// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkern\win32\ncsched.cpp
//
//
// NThreadBase member data
#define __INCLUDE_NTHREADBASE_DEFINES__
#include <e32cmn.h>
#include <e32cmn_private.h>
#include "nk_priv.h"
#include <emulator.h>
#ifdef __EMI_SUPPORT__
extern void EMI_AddTaskSwitchEvent(TAny* aPrevious, TAny* aNext);
extern void EMI_CheckDfcTag(TAny* aNext);
#endif
typedef void (*ProcessHandler)(TAny* aAddressSpace);
static NThreadBase* SelectThread(TScheduler& aS)
//
// Select the next thread to run.
// This is the heart of the rescheduling algorithm.
// This should be essentially the same as the EPOC32 version!
//
{
NThreadBase* t = static_cast<NThreadBase*>(aS.First());
#ifdef _DEBUG
__NK_ASSERT_DEBUG(t);
if (t->iHeldFastMutex)
{
__KTRACE_OPT(KSCHED2, DEBUGPRINT("Resched init->%T, Holding %M", t, t->iHeldFastMutex));
}
else
{
__KTRACE_OPT(KSCHED2, DEBUGPRINT("Resched init->%T", t));
}
#endif // _DEBUG
if (t->iTime == 0 && !t->Alone())
{
// round robin
// get here if thread's timeslice has expired and there is another
// thread ready at the same priority
if (t->iHeldFastMutex)
{
// round-robin deferred due to fast mutex held
t->iHeldFastMutex->iWaiting = 1;
return t;
}
t->iTime = t->iTimeslice; // reset old thread time slice
t = static_cast<NThreadBase*>(t->iNext); // next thread
aS.iQueue[t->iPriority] = t; // make it first in list
__KTRACE_OPT(KSCHED2, DEBUGPRINT("RoundRobin->%T", t));
}
if (t->iHeldFastMutex)
{
if (t->iHeldFastMutex == &aS.iLock)
{
// thread holds system lock: use it
return t;
}
if ((t->i_ThrdAttr & KThreadAttImplicitSystemLock) != 0 && aS.iLock.iHoldingThread)
t->iHeldFastMutex->iWaiting = 1;
__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
/*
Check for an address space change. Not implemented for Win32, but useful as
documentaiton of the algorithm.
if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 && t->iAddressSpace != aS.iAddressSpace)
t->iHeldFastMutex->iWaiting = 1;
*/
}
else if (t->iWaitFastMutex && t->iWaitFastMutex->iHoldingThread)
{
__KTRACE_OPT(KSCHED2, DEBUGPRINT("Resched inter->%T, Blocked on %M", t->iWaitFastMutex->iHoldingThread, t->iWaitFastMutex));
t = t->iWaitFastMutex->iHoldingThread;
}
else if (t->i_ThrdAttr & KThreadAttImplicitSystemLock)
{
// implicit system lock required
if (aS.iLock.iHoldingThread)
{
// system lock held, switch to that thread
t = aS.iLock.iHoldingThread;
__KTRACE_OPT(KSCHED2, DEBUGPRINT("Resched inter->%T (IMP SYS)", t));
t->iHeldFastMutex->iWaiting = 1; // aS.iLock.iWaiting = 1;
return t;
}
__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
/*
Check for an address space change. Not implemented for Win32, but useful as
documentaiton of the algorithm.
if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 || t->iAddressSpace != aS.iAddressSpace)
{
// what do we do now?
__NK_ASSERT_DEBUG(FALSE);
}
*/
}
return t;
}
// from NThread
#undef i_ThrdAttr
// From here on it's all emulator (i.e. Win32) specific; there isn't any EPOC32 equivalent for most of it.
//
// The emulator uses one Win32 thread for each Symbian thread; these are the ones scheduled by the Symbian
// nanokernel in the algorithm above. Only one such thread will be running at a time; the others will be
// waiting on their individual scheduler locks, thus simulating a single-threaded architecture.
//
// In addition, there are some more Win32 threads used to handle timers, interrupts and the like. These
// are not under control of the Symbian scheduler. They are given higher priority than the Symbian threads,
// so they can run preemptively under control of the Win32 scheduler. However, they must call functions
// from the Win32Interrupt class before using any Symbian OS calls, so that the current Symbian thread can
// be suspended during the 'virtual interrupt'.
