Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\d_memorytest.cpp
//
//
#include <kernel/kern_priv.h>
#include <kernel/cache.h>
#include "d_memorytest.h"
//
// Class definitions
//
class DMemoryTestFactory : public DLogicalDevice
{
public:
~DMemoryTestFactory();
virtual TInt Install();
virtual void GetCaps(TDes8& aDes) const;
virtual TInt Create(DLogicalChannelBase*& aChannel);
};
class DMemoryTestChannel : public DLogicalChannelBase
{
public:
DMemoryTestChannel();
~DMemoryTestChannel();
virtual TInt DoCreate(TInt aUnit, const TDesC8* anInfo, const TVersion& aVer);
virtual TInt Request(TInt aFunction, TAny* a1, TAny* a2);
private:
TInt TestAllocZerosMemory();
TInt TestReAllocZerosMemory();
TInt AllocTest1();
TInt ReAllocTest1();
TInt ReAllocTest2(TUint8*& mem1, TUint8*& mem2, TUint8*& mem3);
TInt AllocPhysTest(TUint32 aIters, TUint32 aSize);
TInt AllocPhysTest1(TUint32 aIters, TUint32 aSize);
public:
DMemoryTestFactory* iFactory;
TVirtualPinObject* iVirtualPinObject;
struct{
TPhysicalPinObject* iObject;
TPhysAddr iPhysAddr;
TPhysAddr iPhysPageList[KUCPageCount];
TUint iColour;
TUint32 iActualMapAttr;
}iPhysicalPinning;
struct{
TKernelMapObject* iObject;
TPhysAddr iPhysPageList[KUCPageCount];
TLinAddr iLinAddr;
}iKernelMapping;
TUint32 iPageSize;
};
//
// DMemoryTestFactory
//
TInt DMemoryTestFactory::Install()
{
return SetName(&KMemoryTestLddName);
}
DMemoryTestFactory::~DMemoryTestFactory()
{
}
void DMemoryTestFactory::GetCaps(TDes8& /*aDes*/) const
{
// Not used but required as DLogicalDevice::GetCaps is pure virtual
}
TInt DMemoryTestFactory::Create(DLogicalChannelBase*& aChannel)
{
aChannel = NULL;
DMemoryTestChannel* channel=new DMemoryTestChannel;
if(!channel)
return KErrNoMemory;
channel->iFactory = this;
aChannel = channel;
return KErrNone;
}
DECLARE_STANDARD_LDD()
{
return new DMemoryTestFactory;
}
//
// DMemoryTestChannel
//
TInt DMemoryTestChannel::DoCreate(TInt /*aUnit*/, const TDesC8* /*aInfo*/, const TVersion& /*aVer*/)
{
return KErrNone;
}
DMemoryTestChannel::DMemoryTestChannel()
{
iPageSize = Kern::RoundToPageSize(1);
}
DMemoryTestChannel::~DMemoryTestChannel()
{
Kern::DestroyVirtualPinObject(iVirtualPinObject);
}
TInt DMemoryTestChannel::Request(TInt aFunction, TAny* a1, TAny* a2)
{
TInt r=KErrNotSupported;
switch(aFunction)
{
case RMemoryTestLdd::EReadWriteMemory:
case RMemoryTestLdd::EReadMemory:
case RMemoryTestLdd::EWriteMemory:
{
TUint32 value=(TUint32)a2;
#ifdef _DEBUG
TInt debugMask = Kern::CurrentThread().iDebugMask;
Kern::CurrentThread().iDebugMask = debugMask&~(1<<KPANIC);
#endif
XTRAP(r, XT_DEFAULT,
if(aFunction==RMemoryTestLdd::EReadWriteMemory)
{
kumemget32(&value,a1,4);
kumemput32(a1,&value,4);
}
else if(aFunction==RMemoryTestLdd::EReadMemory)
kumemget32(&value,a1,4);
else if(aFunction==RMemoryTestLdd::EWriteMemory)
kumemput32(a1,&value,4);
);
#ifdef _DEBUG
Kern::CurrentThread().iDebugMask = debugMask;
#endif
if(aFunction==RMemoryTestLdd::EReadMemory)
kumemput32(a2,&value,sizeof(value));
return r;
}
case RMemoryTestLdd::ETestAllocZerosMemory:
case RMemoryTestLdd::ETestReAllocZerosMemory:
{
NKern::ThreadEnterCS();
TInt r;
if (aFunction==RMemoryTestLdd::ETestAllocZerosMemory)
r=TestAllocZerosMemory();
else
r=TestReAllocZerosMemory();
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::ETestAllocPhysTest:
{
NKern::ThreadEnterCS();
r=AllocPhysTest((TUint32)a1,(TUint32)a2);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::ETestAllocPhysTest1:
