Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\math\t_roundtrip.cpp
// Tests round-trip convertibility of double->string->double
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32math.h>
//#define __ALWAYS_PRINT__
RTest test(_L("T_ROUNDTRIP"));
void PrintRealHex(const char* aTitle, const TReal& aIn)
{
volatile TUint32* in = (volatile TUint32*)&aIn;
#ifdef __DOUBLE_WORDS_SWAPPED__
TUint32 high = in[0];
TUint32 low = in[1];
#else
TUint32 high = in[1];
TUint32 low = in[0];
#endif
TBuf<256> title;
if (aTitle)
title.Copy(TPtrC8((const TUint8*)aTitle));
test.Printf(_L("%S%08x %08x\n"), &title, high, low);
}
TInt RoundTrip(TReal& aOut, const TReal& aIn)
{
TBuf8<64> text;
TRealFormat fmt;
fmt.iType = KRealFormatExponent | KRealInjectiveLimit | KUseSigFigs | KDoNotUseTriads | KAllowThreeDigitExp;
fmt.iWidth = 32;
fmt.iPlaces = KIEEEDoubleInjectivePrecision;
fmt.iPoint = '.';
#ifdef __ALWAYS_PRINT__
PrintRealHex("Input : ", aIn);
#endif
TInt r = text.Num(aIn, fmt);
if (r<0)
{
test.Printf(_L("Result %d (Num)\n"), r);
return r;
}
#ifdef __ALWAYS_PRINT__
TBuf16<64> text16;
text16.Copy(text);
test.Printf(_L("Text : %S\n"), &text16);
#endif
TLex8 lex(text);
r = lex.Val(aOut);
if (r < 0)
{
test.Printf(_L("Result %d (Val)\n"), r);
return r;
}
#ifdef __ALWAYS_PRINT__
PrintRealHex("Output: ", aOut);
#endif
volatile TUint32* in = (volatile TUint32*)&aIn;
volatile TUint32* out = (volatile TUint32*)&aOut;
if (in[0]!=out[0] || in[1]!=out[1])
{
test.Printf(_L("Unsuccessful\n"));
#ifndef __ALWAYS_PRINT__
PrintRealHex("Input : ", aIn);
TBuf16<64> text16;
text16.Copy(text);
test.Printf(_L("Text : %S\n"), &text16);
PrintRealHex("Output: ", aOut);
#endif
return KErrUnknown;
}
return KErrNone;
}
const TUint64 KMantissaOverflow = UI64LIT(0x20000000000000); // 2^53
const TUint64 KMantissaThreshold = UI64LIT(0x10000000000000); // 2^52
class R
{
public:
enum {EMinExp=0, EMinNormExp=1, EMaxNormExp=2046, EMaxExp=2047};
public:
R();
R(const TReal& aIn);
TReal Value() const;
TInt Next();
TInt Prev();
public:
TUint64 iMant; // if iExp>0 2^52<=iMant<2^53 else 0<=iMant<2^52
TInt iExp; // 0 < iExp < 2047
TInt iSign;
};
R::R()
{
iMant = 0;
iExp = 0;
iSign = 0;
}
R::R(const TReal& aIn)
{
const volatile TUint32* in = (const volatile TUint32*)&aIn;
#ifdef __DOUBLE_WORDS_SWAPPED__
TUint32 high = in[0];
TUint32 low = in[1];
#else
TUint32 high = in[1];
TUint32 low = in[0];
#endif
iSign = high >> 31;
iExp = (high >> 20) & EMaxExp;
iMant = MAKE_TUINT64(high, low);
iMant <<= 12;
iMant >>= 12;
if (iExp)
iMant += KMantissaThreshold;
}
TReal R::Value() const
{
TUint32 high = iSign ? 1 : 0;
high <<= 31;
high |= (iExp<<20);
TUint32 mh = I64HIGH(iMant);
mh <<= 12;
high |= (mh>>12);
TUint32 low = I64LOW(iMant);
union {TReal iReal; TUint32 iX[2];} result;
#ifdef __DOUBLE_WORDS_SWAPPED__
result.iX[0] = high;
result.iX[1] = low;
#else
result.iX[0] = low;
result.iX[1] = high;
#endif
return result.iReal;
}
TInt R::Next()
{
if (iExp>0)
{
if (++iMant == KMantissaOverflow)
{
iMant >>= 1;
if (++iExp == EMaxExp)
return KErrOverflow;
}
return KErrNone;
}
if (++iMant == KMantissaThreshold)
iExp = 1;
return KErrNone;
}
TInt R::Prev()
{
if (iExp == EMaxExp)
{
if (iMant == KMantissaThreshold)
{
--iExp;
return KErrNone;
}
return KErrGeneral;
}
if (iExp>0)
{
if (--iMant < KMantissaThreshold)
{
if (--iExp)
{
iMant <<= 1;
iMant++;
}
}
return KErrNone;
}
if (iMant==0)
return KErrUnderflow;
--iMant;
return KErrNone;
}
void DoTest(R& aR, TInt& aErrorCount)
{
TReal out;
TInt r;
r = RoundTrip(out, aR.Value());
if (r==KErrUnknown)
++aErrorCount;
R R1(aR);
R R2(aR);
if (R1.Next()==KErrNone)
{
r = RoundTrip(out, R1.Value());
if (r==KErrUnknown)
++aErrorCount;
}
if (R2.Prev()==KErrNone)
{
r = RoundTrip(out, R2.Value());
if (r==KErrUnknown)
++aErrorCount;
}
}
void DoTest(TInt aExp, TInt& aErrorCount)
{
R x;
x.iExp = aExp;
x.iMant = KMantissaThreshold;
if (aExp==0)
{
do {
x.iMant >>= 1;
DoTest(x, aErrorCount);
} while (x.iMant);
}
else
{
DoTest(x, aErrorCount);
}
}
void DoTestPow10(TInt aPow, TInt& aErrorCount)
{
TReal64 r64;
TInt r = Math::Pow10(r64, aPow);
if (r<0)
return;
R x(r64);
DoTest(x, aErrorCount);
}
void DoTestRandom(TInt& aErrorCount)
{
static TInt64 randSeed = I64LIT(0x3333333333333333);
R x;
x.iExp = Math::Rand(randSeed) & R::EMaxExp;
x.iMant = ((TUint64)Math::Rand(randSeed) << 32) | (TUint64)Math::Rand(randSeed);
while (x.iMant > KMantissaThreshold)
x.iMant >>= 1;
x.iSign = Math::Rand(randSeed) & 0x1;
DoTest(x, aErrorCount);
}
TInt E32Main()
{
test.Title();
test.Start(_L("Testing conversion from double->string->double"));
TInt exp;
TInt errors = 0;
test.Next(_L("Test the conversion of powers of 2"));
for (exp = 0; exp < 2047; ++exp)
{
DoTest(exp, errors);
}
test.Next(_L("Test the conversion of powers of 10"));
for (exp = -325; exp < 325; ++exp)
{
DoTestPow10(exp, errors);
}
test.Next(_L("Test the conversion of some random numbers"));
for (exp = 0; exp < 100; ++exp)
{
DoTestRandom(errors);
}
test_Equal(0, errors);
test.End();
return KErrNone;
}