static DWORD TlsIndex = TLS_OUT_OF_INDEXES;
void SchedulerInit(NThread& aInit)
//
// Initialise the win32 nKern scheduler
//
{
DWORD procaffin, sysaffin;
if (GetProcessAffinityMask(GetCurrentProcess(), &procaffin, &sysaffin))
{
DWORD cpu;
switch (Win32SingleCpu)
{
default:
// bind the emulator to a nominated CPU on the host PC
cpu = (1 << Win32SingleCpu);
if (!(sysaffin & cpu))
cpu = procaffin; // CPU selection invalid
break;
case NThread::ECpuSingle:
// bind the emulator to a single CPU on the host PC, pick one
cpu = procaffin ^ (procaffin & (procaffin - 1));
break;
case NThread::ECpuAll:
// run the emulator on all CPUs on the host PC
cpu = sysaffin;
break;
}
SetProcessAffinityMask(GetCurrentProcess(), cpu);
}
// identify whether we can use the atomic SignalObjectAndWait API in Win32 for rescheduling
Win32AtomicSOAW = (SignalObjectAndWait(aInit.iScheduleLock, aInit.iScheduleLock, INFINITE, FALSE) == WAIT_OBJECT_0);
// allocate the TLS used for thread identification, and set it for the init thread
TlsIndex = TlsAlloc();
__NK_ASSERT_ALWAYS(TlsIndex != TLS_OUT_OF_INDEXES);
SchedulerRegister(aInit);
Win32FindNonPreemptibleFunctions();
Interrupt.Init();
}
void SchedulerRegister(NThread& aSelf)
{
TlsSetValue(TlsIndex, &aSelf);
}
inline NThread* RunningThread()
// Returns the NThread actually running
{
if (TlsIndex == TLS_OUT_OF_INDEXES)
return NULL; // not yet initialised
else
return static_cast<NThread*>(TlsGetValue(TlsIndex));
}
inline TBool IsScheduledThread()
// True if the NThread actually running is the scheduled one (not an interrupt thread or similar)
{
return RunningThread() == TheScheduler.iCurrentThread;
}
inline NThread& CheckedCurrentThread()
// Returns the NThread actually running, checking that it's the scheduled one (not an interrupt thread or similar)
{
NThread* t = RunningThread();
__NK_ASSERT_ALWAYS(t == TheScheduler.iCurrentThread);
return *t;
}
static void ThreadExit(NThread& aCurrent, NThread& aNext)
//
// The final context switch of a thread.
// Wake up the next thread and then destroy this one's Win32 resources.
//
// Return without terminating if we need to immediately reschedule again
// because we had to unlock the kernel but there are DFCs pending.
//
{
// the thread is dead
// extract win32 handles from dying NThread object before rescheduling
HANDLE sl = aCurrent.iScheduleLock;
HANDLE th = aCurrent.iWinThread;
// wake up the next thread
if (aNext.WakeUp())
return; // need to re-reschedule in this thread
// we are now a vanilla win32 thread, nKern no longer knows about us
// release resources and exit cleanly
CloseHandle(sl);
CloseHandle(th);
ExitThread(0); // does not return
}
#ifdef MONITOR_THREAD_CPU_TIME
static inline void UpdateThreadCpuTime(NThread& aCurrent, NThread& aNext)
{
TUint32 timestamp = NKern::FastCounter();
if (aCurrent.iLastStartTime)
aCurrent.iTotalCpuTime += timestamp - aCurrent.iLastStartTime;
aNext.iLastStartTime = timestamp;
}
#else
static inline void UpdateThreadCpuTime(NThread& /*aCurrent*/, NThread& /*aNext*/)
{
}
#endif // MONITOR_THREAD_CPU_TIME
static void SwitchThreads(NThread& aCurrent, NThread& aNext)
//
// The fundamental context switch - wake up the next thread and wait for reschedule
// trivially is aNext.WakeUp(), Wait(aCurrent.iScheduleLock), but we may be able to
// optimise the signal-and-wait
//
{
__NK_ASSERT_ALWAYS(InterruptsStatus(ETrue));
UpdateThreadCpuTime(aCurrent, aNext);
if (aCurrent.iNState == NThread::EDead)
{
ThreadExit(aCurrent, aNext);
// Yes, this is reachable!
}
else if (Win32AtomicSOAW && aNext.iWakeup == NThread::ERelease)
{
// special case optimization for normally scheduled threads using atomic Win32 primitive
TheScheduler.iCurrentThread = &aNext;
CheckedSignalObjectAndWait(aNext.iScheduleLock, aCurrent.iScheduleLock);
}
else if (aNext.WakeUp())
{
// We didn't wake the target thread; instead we need to re-reschedule in this thread
__NK_ASSERT_ALWAYS(InterruptsStatus(EFalse));
return;
}
else
{
// Target thread woken, now wait to be rescheduled
CheckedWaitForSingleObject(aCurrent.iScheduleLock);
}
__NK_ASSERT_ALWAYS(InterruptsStatus(ETrue));
}
void TScheduler::Reschedule()
//
// Enter with kernel locked, exit with kernel unlocked, interrupts disabled.
// If the thread is dead do not return, but terminate the thread.
//
{
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
for (;;)
{
NKern::DisableAllInterrupts();
if (TheScheduler.iDfcPendingFlag)
TheScheduler.QueueDfcs();
// Exit from this loop when further rescheduling is no longer needed
if (!TheScheduler.iRescheduleNeededFlag)
break;
// Choose the next thread to run, using the Symbian scheduler
TheScheduler.iRescheduleNeededFlag = FALSE;
NKern::EnableAllInterrupts();
NThread* t = static_cast<NThread*>(SelectThread(TheScheduler));
__KTRACE_OPT(KSCHED, DEBUGPRINT("Reschedule->%T (%08x%08x)", t, TheScheduler.iPresent[1], TheScheduler.iPresent[0]));
#ifdef __EMI_SUPPORT__
EMI_AddTaskSwitchEvent(&me, t);
EMI_CheckDfcTag(t);
#endif
#ifdef BTRACE_CPU_USAGE
if (TheScheduler.iCpuUsageFilter)
TheScheduler.iBTraceHandler(BTRACE_HEADER_C(4, BTrace::ECpuUsage, BTrace::ENewThreadContext), 0, (TUint32)t, 0, 0, 0, 0, 0);
#endif
// SwitchThreads() can return immediately, if it turns out that another reschedule is
// necessary; otherwise, this thread will be descheduled in favour of the one selected
// above, and SwitchThreads() will only return when this thread is next selected
SwitchThreads(me, *t);
// When we start again, we should check for being forced to exit; otherwise go round the
// loop again to see whether another reschedule is called for (e.g. if there are new DFCs).
