
}
// Check swap thresholds and notify (see K::CheckFreeMemoryLevel)
void DSwapManager::CheckSwapThresholdsAndUnlock(TUint aInitial)
{
TUint changes = 0;
if (iFreePageCount < iSwapThesholdLow && aInitial >= iSwapThesholdLow)
changes |= (EChangesFreeMemory | EChangesLowMemory);
if (iFreePageCount >= iSwapThesholdGood && aInitial < iSwapThesholdGood)
changes |= EChangesFreeMemory;
NKern::FMSignal(&iSwapLock);
if (changes)
Kern::AsyncNotifyChanges(changes);
}
void DSwapManager::GetSwapInfo(SVMSwapInfo& aInfoOut)
{
aInfoOut.iSwapSize = iBitMap->iSize << KPageShift;
NKern::FMWait(&iSwapLock);
aInfoOut.iSwapFree = iFreePageCount << KPageShift;
NKern::FMSignal(&iSwapLock);
}
TInt DSwapManager::SetSwapThresholds(const SVMSwapThresholds& aThresholds)
{
if (aThresholds.iLowThreshold > aThresholds.iGoodThreshold)
return KErrArgument;
TInt low = (aThresholds.iLowThreshold + KPageSize - 1) >> KPageShift;
TInt good = (aThresholds.iGoodThreshold + KPageSize - 1) >> KPageShift;
if (good > iBitMap->iSize)
return KErrArgument;
NKern::FMWait(&iSwapLock);
iSwapThesholdLow = low;
iSwapThesholdGood = good;
NKern::FMSignal(&iSwapLock);
return KErrNone;
}
TInt DDataPagedMemoryManager::InstallPagingDevice(DPagingDevice* aDevice)
{
TRACEB(("DDataPagedMemoryManager::InstallPagingDevice(0x%08x)",aDevice));
TUint dataPolicy = TheSuperPage().KernelConfigFlags() & EKernelConfigDataPagingPolicyMask;
TRACEB(("Data Paging Policy = %d", dataPolicy >> EKernelConfigDataPagingPolicyShift));
if (dataPolicy == EKernelConfigDataPagingPolicyNoPaging)
{// No paging allowed so don't register the device.
return KErrNone;
}
// Store the device, blocking any other devices from installing.
if (!NKern::CompareAndSwap((TAny*&)iDevice, (TAny*)NULL, (TAny*)aDevice))
{// Data paging device already installed.
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("**** Attempt to install more than one data paging device !!!!!!!! ****"));
return KErrAlreadyExists;
}
// Now we can determine the size of the swap, create the swap manager.
iSwapManager = new DSwapManager;
__NK_ASSERT_ALWAYS(iSwapManager);
TInt r = iSwapManager->Create(iDevice);
if (r != KErrNone)
{// Couldn't create the swap manager.
delete iSwapManager;
iSwapManager = NULL;
NKern::SafeSwap(NULL, (TAny*&)iDevice);
return r;
}
NKern::LockedSetClear(K::MemModelAttributes, 0, EMemModelAttrDataPaging);
return r;
}
TInt DDataPagedMemoryManager::AcquirePageReadRequest(DPageReadRequest*& aRequest, DMemoryObject* aMemory, TUint aIndex, TUint aCount)
{
aRequest = iDevice->iRequestPool->AcquirePageReadRequest(aMemory,aIndex,aCount);
return KErrNone;
}
TInt DDataPagedMemoryManager::AcquirePageWriteRequest(DPageWriteRequest*& aRequest, DMemoryObject** aMemory, TUint* aIndex, TUint aCount)
{
aRequest = iDevice->iRequestPool->AcquirePageWriteRequest(aMemory,aIndex,aCount);
return KErrNone;
}
void DDataPagedMemoryManager::Init3()
{
}
TInt DDataPagedMemoryManager::Alloc(DMemoryObject* aMemory, TUint aIndex, TUint aCount)
{
__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
// re-initialise any decommitted pages which we may still own because they were pinned...
ReAllocDecommitted(aMemory,aIndex,aCount);
// Reserve the swap pages required.
return iSwapManager->ReserveSwap(aMemory, aIndex, aCount);
}
void DDataPagedMemoryManager::Free(DMemoryObject* aMemory, TUint aIndex, TUint aCount)
{
TRACE2(("DDataPagedMemoryManager::Free(0x%08x,0x%x,0x%x)", aMemory, aIndex, aCount));
__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
// Unreserve the swap pages associated with the memory object. Do this before
// removing the page array entries to prevent a page fault reallocating these pages.
TInt freed = iSwapManager->UnreserveSwap(aMemory, aIndex, aCount);
(void)freed;
DoFree(aMemory,aIndex,aCount);
}
/**
@copydoc DMemoryManager::Wipe
*/
TInt DDataPagedMemoryManager::Wipe(DMemoryObject* aMemory)
{
// This is not implemented
//
// It's possible to implement this by throwing away all pages that are paged in and just setting
// the backing store state to EStateBlank, however there are currently no use cases which
// involve calling Wipe on paged memory.
