// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\t_pages.cpp
//
//
#include <e32std.h>
#include <e32std_private.h>
#include <e32svr.h>
#include "d_shadow.h"
RShadow Shadow;
LOCAL_D TUint Read(TUint anAddr)
{
return Shadow.Read(anAddr);
}
TUint PageTables = 0;
TCpu Cpu = ECpuUnknown;
TInt CpuArc = 0;
TInt CpuSpecial = 0;
TUint ControlReg = 0;
const TUint KXPbitM = 0x800000;
LOCAL_C void ProcessCBTEX(TDes& aDes, TUint aCb, TUint aTex)
{
const TPtrC KTEXCB[9] = {_L("StOr"),_L("ShDv"),_L("WTRA"),_L("WBRA"),_L("NoCa"),_L("Resv"),_L("ImpD"),_L("WBWA"),_L("NSDv")};
const TPtrC KCacheP[4] = {_L("NoCa"),_L("WBWA"),_L("WTRA"),_L("WBRA")};
aCb = aCb >> 2;
TUint texCB = aCb | ((aTex&7) << 2);
if ((texCB<9) && (CpuArc>5))
aDes.Append(KTEXCB[texCB]);
else if ((aTex&4) && (CpuArc>5))
{
aDes.Append(KCacheP[aTex&3]);
aDes.Append(TChar('/'));
aDes.Append(KCacheP[aCb]);
}
else
{
if (CpuArc>5)
{
if (aTex&4)
aDes.Append(TChar('1'));
else
aDes.Append(TChar('0'));
if (aTex&2)
aDes.Append(TChar('1'));
else
aDes.Append(TChar('0'));
if (aTex&1)
aDes.Append(TChar('1'));
else
aDes.Append(TChar('0'));
}
else if (CpuSpecial == 2)
{
if (aTex==1)
aDes.Append(TChar('X'));
else if (aTex==0)
aDes.Append(TChar('_'));
else
aDes.Append(TChar('?'));
}
if (aCb & 2)
aDes.Append(TChar('C'));
else
aDes.Append(TChar('_'));
if (aCb & 1)
aDes.Append(TChar('B'));
else
aDes.Append(TChar('_'));
}
}
LOCAL_C void ProcessXNnGS(TDes& aDes, TUint anGS, TUint aXN)
{
if ((ControlReg & KXPbitM))
{
aDes.Append(TChar(' '));
if (aXN )
aDes.Append(_L("XN "));
else
aDes.Append(_L("__ "));
if (anGS&2 )
aDes.Append(_L("nG "));
else
aDes.Append(_L("__ "));
if (anGS&1 )
aDes.Append(TChar('S'));
else
aDes.Append(TChar('_'));
}
}
LOCAL_C void ProcessAP(TDes& aDes, TUint aAp)
{
const TPtrC KAccessP[7] = {_L(" RWNO"),_L(" RWRO"),_L(" RWRW"),_L(" Rsv0"),_L(" RONO"),_L(" RORO"),_L(" Rsv1")};
const TPtrC KAccZrP[4] = {_L(" NONO"), _L(" RONO"), _L(" RORO"), _L(" Rsv2")};
TUint access = aAp & 3;
TUint apx = (aAp >> 3) & 4;
if (((ControlReg & 0x300) !=0) && apx)
{
aDes.Append(_L(" Rsv3"));
}
else
{
if ((ControlReg & KXPbitM))
access |= apx;
if (access==0)
aDes.Append(KAccZrP[(ControlReg >> 8) & 3]);
else
aDes.Append(KAccessP[access-1]);
}
}
LOCAL_C void ProcessPteSE(TUint aPte, TUint anAddr)
{
TUint type=aPte&3;
TBuf<36> buf;
switch(type)
{
case 0:
// not present
break;
case 1:
{
// large page
TUint phys=aPte & 0xffff0000;
TUint ap0=(aPte>>4)&3;
TUint ap1=(aPte>>6)&3;
TUint ap2=(aPte>>8)&3;
TUint ap3=(aPte>>10)&3;
TUint tex=(aPte>>12)&0xf;
ProcessCBTEX(buf,aPte&0xc,tex);
ProcessAP(buf,ap0);
ProcessAP(buf,ap1);
ProcessAP(buf,ap2);
ProcessAP(buf,ap3);
RDebug::Print(_L("\t%08x Lpage: phys=%08x, %S"),anAddr,phys,&buf);
break;
}
case 2:
{
// small page
TUint phys=aPte & 0xfffff000;
TUint ap0=(aPte>>4)&3;
TUint ap1=(aPte>>6)&3;
TUint ap2=(aPte>>8)&3;
TUint ap3=(aPte>>10)&3;
ProcessCBTEX(buf,aPte&0xc,0);
ProcessAP(buf,ap0);
ProcessAP(buf,ap1);
ProcessAP(buf,ap2);
ProcessAP(buf,ap3);