NThread::TDivert divertToExit = me.iDivertFn;
me.iDivertFn = NULL;
if (divertToExit)
divertToExit();
}
// interrupts are disabled, the kernel is still locked
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(me.iAddressSpace); // thread will need to have its static data updated
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
TheScheduler.iKernCSLocked = 0;
}
void TScheduler::YieldTo(NThreadBase*)
//
// Directed context switch to the nominated thread.
// Enter with kernel locked, exit with kernel unlocked but interrupts disabled.
//
{
RescheduleNeeded();
TScheduler::Reschedule();
}
TBool NThread::WakeUp()
//
// Wake up the thread. What to do depends on whether it was preempted or voluntarily
// rescheduled.
//
// On entry, the kernel is locked, and interrupts may be enabled or disabled.
//
// The return value is TRUE if the caller should immediately reschedule again because we
// needed to unlock the kernel in order to resume the thread but there were DFCs pending.
// In this case, the thread is not woken, the kernel remains locked, and the return is
// made with interrupts disabled (whether or not they were on entry).
//
// Otherise, the target thread is woken up (in any of several different ways), and the
// the return value is FALSE. In that case the interrupt status is unchanged; and the
// kernel may or not still be locked.
//
{
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked > 0);
__NK_ASSERT_ALWAYS(RunningThread() != this); // Can't wake self!
switch (iWakeup)
{
default:
FAULT();
case EIdle:
// The thread is waiting on its scheduler lock, in Idle()
__NK_ASSERT_ALWAYS(TheScheduler.iCurrentThread == this);
CheckedSetEvent(iScheduleLock);
break;
case ERelease:
// The thread is waiting on its scheduler lock
TheScheduler.iCurrentThread = this;
CheckedSetEvent(iScheduleLock);
break;
case EResumeLocked:
// The thread is Win32 suspended and must be resumed.
//
// A newly created thread does not need the kernel unlocked so we can
// just resume it; OTOH it will need to have its static data updated ...
//
__KTRACE_OPT(KSCHED, DEBUGPRINT("Win32ResumeLocked->%T", this));
iWakeup = ERelease;
TheScheduler.iCurrentThread = this;
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace);
CheckedResumeThread(iWinThread);
break;
case EResumeDiverted:
// The thread is Win32 suspended and must be resumed.
//
// It does not need the kernel unlocked, but does have a diversion pending. We
// know it's safe to divert the thread here because we called IsSafeToPreempt()
// when we suspended it - otherwise the diversion could get lost.
//
__KTRACE_OPT(KSCHED, DEBUGPRINT("Win32Resume->%T (Resuming diverted thread)", this));
iWakeup = ERelease;
TheScheduler.iCurrentThread = this;
ApplyDiversion();
CheckedResumeThread(iWinThread, ETrue);
break;
case EResume:
// The thread is Win32 suspended and must be resumed.
//
// The complication here is that we have to unlock the kernel on behalf of the
// pre-empted thread. Before doing so, we have to check whether there are DFCs
// or a reschedule pending; if so, we don't unlock the kernel or wake the target
// thread, but instead return TRUE, so that our caller (usually SwitchThreads()
// above) knows to return and go round the TScheduler::Reschedule() loop again.
//
TInt irq = NKern::DisableAllInterrupts();
if (TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag)
{
__KTRACE_OPT(KSCHED, DEBUGPRINT("Win32Resume->%T preempted", this));
TheScheduler.iRescheduleNeededFlag = TRUE; // ensure we do the reschedule
return TRUE;
}
// Otherwise we mark the thread as not-preempted, unlock the kernel, restore
// interrupts, and resume the thread.
__KTRACE_OPT(KSCHED, DEBUGPRINT("Win32Resume->%T", this));
iWakeup = ERelease;
TheScheduler.iCurrentThread = this;
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace); // threads resumed after interrupt or locks need to have static data updated
TheScheduler.iKernCSLocked = 0;
// If there are callbacks waiting, and the thread is in user mode, divert it to
// pick up its callbacks (we know this is safe because we called IsSafeToPreempt()
// when we suspended it - otherwise the diversion could get lost.
if (iUserModeCallbacks != NULL && !iInKernel)
{
TheScheduler.iKernCSLocked = 1; // prevent further pre-emption
ApplyDiversion();
}
// If pre-emption occurs before the thread is resumed, it is the new thread that
// is pre-empted, not the running thread, so we are guaranteed to be able to call
// ResumeThread. If pre-emption occurs, and we are rescheduled to run before that
// occurs, we will once again be running with the kernel locked and the other
// thread will have been re-suspended by Win32: so all is well.
//
NKern::RestoreInterrupts(irq);
CheckedResumeThread(iWinThread);
break;
}
return FALSE;
}
/** Put the emulator into 'idle'.
This is called by the idle thread when there is nothing else to do.
@internalTechnology
*/
EXPORT_C void NThread::Idle()
//
// Rather than spin, we go to sleep on the schedule lock. Preemption detects
// this state (Win32Idling) and pokes the event rather than diverting the thread.