__NK_ASSERT_ALWAYS(0);
return KErrNotSupported;
}
TInt DDataPagedMemoryManager::ReadPages(DMemoryObject* aMemory, TUint aIndex, TUint aCount, TPhysAddr* aPages, DPageReadRequest* aRequest)
{
__NK_ASSERT_DEBUG(aRequest->CheckUseContiguous(aMemory,aIndex,aCount));
// Map pages temporarily so that we can copy into them.
const TLinAddr linAddr = aRequest->MapPages(aIndex, aCount, aPages);
TInt r = iSwapManager->ReadSwapPages(aMemory, aIndex, aCount, linAddr, aRequest, aPages);
// The memory object allows executable mappings then need IMB.
aRequest->UnmapPages(aMemory->IsExecutable());
return r;
}
TInt DDataPagedMemoryManager::WritePages(DMemoryObject** aMemory, TUint* aIndex, TPhysAddr* aPages, TUint aCount, DPageWriteRequest* aRequest, TBool aAnyExecutable, TBool aBackground)
{
// Map pages temporarily so that we can copy into them.
const TLinAddr linAddr = aRequest->MapPages(aIndex[0], aCount, aPages);
TInt r = iSwapManager->WriteSwapPages(aMemory, aIndex, aCount, linAddr, aBackground);
// The memory object allows executable mappings then need IMB.
aRequest->UnmapPages(aAnyExecutable);
return r;
}
void DDataPagedMemoryManager::CleanPages(TUint aPageCount, SPageInfo** aPageInfos, TBool aBackground)
{
__NK_ASSERT_DEBUG(PageCleaningLock::IsHeld());
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(aPageCount <= (TUint)KMaxPagesToClean);
TUint i;
DMemoryObject* memory[KMaxPagesToClean];
TUint index[KMaxPagesToClean];
TPhysAddr physAddr[KMaxPagesToClean];
TBool anyExecutable = EFalse;
for (i = 0 ; i < aPageCount ; ++i)
{
SPageInfo* pi = aPageInfos[i];
__NK_ASSERT_DEBUG(!pi->IsWritable());
__NK_ASSERT_DEBUG(pi->IsDirty());
// mark page as being modified by us...
pi->SetModifier(&memory[0]);
// get info about page...
memory[i] = pi->Owner();
index[i] = pi->Index();
physAddr[i] = pi->PhysAddr();
anyExecutable = anyExecutable || memory[i]->IsExecutable();
}
MmuLock::Unlock();
// get paging request object...
DPageWriteRequest* req;
TInt r = AcquirePageWriteRequest(req, memory, index, aPageCount);
__NK_ASSERT_DEBUG(r==KErrNone && req);
r = WritePages(memory, index, physAddr, aPageCount, req, anyExecutable, aBackground);
__NK_ASSERT_DEBUG(r == KErrNone); // this should never return an error
req->Release();
MmuLock::Lock();
for (i = 0 ; i < aPageCount ; ++i)
{
SPageInfo* pi = aPageInfos[i];
// check if page is clean...
if(pi->CheckModified(&memory[0]) || pi->IsWritable())
{
// someone else modified the page, or it became writable, so mark as not cleaned
aPageInfos[i] = NULL;
}
else
{
// page is now clean!
ThePager.SetClean(*pi);
}
}
}
TBool DDataPagedMemoryManager::IsAllocated(DMemoryObject* aMemory, TUint aIndex, TUint aCount)
{// MmuLock required to protect manager data.
// DPagedMemoryManager::DoPageInDone() won't allow MmuLock to be released
// so can only cope with a maximum of KMaxPagesInOneGo.
__NK_ASSERT_DEBUG(MmuLock::IsHeld());
__NK_ASSERT_DEBUG(aCount <= KMaxPagesInOneGo);
return iSwapManager->IsReserved(aMemory, aIndex, aCount);
}
void DDataPagedMemoryManager::GetSwapInfo(SVMSwapInfo& aInfoOut)
{
iSwapManager->GetSwapInfo(aInfoOut);
}
TInt DDataPagedMemoryManager::SetSwapThresholds(const SVMSwapThresholds& aThresholds)
{
return iSwapManager->SetSwapThresholds(aThresholds);
}
void GetSwapInfo(SVMSwapInfo& aInfoOut)
{
((DDataPagedMemoryManager*)TheDataPagedMemoryManager)->GetSwapInfo(aInfoOut);
}
TInt SetSwapThresholds(const SVMSwapThresholds& aThresholds)
{
return ((DDataPagedMemoryManager*)TheDataPagedMemoryManager)->SetSwapThresholds(aThresholds);
}