{
NKern::ThreadEnterCS();
r=AllocPhysTest1((TUint32)a1,(TUint32)a2);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::ECreateVirtualPinObject:
{
NKern::ThreadEnterCS();
r=Kern::CreateVirtualPinObject(iVirtualPinObject);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::EPinVirtualMemory:
return Kern::PinVirtualMemory(iVirtualPinObject, (TLinAddr)a1, (TUint)a2);
case RMemoryTestLdd::EUnpinVirtualMemory:
Kern::UnpinVirtualMemory(iVirtualPinObject);
return KErrNone;
case RMemoryTestLdd::EDestroyVirtualPinObject:
{
NKern::ThreadEnterCS();
Kern::DestroyVirtualPinObject(iVirtualPinObject);
NKern::ThreadLeaveCS();
return KErrNone;
}
case RMemoryTestLdd::ESetPanicTrace:
{
TBool old = false;
#ifdef _DEBUG
DThread& thread = Kern::CurrentThread();
TInt debugMask = thread.iDebugMask;
if(debugMask&(1<<KPANIC))
old = true;
if(a1)
debugMask |= (1<<KPANIC);
else
debugMask &= ~(1<<KPANIC);
thread.iDebugMask = debugMask;
#endif
return old;
}
case RMemoryTestLdd::EIsMemoryPresent:
#ifndef __WINS__
return Epoc::LinearToPhysical((TLinAddr)a1) != KPhysAddrInvalid;
#else
Kern::PanicCurrentThread(_L("IsMemoryPresent should not be used on the emulator"), KErrNotSupported);
return KErrNotSupported;
#endif
case RMemoryTestLdd::ECreatePhysicalPinObject:
{
NKern::ThreadEnterCS();
r=Kern::CreatePhysicalPinObject(iPhysicalPinning.iObject);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::EPinPhysicalMemory:
return Kern::PinPhysicalMemory(iPhysicalPinning.iObject, (TLinAddr)a1, (TUint)a2, EFalse, iPhysicalPinning.iPhysAddr,
iPhysicalPinning.iPhysPageList, iPhysicalPinning.iActualMapAttr, iPhysicalPinning.iColour, NULL);
case RMemoryTestLdd::EPinPhysicalMemoryRO:
return Kern::PinPhysicalMemory(iPhysicalPinning.iObject, (TLinAddr)a1, (TUint)a2, ETrue, iPhysicalPinning.iPhysAddr,
iPhysicalPinning.iPhysPageList, iPhysicalPinning.iActualMapAttr, iPhysicalPinning.iColour, NULL);
case RMemoryTestLdd::ECheckPageList:
{
#ifdef __WINS__
return KErrNotSupported;
#else
TInt i;
for (i=0;i<KUCPageCount; i++)
{
TPhysAddr addr = Epoc::LinearToPhysical((TLinAddr)a1 + i*iPageSize);
if (addr==KPhysAddrInvalid) return KErrGeneral;
if (addr!=iPhysicalPinning.iPhysPageList[i]) return KErrNotFound;
}
return KErrNone;
#endif
}
case RMemoryTestLdd::ESyncPinnedPhysicalMemory:
return Cache::SyncPhysicalMemoryBeforeDmaWrite(iPhysicalPinning.iPhysPageList,
iPhysicalPinning.iColour, (TUint)a1, (TUint)a2, iPhysicalPinning.iActualMapAttr);
case RMemoryTestLdd::EMovePinnedPhysicalMemory:
{
#ifdef __WINS__
return KErrNotSupported;
#else
TPhysAddr newPage;
NKern::ThreadEnterCS();
r = Epoc::MovePhysicalPage(iPhysicalPinning.iPhysPageList[(TUint)a1], newPage);
NKern::ThreadLeaveCS();
return r;
#endif
}
case RMemoryTestLdd::EInvalidatePinnedPhysicalMemory:
{
r = Cache::SyncPhysicalMemoryBeforeDmaRead(iPhysicalPinning.iPhysPageList,
iPhysicalPinning.iColour, (TUint)a1, (TUint)a2, iPhysicalPinning.iActualMapAttr);
if (r==KErrNone)
r = Cache::SyncPhysicalMemoryAfterDmaRead(iPhysicalPinning.iPhysPageList,
iPhysicalPinning.iColour, (TUint)a1, (TUint)a2, iPhysicalPinning.iActualMapAttr);
return r;
}
case RMemoryTestLdd::EUnpinPhysicalMemory:
return Kern::UnpinPhysicalMemory(iPhysicalPinning.iObject);
case RMemoryTestLdd::EDestroyPhysicalPinObject:
{
NKern::ThreadEnterCS();