//
// enter and exit with kernel locked
//
{
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
me.iWakeup = EIdle;
CheckedWaitForSingleObject(me.iScheduleLock);
// something happened, and we've been prodded by an interrupt
// the kernel was locked by the interrupt, and now reschedule
me.iWakeup = ERelease;
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
}
void EnterKernel(TBool aDiversion)
{
NThread& t = CheckedCurrentThread();
volatile TInt& inKernel = t.iInKernel;
__NK_ASSERT_DEBUG(inKernel >= 0);
// This code has to be re-entrant, because a thread that's in the process
// of entering the kernel may be preempted; then if it isn't yet marked
// as 'in the kernel' it can be diverted through EnterKernel()/LeaveKernel()
// in order to execute user-mode callbacks. However this is all in the
// same thread context, so it doesn't need any special synchronisation.
// The moment of 'entering' the kernel is deemed to occur when the new value
// of iInKernel is written back to the NThread object.
if (inKernel++ == 0)
{
// preamble when coming from userspace
__NK_ASSERT_ALWAYS(InterruptsStatus(ETrue));
__NK_ASSERT_ALWAYS(t.iHeldFastMutex == 0);
if (aDiversion)
{
// Forced entry, to make thread exit or run user-mode callbacks
// If exiting, iCsCount will have been set to 1 to prevent preemption
// Otherwise it must be 0, as in the non-diversion case
__NK_ASSERT_ALWAYS(t.iCsCount <= 1);
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
}
else
{
__NK_ASSERT_ALWAYS(t.iCsCount == 0);
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 0);
}
}
}
void LeaveKernel()
{
NThread& t = CheckedCurrentThread();
volatile TInt& inKernel = t.iInKernel;
__NK_ASSERT_DEBUG(inKernel > 0);
// This code has to be re-entrant, because a thread that's in the process
// of leaving the kernel may be preempted; then if it isn't still marked
// as 'in the kernel' it can be diverted through EnterKernel()/LeaveKernel()
// in order to execute user-mode callbacks. However this is all in the
// same thread context, so it doesn't need any special synchronisation.
// The moment of 'leaving' the kernel is deemed to occur when the new value
// of iInKernel is written back to the NThread object.
if (inKernel == 1)
{
// postamble when about to return to userspace
__NK_ASSERT_ALWAYS(t.iCsCount == 0);
__NK_ASSERT_ALWAYS(t.iHeldFastMutex == 0);
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 0);
NKern::DisableAllInterrupts();
t.CallUserModeCallbacks();
NKern::EnableAllInterrupts();
}
inKernel -= 1;
}
/** Locks the kernel and returns a pointer to the current thread
Increments iKernCSLocked, thereby deferring IDFCs and preemption.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C NThread* NKern::LockC()
{
CHECK_PRECONDITIONS(MASK_NOT_ISR, "NKern::LockC");
__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(), "Do not call from bare Win32 threads", "NKern::LockC"); // check that we are a scheduled thread
++TheScheduler.iKernCSLocked;
return (NThread*)TheScheduler.iCurrentThread;
}
/** Locks the kernel.
Increments iKernCSLocked, thereby deferring IDFCs and preemption.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::Lock()
{
CHECK_PRECONDITIONS(MASK_NOT_ISR, "NKern::Lock");
__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(), "Do not call from bare Win32 threads", "NKern::Lock"); // check that we are a scheduled thread
++TheScheduler.iKernCSLocked;
}
/** Unlocks the kernel.
Decrements iKernCSLocked; if it would become zero and IDFCs or a reschedule are
pending, calls the scheduler to process them.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::Unlock()
{
// check that the caller is the scheduled thread
__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(), "Do not call from bare Win32 threads", "NKern::Unlock");
CHECK_PRECONDITIONS(MASK_NOT_ISR, "NKern::Unlock");
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked > 0); // Can't unlock if it isn't locked!
// Rather than decrementing the lock before testing the flags, and then
// re-incrementing it in order to call Reschedule() -- which would
// leave a window for preemption -- we can test the flags first, and then
// see whether the lock count is 1 ...
if ((TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag) &&
TheScheduler.iKernCSLocked == 1)
{
// Reschedule() returns with the kernel unlocked, but interrupts disabled
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
}
else
{
// All other cases - just decrement the lock count
TheScheduler.iKernCSLocked -= 1;
}
}
/** Allows IDFCs and rescheduling if they are pending.
If IDFCs or a reschedule are pending and iKernCSLocked is exactly equal to 1
calls the scheduler to process the IDFCs and possibly reschedule.
@return Nonzero if a reschedule actually occurred, zero if not.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C TInt NKern::PreemptionPoint()
{
// check that the caller is the scheduled thread
__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(), "Do not call from bare Win32 threads", "NKern::PreemptionPoint");
CHECK_PRECONDITIONS(MASK_NOT_ISR, "NKern::PreemptionPoint");
if ((TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag) &&
TheScheduler.iKernCSLocked == 1)
{
// Reschedule() returns with the kernel unlocked, but interrupts disabled
TScheduler::Reschedule();
TheScheduler.iKernCSLocked = 1;
NKern::EnableAllInterrupts();
return TRUE;
}
return FALSE;
}
/** Return the current processor context type
(thread, IDFC, interrupt or escaped thread)
@return A value from NKern::TContext enumeration (including EEscaped)
@pre Any context
@see NKern::TContext
*/
EXPORT_C TInt NKern::CurrentContext()
{
NThread* t = RunningThread();
if (!t)
return NKern::EInterrupt;
if (TheScheduler.iInIDFC)
return NKern::EIDFC;
if (t->iWakeup == NThread::EEscaped)
return NKern::EEscaped;
__NK_ASSERT_ALWAYS(NKern::Crashed() || t == TheScheduler.iCurrentThread);
return NKern::EThread;
}
/** Disable normal 'interrupts'.
