// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// f32\sfat\sl_fmt.cpp
//
//
#include "sl_std.h"
#include <e32hal.h>
//
// Returns the total available ram from UserHal:: or sets an
// arbitrary limit upon the WINS ramdisk.
//
static TInt64 GetRamDiskSizeInBytes()
{
#if defined(__EPOC32__)
TMemoryInfoV1Buf memInfo;
UserHal::MemoryInfo(memInfo);
TUint max = memInfo().iTotalRamInBytes; // not really the correct max
return max;
#else
const TInt KArbitraryWinsRamDiskSize=0x400000; //-- Default size for a Ram drive, 4MB
return(KArbitraryWinsRamDiskSize);
#endif
}
CFatFormatCB::CFatFormatCB()
{
__PRINT1(_L("CFatFormatCB::CFatFormatCB() [%x]"),this);
}
CFatFormatCB::~CFatFormatCB()
{
__PRINT1(_L("CFatFormatCB::~CFatFormatCB() [%x]"),this);
iBadSectors.Close();
iBadClusters.Close();
}
/**
Calculate the size of a 16 bit FAT
*/
TUint CFatFormatCB::MaxFat16Sectors() const
{
const TUint32 fatSizeInBytes=(2*iMaxDiskSectors)/iSectorsPerCluster+(iBytesPerSector-1);
return(fatSizeInBytes/iBytesPerSector);
}
/**
Calculate the size of a 12 bit FAT
*/
TUint CFatFormatCB::MaxFat12Sectors() const
{
const TUint32 maxDiskClusters=iMaxDiskSectors/iSectorsPerCluster;
const TUint32 fatSizeInBytes=maxDiskClusters+(maxDiskClusters>>1)+(iBytesPerSector-1);
return(fatSizeInBytes/iBytesPerSector);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Fill a media range from aStartPos to aEndPos with zeroes.
@param aStartPos start media position
@param aEndPos end media position
*/
void CFatFormatCB::DoZeroFillMediaL(TInt64 aStartPos, TInt64 aEndPos)
{
ASSERT(aStartPos <= aEndPos && aStartPos >=0 && aEndPos >=0);
RBuf8 buf;
CleanupClosePushL(buf);
const TInt KBufMaxSz=32768; //-- zero-buffer Maximal size, bytes
const TInt KBufMinSz=512; //-- zero-buffer minimal size, bytes
if(buf.CreateMax(KBufMaxSz) != KErrNone)
{
buf.CreateMaxL(KBufMinSz); //-- OOM, try to create smaller buffer
}
buf.FillZ();
TInt64 rem = aEndPos - aStartPos;
while(rem)
{
const TUint32 bytesToWrite=(TUint32)Min(rem, buf.Size());
TPtrC8 ptrData(buf.Ptr(), bytesToWrite);
User::LeaveIfError(LocalDrive()->Write(aStartPos, ptrData));
aStartPos+=bytesToWrite;
rem-=bytesToWrite;
}
CleanupStack::PopAndDestroy(&buf);
}
//-------------------------------------------------------------------------------------------------------------------
static TInt DiskSizeInSectorsL(TInt64 aSizeInBytes)
{
const TInt64 totalSectors64=aSizeInBytes>>KDefSectorSzLog2;
const TInt totalSectors32=I64LOW(totalSectors64);
__PRINT2(_L("Disk size:%LU, max disk sectors:%d"),aSizeInBytes, totalSectors32);
return totalSectors32;
}
/**
suggest FAT type according to the FAT volume metrics
@return calculated FAT type
*/
TFatType CFatFormatCB::SuggestFatType() const
{
const TUint32 rootDirSectors = (iRootDirEntries*KSizeOfFatDirEntry + (iBytesPerSector-1)) / iBytesPerSector;
const TUint32 dataSectors = iMaxDiskSectors - (iReservedSectors + (iNumberOfFats * iSectorsPerFat) + rootDirSectors);
const TUint32 clusterCnt = dataSectors/ iSectorsPerCluster;
//-- magic. see FAT specs for details.
if(clusterCnt < 4085)
return EFat12;
else if(clusterCnt < 65525)
return EFat16;
else
return EFat32;
}
/**
Initialize format data.