RDebug::Print(_L("\t%08x Spage: phys=%08x, %S"),anAddr,phys,&buf);
break;
}
case 3:
{
// extended small page
TUint phys=aPte & 0xfffff000;
TUint ap=(aPte>>4)&3;
TUint tex=(aPte>>6)&0xf;
ProcessCBTEX(buf,aPte&0xc,tex);
ProcessAP(buf,ap);
RDebug::Print(_L("\t%08x XSpage: phys=%08x, %S"),anAddr,phys,&buf);
break;
}
}
}
LOCAL_C void ProcessPteSD(TUint aPte, TUint anAddr)
{
if ((aPte&3) != 0)
{
TBuf<36> buf;
TUint ap=(aPte>>4)&23;
if (aPte&2) // XS-Page
{
// extended small page
TUint phys=aPte & 0xfffff000;
TUint tex=(aPte>>6)&0x7;
ProcessCBTEX(buf,aPte&0xc,tex);
ProcessAP(buf,ap);
ProcessXNnGS(buf, (aPte>>10)&3, aPte &1);
RDebug::Print(_L("\t%08x XSpage: phys=%08x, %S"),anAddr,phys,&buf);
}
else // L-Page
{
// large page
TUint phys=aPte & 0xffff0000;
TUint tex=(aPte>>12)&0x7;
ProcessCBTEX(buf,aPte&0xc,tex);
ProcessAP(buf,ap);
ProcessXNnGS(buf, (aPte>>10)&3, (aPte >> 15) &1);
RDebug::Print(_L("\t%08x Lpage: phys=%08x, %S"),anAddr,phys,&buf);
}
}// Else "Fault" - Not Present
}
LOCAL_C void ProcessPde(TUint aPde, TUint anAddr)
{
TUint type=aPde&3;
TBuf<24> buf;
switch(type)
{
case 0:
// not present
if (aPde)
RDebug::Print(_L(" Not Present\n"));
break;
case 1:
{
// page table
TUint ptphys=aPde & 0xfffffc00;
TUint domain=(aPde>>5)&15;
TUint P=(aPde&0x200);
TUint ptpgphys=ptphys & 0xfffff000;
TUint ptlin=0;
TInt i;
for (i=0; i<256; i++)
{
if ((Read(PageTables+i*4)&0xfffff000)==ptpgphys)
{
if (ptlin==0)
ptlin=PageTables+(i<<12)+(ptphys & 0xc00);
else
RDebug::Print(_L("WARNING Multiple page tables found! alt = %08x\n"), PageTables+(i<<12)+(ptphys & 0xc00));
}
}
if (ptlin)
{
RDebug::Print(_L("%08x page table: phys=%08x, domain %2d, %s, page table lin=%08x"),anAddr,ptphys,domain,P?L"ECC":L"No ECC",ptlin);
for (i=0; i<256; i++)
{
TUint addr=anAddr+(i<<12);
TUint pte=Read(ptlin+i*4);
if (ControlReg & KXPbitM)
ProcessPteSD(pte,addr);
else
ProcessPteSE(pte,addr);
}
}
else
RDebug::Print(_L("%08x page table: phys=%08x, domain %2d, %s, page table not found"),anAddr,ptphys,domain,P?L"ECC":L"No ECC");
break;
}
case 2:
{
// section
TUint phys=aPde & 0xfff00000;
TUint perm=(aPde>>10)&0x23;
TUint P=(aPde&0x200);
TUint domain=(aPde>>5)&15;
ProcessCBTEX(buf,aPde&0xc,(aPde>>12)&0xf); // tex is bigger on xscale, but bit is masked off later.
ProcessAP(buf,perm);
ProcessXNnGS(buf, (aPde>>16)&3, (aPde>>4)&1);
if ((ControlReg & KXPbitM) && (aPde & 0x40000))
{
domain = (domain << 4) | ((aPde >> 20) &15);
RDebug::Print(_L("%08x Supersectn: phys=%08x, base %4d, %s, %S"),anAddr,phys,domain,P?L"ECC":L"No ECC",&buf);
}
else
{
RDebug::Print(_L("%08x section : phys=%08x, domain %2d, %s, %S"),anAddr,phys,domain,P?L"ECC":L"No ECC",&buf);
}
break;
}
default:
// invalid
RDebug::Print(_L("PDE for %08x invalid, value %08x"),anAddr,aPde);
break;
}
}
const TInt KNotInInvalid = -2;
TInt StartInvalid=KNotInInvalid;
TInt StartInvalidBase=0;
TInt EndInvalidBase=0;
void DisplayNotPresent(TInt aCurrentPd)
{
aCurrentPd--;
if (StartInvalid!=KNotInInvalid) // Display any Invalid ranges.