@param aLevel Ignored
@pre Call in a Symbian (thread, IDFC, ISR) context.
@pre Do not call from bare Win32 threads.
@return Cookie to be passed into RestoreInterrupts()
*/
EXPORT_C TInt NKern::DisableInterrupts(TInt /*aLevel*/)
{
return Interrupt.MaskInterrupts(EFalse);
}
/** Restore interrupt mask to state preceding a DisableInterrupts() call
@param aLevel Cookie returned by Disable(All)Interrupts()
@pre Call in a Symbian (thread, IDFC, ISR) context.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::RestoreInterrupts(TInt aLevel)
{
Interrupt.RestoreInterruptMask(aLevel);
}
/** Disable all maskable 'interrupts'.
@pre Call in a Symbian (thread, IDFC, ISR) context.
@pre Do not call from bare Win32 threads.
@return Cookie to be passed into RestoreInterrupts()
*/
EXPORT_C TInt NKern::DisableAllInterrupts()
{
return Interrupt.MaskInterrupts(EFalse);
}
/** Enable all maskable 'interrupts'
@internalComponent
@pre Call in a Symbian (thread, IDFC, ISR) context.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::EnableAllInterrupts()
{
Interrupt.RestoreInterruptMask(0);
}
/** Mark the start of an 'interrupt' in the Win32 emulator.
This must be called in interrupt threads before using any other kernel APIs,
and should be paired with a call to EndOfInterrupt().
@pre Win32 'interrupt' thread context
*/
EXPORT_C void StartOfInterrupt()
{
// check that the caller is not a scheduled thread
__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(), "Win32 'interrupt' thread context", "StartOfInterrupt");
Interrupt.BeginInterrupt();
}
/** Mark the end of an 'interrupt' in the Win32 emulator.
This checks to see if we need to reschedule.
@pre Win32 'interrupt' thread context
*/
EXPORT_C void EndOfInterrupt()
{
// check that the caller is not a scheduled thread
__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(), "Win32 'interrupt' thread context", "EndOfInterrupt");
Interrupt.EndInterrupt();
}
// The Win32Interrupt class manages virtual interrupts from Win32 event threads
void Win32Interrupt::Init()
{
InitializeCriticalSection(&iCS);
iQ = CreateSemaphoreA(NULL, 0, KMaxTInt, NULL);
__NK_ASSERT_ALWAYS(iQ);
// create the NThread which exists solely to service reschedules for interrupts
// this makes the End() much simpler as it merely needs to kick this thread
SNThreadCreateInfo ni;
memclr(&ni, sizeof(ni));
ni.iFunction = &SchedulerThreadFunction;
ni.iTimeslice = -1;
ni.iPriority = 1;
NKern::ThreadCreate(&iScheduler, ni);
NKern::Lock();
TScheduler::YieldTo(&iScheduler);
RestoreInterruptMask(0);
}
void Win32Interrupt::BeginInterrupt()
{
__NK_ASSERT_ALWAYS(!IsScheduledThread()); // check that we aren't a scheduled thread
MaskInterrupts(ETrue); // suspend scheduled thread and set mask
#ifdef BTRACE_CPU_USAGE
BTrace0(BTrace::ECpuUsage, BTrace::EIrqStart);
#endif
}
void Win32Interrupt::EndInterrupt()
{
NThread* pC = iInterrupted;
iInterrupted = 0;
__NK_ASSERT_ALWAYS(pC == TheScheduler.iCurrentThread); // unchanged since BeginInterrupt()
__NK_ASSERT_ALWAYS(!IsScheduledThread()); // check that we aren't a scheduled thread
__NK_ASSERT_ALWAYS(iOwner == GetCurrentThreadId()); // check we are the interrupting thread
__NK_ASSERT_ALWAYS(InterruptsStatus(EFalse));
__NK_ASSERT_ALWAYS(iLevel == 1); // DSG: is this correct?
if (TheScheduler.iKernCSLocked)
{
// No rescheduling allowed; just resume the interrupted thread
NKern::EnableAllInterrupts();
CheckedResumeThread(pC->iWinThread);
return;
}
__NK_ASSERT_ALWAYS(iLevel == 1); // DSG: is this correct?
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 0);
TBool diversionUnsafe = EFalse; // Optimistic assumption until checked
if (TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag)
{
switch (pC->iWakeup)
{
default:
FAULT();
case NThread::EIdle:
// wake up the Idle thread, it will always reschedule immediately
TheScheduler.iKernCSLocked = 1; // prevent further pre-emption
if (pC->WakeUp())
FAULT(); // this can't happen
NKern::EnableAllInterrupts();
CheckedResumeThread(pC->iWinThread);
return;
case NThread::ERelease:
if (pC->IsSafeToPreempt())
{
// pre-empt the current thread and poke the 'scheduler' thread
UpdateThreadCpuTime(*pC, iScheduler);
pC->iWakeup = NThread::EResume; // how to wake this thread later
TheScheduler.iKernCSLocked = 1; // prevent further pre-emption
RescheduleNeeded();
NKern::EnableAllInterrupts();
if (iScheduler.WakeUp())
FAULT(); // this can't happen
return;
}
diversionUnsafe = ETrue; // don't consider diverting
break;
}
}
#ifdef BTRACE_CPU_USAGE
// no thread reschedle, so emit trace...