*/
void CFatFormatCB::InitializeFormatDataL()
{
__PRINT1(_L("CFatFormatCB::InitializeFormatDataL() drv:%d"), Drive().DriveNumber());
TLocalDriveCapsV6Buf caps;
User::LeaveIfError(LocalDrive()->Caps(caps));
iVariableSize=((caps().iMediaAtt)&KMediaAttVariableSize) ? (TBool)ETrue : (TBool)EFalse;
iBytesPerSector=KDefaultSectorSize;
iSectorSizeLog2 = Log2(iBytesPerSector);
iHiddenSectors=caps().iHiddenSectors;
iNumberOfHeads=2;
iSectorsPerTrack=16;
if (iVariableSize)
{// Variable size implies ram disk
iMaxDiskSectors=DiskSizeInSectorsL(GetRamDiskSizeInBytes());
InitFormatDataForVariableSizeDisk(iMaxDiskSectors);
}
else
{//-- fixed-size media
iMaxDiskSectors=DiskSizeInSectorsL(caps().iSize);
__PRINT3(_L("::InitializeFormatDataL() iMode:0x%x, ilen:%d, extrai:%d"), iMode, iSpecialInfo.Length(), caps().iExtraInfo);
if(iMode & ESpecialFormat)
{
if(iSpecialInfo.Length())
{
if (caps().iExtraInfo) // conflict between user and media
User::Leave(KErrNotSupported);
else // User-specified
User::LeaveIfError(InitFormatDataForFixedSizeDiskUser(iMaxDiskSectors));
}
else
{
if (caps().iExtraInfo)
User::LeaveIfError(InitFormatDataForFixedSizeDiskCustom(caps().iFormatInfo));
else
User::LeaveIfError(InitFormatDataForFixedSizeDiskNormal(iMaxDiskSectors, caps()));
}
}
else //if(iMode & ESpecialFormat)
{
// Normal format with default values
// - Media with special format requirements will always use them
// even without the ESpecialFormat option.
if(caps().iExtraInfo)
User::LeaveIfError(InitFormatDataForFixedSizeDiskCustom(caps().iFormatInfo));
else
User::LeaveIfError(InitFormatDataForFixedSizeDiskNormal(iMaxDiskSectors, caps()));
}
} //else(iVariableSize)
}
/**
Initialize the format parameters for a variable sized disk
@param aDiskSizeInSectors volume size in sectors
@return standard error code
*/
TInt CFatFormatCB::InitFormatDataForVariableSizeDisk(TUint aDiskSizeInSectors)
{
iNumberOfFats=2; // 1 FAT 1 Indirection table (FIT)
iReservedSectors=1;
iRootDirEntries=2*(4*KDefaultSectorSize)/sizeof(SFatDirEntry);
TUint minSectorsPerCluster=(aDiskSizeInSectors+KMaxFAT16Entries-1)/KMaxFAT16Entries;
iSectorsPerCluster=1;
while (minSectorsPerCluster>iSectorsPerCluster)
iSectorsPerCluster<<=1;
__PRINT1(_L("iSectorsPerCluster = %d"),iSectorsPerCluster);
iSectorsPerFat=MaxFat16Sectors();
__PRINT1(_L("iSectorsPerFat = %d"),iSectorsPerFat);
iFileSystemName=KFileSystemName16;
return KErrNone;
}
TInt CFatFormatCB::HandleCorrupt(TInt aError)
//
// Handle disk corrupt during format. It needs media driver's support.
// Media driver should handle DLocalDrive::EGetLastErrorInfo request in
// its Request function, filling in proper error information.
// @see TErrorInfo
//
{
__PRINT2(_L("CFatFormatCB::HandleCorrupt(%d) drv:%d"), aError, Drive().DriveNumber());
TPckgBuf<TErrorInfo> info;
TInt r = LocalDrive()->GetLastErrorInfo(info);
if(r != KErrNone)
{
__PRINT1(_L("....GetLastErrorInfo() err:%d"), r);
}
if (r == KErrNotSupported)
return KErrCorrupt;
else if (r != KErrNone)
return r;
__PRINT3(_L("....TErrorInfo iReasonCode:%d, iErrorPos:%LU, iOtherInfo:%d"), info().iReasonCode, info().iErrorPos, info().iOtherInfo);
// if no error reported by GetLastErrorInfo(), return the original error
if (info().iReasonCode == KErrNone)
return aError;
if (info().iReasonCode!=KErrNone && info().iReasonCode!=TErrorInfo::EBadSector)
return info().iReasonCode;
// First bad sector met
TInt sectorsDone = (TInt)(info().iErrorPos >> iSectorSizeLog2);
TInt badSector = iFormatInfo.i512ByteSectorsFormatted + sectorsDone;
iBadSectors.Append(badSector);
// Update format information
iFormatInfo.i512ByteSectorsFormatted += sectorsDone+1;
return KErrNone;
}
void CFatFormatCB::TranslateL()
//
// Change bad cluster number to new value with regard to new format parameters
//
{
if (iDiskCorrupt || !(iMode & EQuickFormat))
return;
TInt size = 1 << FatMount().ClusterSizeLog2();
TUint8* readBuf = new(ELeave) TUint8[size];
TPtr8 readBufPtr(readBuf, size);
RArray<TInt> newArray;
TInt r = DoTranslate(readBufPtr, newArray);
delete[] readBuf;
readBuf = NULL;
newArray.Close();
User::LeaveIfError(r);
}
#define calcSector(n) (n+oFirstFreeSector-nFirstFreeSector)
TInt CFatFormatCB::DoTranslate(TPtr8& aBuf, RArray<TInt>& aArray)
{
TInt r = KErrNone;
// old format parameters
TInt oFirstFreeSector = iOldFirstFreeSector;
TInt oSectorsPerCluster = iOldSectorsPerCluster;
// new format parameters
TInt nFirstFreeSector = FatMount().iFirstFreeByte>>FatMount().SectorSizeLog2();
TInt nSectorsPerCluster = FatMount().SectorsPerCluster();
if (oFirstFreeSector==nFirstFreeSector && oSectorsPerCluster==nSectorsPerCluster)
return r;
TInt i;
for (i=0; i<iBadClusters.Count(); ++i)
{
/*
Cluster boundary may change due to format parameter change.