{
if (StartInvalid == aCurrentPd)
RDebug::Print(_L("\nPage Directory 0x%x: Base=0x%x - Not Present.\n"), StartInvalid, StartInvalidBase);
else
RDebug::Print(_L("\nPage Directorys 0x%x-0x%x: Bases=0x%x-0x%x - Not Present.\n"), StartInvalid, aCurrentPd, StartInvalidBase, EndInvalidBase);
StartInvalid=KNotInInvalid;
}
}
void ProcessPd(TUint aPd)
{
TUint i;
TUint pdSize;
TUint pdBase;
TUint offset;
TInt err = Shadow.GetPdInfo(aPd, pdSize, pdBase, offset);
if (err==KErrNone)
{
DisplayNotPresent(aPd);
if (aPd==KGlobalPageDirectory)
RDebug::Print(_L("Global Page Directory: Base=0x%x, Entries=0x%x, Start index=0x%x\n"), pdBase, pdSize, offset);
else
RDebug::Print(_L("\nPage Directory 0x%x: Base=0x%x, Entries=0x%x %x\n"), aPd, pdBase, pdSize, offset);
if (Cpu == ECpuArm)
{
for (i=0; i<pdSize; i++)
{
TUint addr=(i+offset)<<20;
TUint pde=Read(pdBase+i*4);
ProcessPde(pde,addr);
}
}
else
RDebug::Print(_L("Cannot display pde for this CPU"));
}
else
{ // Dont list all invalid PDs - there are too many.
if (StartInvalid==KNotInInvalid)
{
StartInvalidBase = pdBase;
StartInvalid = aPd;
}
else
{
EndInvalidBase=pdBase;
}
}
}
GLDEF_C TInt E32Main()
{
TUint mmuId=0;
TUint cacheType=0;
TInt r=User::LoadLogicalDevice(_L("D_SHADOW"));
if ((r!=KErrNone) && (r!=KErrAlreadyExists))
User::Panic(_L("T_PAGES0"),r);
r=Shadow.Open();
if (r!=KErrNone)
User::Panic(_L("T_PAGES1"),r);
Shadow.GetMemoryArchitecture(Cpu, ControlReg);
switch (Cpu)
{
case ECpuArm:
{
mmuId=Shadow.MmuId();
TUint implementor= (mmuId>>24);
if (implementor==0x44)
CpuSpecial = 1;
switch ((mmuId>>12)&15)
{
case 0: // Pre-ARM7
if ((mmuId>>4)==0x4156030)
CpuArc = 2;
else if ((mmuId>>8)==0x415606)
CpuArc = 3;
break;
case 7: // Mid-ARM7
CpuArc = 3;
default:// Post-ARM7
TUint arc = (mmuId >>16) &15;
if (arc<3)
{
CpuArc = 4;
if ((implementor==0x69) && (arc==4))
CpuSpecial=1;
}
else if (arc<7)
{
CpuArc = 5;
if ((implementor==0x69) && (arc==5))
CpuSpecial=2;
}
else if (arc==7)
CpuArc = 6;
else
CpuArc = arc;
}
switch (CpuSpecial)
{
case 1:RDebug::Print(_L("\nCPU = ARMv%d (StrongArm), ControlRegister = 0x%x "),CpuArc, ControlReg);
break;
case 2:RDebug::Print(_L("\nCPU = ARMv%d (XScale), ControlRegister = 0x%x "),CpuArc, ControlReg);
break;
default:
if (CpuArc<7)
RDebug::Print(_L("\nCPU = ARMv%d, ControlRegister = 0x%x "),CpuArc, ControlReg);
else
RDebug::Print(_L("\nCPU = ARM (#%d), ControlRegister = 0x%x "),CpuArc, ControlReg);
}
RDebug::Print(_L("(MMU=%d, Alignment Checking=%d, Write Buffer=%d, System Protection=%d, "),
ControlReg & 1,(ControlReg>>1)&1,(ControlReg>>3)&1, (ControlReg>>8)&1);
if (ControlReg & KXPbitM)
RDebug::Print(_L("ROM Protection=%d, Subpages Disabled, Exception Endian=%d)\n"), (ControlReg>>9)&1, (ControlReg>>25)&1);
else
RDebug::Print(_L("ROM Protection=%d, Subpages Enabled, Exception Endian=%d)\n"), (ControlReg>>9)&1, (ControlReg>>25)&1);
RDebug::Print(_L("MMU ID=%08X"),mmuId);
cacheType=Shadow.CacheType();
RDebug::Print(_L("CACHE TYPE=%08X"),cacheType);
break;
}
case ECpuX86:
RDebug::Print(_L("\nCPU = x86\n"));
break;
case ECpuUnknown:
default:
RDebug::Print(_L("\nCPU = Unknown, Flags = 0x%x\n"), ControlReg);
}
TUint numPages = 0;
TMemModel memModel = Shadow.GetMemModelInfo(PageTables, numPages);
switch (memModel)
{
case EMemModelMoving: RDebug::Print(_L("Moving Memory Model.\n"));
break;
case EMemModelMultiple : RDebug::Print(_L("Multiple Memory Model.\nMax number of PageDirectorys=0x%x.\n"), numPages);
break;
case EMemModelFlexible : RDebug::Print(_L("Flexible Memory Model.\nMax number of PageDirectorys=0x%x.\n"), numPages);
break;
default:
RDebug::Print(_L("Unknown Memory Model.\n"));
return KErrNone;
}
ProcessPd(KGlobalPageDirectory);
if (memModel==2)
{
TUint i;
for (i=0; i<numPages; i++)
{
ProcessPd(i);
}
DisplayNotPresent(numPages);
}
Shadow.Close();
User::FreeLogicalDevice(_L("Shadow"));
return KErrNone;
}