BTrace0(BTrace::ECpuUsage, BTrace::EIrqEnd);
#endif
// If there are callbacks waiting, and the thread is in user mode, and it's at a
// point where it can safely be preempted, then divert it to pick up its callbacks
if (pC->iUserModeCallbacks != NULL && !pC->iInKernel && !diversionUnsafe)
if (pC->IsSafeToPreempt())
{
TheScheduler.iKernCSLocked = 1;
pC->ApplyDiversion();
}
NKern::EnableAllInterrupts();
CheckedResumeThread(pC->iWinThread);
}
TInt Win32Interrupt::MaskInterrupts(TBool aPreempt)
{
if (!iQ)
return 0; // interrupt scheme not enabled yet
EnterCriticalSection(&iCS); // Win32 critical section, not a Symbian one
DWORD id = GetCurrentThreadId();
if (iOwner == id)
{
// The easiest case: we already own the mask, so just increment the level.
// The requirement for rescheduling on exit is unaffected.
__NK_ASSERT_ALWAYS(!aPreempt);
TInt r = iLevel++;
LeaveCriticalSection(&iCS);
return r;
}
if (!iOwner && !aPreempt)
{
// Another easy case; we've been called from a Symbian thread, and there's
// no contention, so we can just take ownership of the interrupt mask. No
// rescheduling is required on exit (but this may change) ...
__NK_ASSERT_ALWAYS(iLevel == 0);
TInt r = iLevel++;
iOwner = id;
iRescheduleOnExit = EFalse;
LeaveCriticalSection(&iCS);
return r;
}
if (iOwner)
{
// Someone else owns it; if we've been called from an interrupt thread,
// this could be another interrupt thread or a Symbian thread. If we're
// being called from a Symbian thread, the owner must be another Symbian
// thread, because a Symbian thread can't preempt an interrupt thread.
//
// In either case, we can increment the count of waiters, then wait for the
// curent holder to release it. Note that another (interrupt) thread could
// also do this, and then the order in which they get to run is undefined.
iWaiting += 1;
do
{
__NK_ASSERT_ALWAYS(iWaiting > 0);
LeaveCriticalSection(&iCS);
CheckedWaitForSingleObject(iQ);
EnterCriticalSection(&iCS);
__NK_ASSERT_ALWAYS(iWaiting > 0);
}
while (iOwner);
iWaiting -= 1;
iRescheduleOnExit = IsScheduledThread() && (TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag);
}
// Nobody now controls the interrupt mask ...
__NK_ASSERT_ALWAYS(iOwner == 0 && iLevel == 0);
if (aPreempt)
{
// ... but in this case, we've been called from an interrupt thread and
// a Symbian thread may still be running -- yes, even though all emulator
// threads are normally bound to a single CPU!
//
// To ensure that such a thread doesn't see an inconsistent state, we
// have to suspend it before we actually take ownership, as it could
// examine the interrupt state at any time, without taking any locks.
__NK_ASSERT_ALWAYS(iInterrupted == 0); // we haven't done this already
NThread* pC;
for (;;)
{
pC = static_cast<NThread*>(TheScheduler.iCurrentThread);
CheckedSuspendThread(pC->iWinThread);
if (pC == TheScheduler.iCurrentThread)
break; // no change of thread, so ok to proceed
// We suspended the thread while doing a (Symbian) context switch!
// The scheduler state might be inconsistent if we left it like that,
// so instead we'll resume it, then try again ...
CheckedResumeThread(pC->iWinThread);
}
__NK_ASSERT_ALWAYS(iInterrupted == 0);
iInterrupted = pC;
}
// Now we can assert ownership of the interrupt mask.
__NK_ASSERT_ALWAYS(iOwner == 0 && iLevel == 0);
TInt r = iLevel++;
iOwner = id;
LeaveCriticalSection(&iCS);
return r;
}
void Win32Interrupt::RestoreInterruptMask(TInt aLevel)
{
if (!iQ)
return; // interrupt scheme not enabled yet
DWORD id = GetCurrentThreadId();
EnterCriticalSection(&iCS); // Win32 critical section, not a Symbian one
for (;;)
{
__NK_ASSERT_ALWAYS(id == iOwner); // only the current owner may do this
TInt count = iLevel - aLevel;
if (count <= 0)
break; // already restored to that level
iLevel = aLevel; // update the recursion level first
if (aLevel > 0)
{
// The easiest case: we're still holding ownership, so there's nothing to do
break;
}
iOwner = 0; // give up ownership
if (iWaiting)
{
// Someone else is waiting for control of the interrupt mask.
// They may preempt us as soon as we exit the critical section
// (at the end of this function)
CheckedReleaseSemaphore(iQ);
break;
}
// Lock fully released, no-one waiting, so see whether we need to reschedule
if (TheScheduler.iKernCSLocked || !iRescheduleOnExit)
break;
// Interrupt mask fully unlocked, but reschedule required ...