Old: |-- ... --|----|----|----|----|----|----|----|
|<- Data area ->|
New: |--- ... ---|------|------|------|------|------|
|<- Data area ->|
*/
TInt begSector = calcSector((iBadClusters[i]-2)*oSectorsPerCluster);
begSector = Max(begSector, nFirstFreeSector);
TInt endSector = calcSector(((iBadClusters[i]-1)*oSectorsPerCluster)-1);
endSector = Max(endSector, nFirstFreeSector);
TInt begCluster = (begSector/iSectorsPerCluster)+KFatFirstSearchCluster;
TInt endCluster = (endSector/iSectorsPerCluster)+KFatFirstSearchCluster;
if (begCluster == endCluster) // old cluster is in a new cluster
{
if (aArray.Find(begCluster) == KErrNotFound)
if ((r=aArray.Append(begCluster)) != KErrNone)
return r;
continue;
}
// deal with old cluster cross over several new clusters
TInt offset = (begSector-(begCluster-2)*iSectorsPerCluster)<<iSectorSizeLog2;
TInt len = (endSector-(endCluster-2)*iSectorsPerCluster)<<iSectorSizeLog2;
TInt j;
for (j=begCluster; j<=endCluster; ++j)
// Because each old bad cluster cross several new clusters,
// we have to verify which new cluster is bad really
{
TInt addr = (nFirstFreeSector+(j-2)*iSectorsPerCluster)<<iSectorSizeLog2;
TInt clusterLen = (1<<iSectorSizeLog2) * iSectorsPerCluster;
if (j == begCluster)
r = LocalDrive()->Read(addr+offset,clusterLen-offset,aBuf);
else if (j == endCluster && len)
r = LocalDrive()->Read(addr,len,aBuf);
else
r = LocalDrive()->Read(addr,clusterLen,aBuf);
if (r == KErrCorrupt) // new cluster j is corrupt
if ((r=aArray.Append(j)) != KErrNone)
return r;
}
}
// Update iBadClusters with aArray
iBadClusters.Reset();
for (i=0; i<aArray.Count(); ++i)
if ((r=iBadClusters.Append(aArray[i])) != KErrNone)
return r;
iBadClusters.Sort();
return r;
}
//-------------------------------------------------------------------------------------------------------------------
/** override from CFormatCB, additional interfaces implementation */
TInt CFatFormatCB::GetInterface(TInt aInterfaceId, TAny*& /*aInterface*/, TAny* aInput)
{
if(aInterfaceId == ESetFmtParameters)
{
return DoProcessTVolFormatParam((const TVolFormatParam_FAT*)aInput);
}
return KErrNotSupported;
}
//-------------------------------------------------------------------------------------------------------------------
/**
Process formatting parameters passed as TVolFormatParam_FAT structure.
@param apVolFormatParam pointer to the formatting parameters.
@return standard error code
*/
TInt CFatFormatCB::DoProcessTVolFormatParam(const TVolFormatParam_FAT* apVolFormatParam)
{
if(apVolFormatParam->iUId != TVolFormatParam::KUId || apVolFormatParam->FSNameHash() != TVolFormatParam::CalcFSNameHash(KFileSystemName_FAT))
{
ASSERT(0);
return KErrArgument;
}
//-- Populate iSpecialInfo with the data taken from apVolFormatParam.
//-- for formatting FAT volume iSpecialInfo can hold absolutely all required data from apVolFormatParam.
//-- if some additional data from apVolFormatParam are required for some reason, figure out youself how to store and use them.
TLDFormatInfo& fmtInfo = iSpecialInfo();
new(&fmtInfo) TLDFormatInfo; //-- initialise the structure in the buffer
//-- sectors per cluster
fmtInfo.iSectorsPerCluster = (TUint16)apVolFormatParam->SectPerCluster();
//-- FAT type
const TFatSubType fatSubType = apVolFormatParam->FatSubType();
if(fatSubType != ENotSpecified && fatSubType != EFat12 && fatSubType != EFat16 && fatSubType != EFat32)
return KErrArgument;
fmtInfo.iFATBits = (TLDFormatInfo::TFATBits)fatSubType; //-- FAT12/16/32/not specified
//-- number of FAT tables
switch(apVolFormatParam->NumFATs())
{
case 0: //-- "not specified, default"
break;
case 1:
fmtInfo.iFlags |= TLDFormatInfo::EOneFatTable;
break;
case 2:
fmtInfo.iFlags |= TLDFormatInfo::ETwoFatTables;
break;
default: //-- more than KMaxFatTablesSupported is not supported
return KErrArgument;
};
//-- number of reserved sectors
fmtInfo.iReservedSectors = (TUint16)apVolFormatParam->ReservedSectors();
return KErrNone;
}