TheScheduler.iKernCSLocked = 1;
LeaveCriticalSection(&iCS);
TScheduler::Reschedule();
EnterCriticalSection(&iCS);
// Note: TScheduler::Reschedule() above calls MaskInterrupts() -- which changes
// the state of most of our member data. It returns with the kernel unlocked,
// but interrupts still disabled. Hence we will have reacquired ownership of the
// interrupt mask, and must release it again. Instead of going recursive with a
// call to EnableAllInterrupts() we iterate; we'll get out of this loop eventually,
// because iRescheduleOnExit is updated by MaskInterrupts() ...
aLevel = 0;
}
LeaveCriticalSection(&iCS);
}
void Win32Interrupt::ForceReschedule()
{
RescheduleNeeded();
if (iScheduler.WakeUp())
FAULT(); // this can't happen
}
void Win32Interrupt::SchedulerThreadFunction(TAny*)
//
// The entry-point for the interrupt-rescheduler thread.
//
// This spends its whole life going around the TScheduler::Reschedule() loop
// selecting another thread to run.
//
{
TheScheduler.iKernCSLocked = 1;
RescheduleNeeded();
TScheduler::Reschedule();
FAULT();
}
//
// We need a global lock in the emulator to avoid scheduling reentrancy problems with the host
// in particular, some host API calls acquire host mutexes, preempting such services results
// in suspension of those threads which can cause deadlock if another thread requires that host
// mutex.
//
// Because thread dreaction and code loading also require the same underlying mutex (used
// by NT to protect DLL entrypoint calling), this would be rather complex with a fast mutex.
// For now, keep it simple and use the preemption lock. Note that this means that the
// MS timer DFC may be significantly delayed when loading large DLL trees, for example.
//
void SchedulerLock()
//
// Acquire the global lock. May be called before scheduler running, so handle that case
//
{
if (TheScheduler.iCurrentThread)
{
EnterKernel();
NKern::Lock();
}
}
void SchedulerUnlock()
//
// Release the global lock. May be called before scheduler running, so handle that case
//
{
if (TheScheduler.iCurrentThread)
{
NKern::Unlock();
LeaveKernel();
}
}
// This function allows a thread to escape from the Symbian scheduling domain to
// become an ordinary Win32 thread for a while, in cases where it is necessary
// to use Win32 APIs that are incompatible with the Symbian threading model.
// AFAICS this is not currently used!
void SchedulerEscape()
{
NThread& me = CheckedCurrentThread();
EnterKernel();
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 0); // Can't call Escape() with the Emulator/kernel already locked
NKern::ThreadEnterCS();
NKern::Lock();
me.iNState = NThreadBase::EBlocked;
TheScheduler.Remove(&me);
me.iWakeup = NThread::EEscaped;
SetThreadPriority(me.iWinThread, THREAD_PRIORITY_ABOVE_NORMAL);
Interrupt.ForceReschedule();
// This schedules some other thread so we can carry on outside the scheduler domain.
// It will change the value of iCurrentThread to ensure the 'escaped' invariants are set
}
void ReenterDfc(TAny* aPtr)
{
NThread& me = *static_cast<NThread*>(aPtr);
me.iWakeup = NThread::ERelease;
me.CheckSuspendThenReady();
}
void SchedulerReenter()
{
NThread* me = RunningThread();
__NK_ASSERT_ALWAYS(me);
__NK_ASSERT_ALWAYS(me->iWakeup == NThread::EEscaped);
TDfc idfc(&ReenterDfc, me);
StartOfInterrupt();
idfc.Add();
EndOfInterrupt();
SetThreadPriority(me->iWinThread, THREAD_PRIORITY_NORMAL);
CheckedWaitForSingleObject(me->iScheduleLock);
// when released, the kernel is locked and handed over to us
// need to complete the reschedule protocol in this thread now
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
NKern::ThreadLeaveCS();
LeaveKernel();
}
//
// We use SuspendThread and ResumeThread to preempt threads. This can cause
// deadlock if the thread is using windows synchronisation primitives (eg
// critical sections). This isn't too much of a problem most of the time,
// because threads generally use the symbian environment rather than the native
// windows APIs. However exceptions are an issue - they can happen at any time,
// and cause execution of native windows code over which we have no control.
//
// To work around this we examine the call stack to see if the thread is inside
// one of the windows exception handling functions. If so, preemption is
// deferred.
//
#include <winnt.h>
// Uncomment the following line to turn on tracing when we examine the call stack
// #define DUMP_STACK_BACKTRACE
#ifdef DUMP_STACK_BACKTRACE
#include <psapi.h>
typedef BOOL (WINAPI GMIFunc)(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb);
typedef BOOL (WINAPI EPMFunc)(HANDLE hProcess, HMODULE* lphModule, DWORD cb, LPDWORD lpcbNeeded);
typedef DWORD (WINAPI GMBNFunc)(HANDLE hProcess, HMODULE hModule, LPSTR lpBaseName, DWORD nSize);
void PrintAllModuleInfo()
{
HMODULE psapiLibrary = LoadLibraryA("psapi.dll");
__NK_ASSERT_ALWAYS(psapiLibrary != NULL);
EPMFunc* epmFunc = (EPMFunc*)GetProcAddress(psapiLibrary, "EnumProcessModules");
__NK_ASSERT_ALWAYS(epmFunc != NULL);
GMIFunc* gmiFunc = (GMIFunc*)GetProcAddress(psapiLibrary, "GetModuleInformation");
__NK_ASSERT_ALWAYS(gmiFunc != NULL);
GMBNFunc* gmbnFunc = (GMBNFunc*)GetProcAddress(psapiLibrary, "GetModuleBaseNameA");
__NK_ASSERT_ALWAYS(gmbnFunc != NULL);
const TInt maxModules = 256;
HMODULE modules[maxModules];
DWORD spaceNeeded;
BOOL r = epmFunc(GetCurrentProcess(), modules, sizeof(HMODULE) * maxModules, &spaceNeeded);
__NK_ASSERT_ALWAYS(r);
__NK_ASSERT_ALWAYS(spaceNeeded <= sizeof(HMODULE) * maxModules);
for (TUint i = 0 ; i < spaceNeeded / sizeof(HMODULE) ; ++i)
{
HMODULE library = modules[i];
const TUint maxNameLen = 64;
char name[maxNameLen];
WORD len = gmbnFunc(GetCurrentProcess(), library, name, sizeof(name));
__NK_ASSERT_ALWAYS(len > 0 && len < maxNameLen);
MODULEINFO info;
r = gmiFunc(GetCurrentProcess(), library, &info, sizeof(info));
__NK_ASSERT_ALWAYS(r);
DEBUGPRINT("Module %s found at %08x to %08x", name, (TUint)info.lpBaseOfDll, (TUint)info.lpBaseOfDll + info.SizeOfImage);
}
r = FreeLibrary(psapiLibrary);
__NK_ASSERT_ALWAYS(r);
}
#endif // DUMP_STACK_BACKTRACE
const TInt KWin32NonPreemptibleFunctionCount = 2;
struct TWin32FunctionInfo
{
TUint iStartAddr;
TUint iLength;
};
static TWin32FunctionInfo Win32NonPreemptibleFunctions[KWin32NonPreemptibleFunctionCount];
HMODULE GetFirstLoadedModuleHandleA(const char* aModuleName1, const char* aModuleName2)
{
HMODULE result = GetModuleHandleA(aModuleName1);
return result ? result : GetModuleHandleA(aModuleName2);
}
TWin32FunctionInfo Win32FindExportedFunction(const char* aFunctionName, ...)
{
va_list arg;
va_start(arg, aFunctionName);
HMODULE library = NULL;
const char* libname;
// Loop through arguments until we find a library we can get a handle to. List of library names
// is NULL-terminated.
while ((libname = va_arg(arg, const char*)) != NULL)
{
library = GetModuleHandleA(libname);
if (library != NULL)
break;
}
va_end(arg);
// Make sure we did get a valid library
__NK_ASSERT_ALWAYS(library != NULL);
// Find the start address of the function
TUint start = (TUint)GetProcAddress(library, aFunctionName);
__NK_ASSERT_ALWAYS(start != 0);
// Now have to check all other exports to find the end of the function
TUint end = ~0u;
for (TInt i = 1; ; ++i)
{
TUint addr = (TUint)GetProcAddress(library, MAKEINTRESOURCEA(i));
if (!addr)
break;
if (addr > start && addr < end)
end = addr;
}
__NK_ASSERT_ALWAYS(end != ~0u);
TWin32FunctionInfo result = { start, end - start };
#ifdef DUMP_STACK_BACKTRACE
DEBUGPRINT("Function %s found at %08x to %08x", aFunctionName, start, end);
#endif
return result;
}
void Win32FindNonPreemptibleFunctions()
{
#ifdef DUMP_STACK_BACKTRACE
PrintAllModuleInfo();
#endif
TUint i = 0;
Win32NonPreemptibleFunctions[i++] = Win32FindExportedFunction("RaiseException", "kernelbase.dll", "kernel32.dll", NULL);
Win32NonPreemptibleFunctions[i++] = Win32FindExportedFunction("KiUserExceptionDispatcher", "ntdll.dll", NULL);
__NK_ASSERT_ALWAYS(i == KWin32NonPreemptibleFunctionCount);
}
TBool Win32IsThreadInNonPreemptibleFunction(HANDLE aWinThread, TLinAddr aStackTop)
{
const TInt KMaxSearchDepth = 16; // 12 max observed while handling exceptions
const TInt KMaxStackSize = 1024 * 1024; // Default reserved stack size on windows
const TInt KMaxFrameSize = 4096;
CONTEXT c;
c.ContextFlags = CONTEXT_CONTROL;
CheckedGetThreadContext(aWinThread, &c);
TUint eip = c.Eip;
TUint ebp = c.Ebp;
TUint lastEbp = c.Esp;
#ifdef DUMP_STACK_BACKTRACE
DEBUGPRINT("Stack backtrace for thread %x", aWinThread);
#endif
// Walk the call stack
for (TInt i = 0 ; i < KMaxSearchDepth ; ++i)
{
#ifdef DUMP_STACK_BACKTRACE
DEBUGPRINT(" %08x", eip);
#endif
for (TInt j = 0 ; j < KWin32NonPreemptibleFunctionCount ; ++j)
{
const TWin32FunctionInfo& info = Win32NonPreemptibleFunctions[j];
if (TUint(eip - info.iStartAddr) < info.iLength)
{
__KTRACE_OPT(KSCHED, DEBUGPRINT("Thread is in non-preemptible function %d at frame %d: eip == %08x", j, i, eip));
return TRUE;
}
}
// Check frame pointer is valid before dereferencing it
if (TUint(aStackTop - ebp) > KMaxStackSize || TUint(ebp - lastEbp) > KMaxFrameSize || ebp & 3)
break;
TUint* frame = (TUint*)ebp;
lastEbp = ebp;
ebp = frame[0];
eip = frame[1];
}
return FALSE;
}
TBool NThread::IsSafeToPreempt()
{
return !Win32IsThreadInNonPreemptibleFunction(iWinThread, iUserStackBase);
}