r=Kern::DestroyPhysicalPinObject(iPhysicalPinning.iObject);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::EPinKernelPhysicalMemory:
{
TPhysicalPinObject* pinObject;
TPhysAddr aAddress;
TPhysAddr aPages[2];
TUint aColour=0;
TUint32 actualMemAttr;
NKern::ThreadEnterCS();
Kern::CreatePhysicalPinObject(pinObject);
r = Kern::PinPhysicalMemory(pinObject, (TLinAddr)&aAddress, 4, EFalse, aAddress, aPages, actualMemAttr, aColour, NULL);
Cache::SyncPhysicalMemoryBeforeDmaWrite(aPages, aColour, 10, 30, actualMemAttr);
Kern::UnpinPhysicalMemory(pinObject);
Kern::DestroyPhysicalPinObject(pinObject);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::ECreateKernelMapObject:
{
NKern::ThreadEnterCS();
r=Kern::CreateKernelMapObject(iKernelMapping.iObject, (TUint)a1);
NKern::ThreadLeaveCS();
return r;
}
case RMemoryTestLdd::EKernelMapMemory:
return Kern::MapAndPinMemory( iKernelMapping.iObject, NULL, (TLinAddr)a1, (TUint)a2, 0,
iKernelMapping.iLinAddr, iKernelMapping.iPhysPageList);
case RMemoryTestLdd::EKernelMapMemoryRO:
return Kern::MapAndPinMemory( iKernelMapping.iObject, NULL, (TLinAddr)a1, (TUint)a2, Kern::EKernelMap_ReadOnly,
iKernelMapping.iLinAddr, iKernelMapping.iPhysPageList);
case RMemoryTestLdd::EKernelMapMemoryInvalid:
return Kern::MapAndPinMemory( iKernelMapping.iObject, NULL, (TLinAddr)a1, (TUint)a2, (TUint)~Kern::EKernelMap_ReadOnly,
iKernelMapping.iLinAddr, iKernelMapping.iPhysPageList);
case RMemoryTestLdd::EKernelMapCheckPageList:
{
#ifdef __WINS__
return KErrNotSupported;
#else
TUint i = 0;
for (; i < (TUint)KUCPageCount; i++)
{
// Compare the user side address to physical addresses
TPhysAddr addr = Epoc::LinearToPhysical((TLinAddr)a1 + i*iPageSize);
if (addr == KPhysAddrInvalid)
return KErrGeneral;
if (addr != iKernelMapping.iPhysPageList[i])
return KErrNotFound;
// Compare the kernel side address to physical addresses
addr = Epoc::LinearToPhysical(iKernelMapping.iLinAddr + i*iPageSize);
if (addr == KPhysAddrInvalid)
return KErrGeneral;
if (addr != iKernelMapping.iPhysPageList[i])
return KErrNotFound;
}
return KErrNone;
#endif
}
case RMemoryTestLdd::EKernelMapSyncMemory:
Cache::SyncMemoryBeforeDmaWrite(iKernelMapping.iLinAddr, KUCPageCount*iPageSize);
return KErrNone;
case RMemoryTestLdd::EKernelMapInvalidateMemory:
{
Cache::SyncMemoryBeforeDmaRead(iKernelMapping.iLinAddr, KUCPageCount*iPageSize);
Cache::SyncMemoryAfterDmaRead(iKernelMapping.iLinAddr, KUCPageCount*iPageSize);
return KErrNone;
}
case RMemoryTestLdd::EKernelMapMoveMemory:
{
#ifdef __WINS__
return KErrNotSupported;
#else
TPhysAddr newPage;
NKern::ThreadEnterCS();
r = Epoc::MovePhysicalPage(iKernelMapping.iPhysPageList[(TUint)a1], newPage);
NKern::ThreadLeaveCS();
return r;
#endif
}
case RMemoryTestLdd::EKernelMapReadModifyMemory:
{
TUint8* p = (TUint8*)iKernelMapping.iLinAddr;
// Verify the contents of the data when accessed via the kernel mapping.
TUint i = 0;
for (i = 0; i < KUCPageCount*iPageSize; i++)
{
if (*p++ != (TUint8)i)
return KErrCorrupt;
}
// Modify the data via the kernel mapping.
p = (TUint8*)iKernelMapping.iLinAddr;
for (i = 0; i < KUCPageCount*iPageSize; i++)
{
*p++ = (TUint8)(i + 1);
}
return KErrNone;
}
case RMemoryTestLdd::EKernelUnmapMemory:
Kern::UnmapAndUnpinMemory(iKernelMapping.iObject);
return KErrNone;
case RMemoryTestLdd::EDestroyKernelMapObject:
{
NKern::ThreadEnterCS();
Kern::DestroyKernelMapObject(iKernelMapping.iObject);
NKern::ThreadLeaveCS();
return KErrNone;
}
default:
return KErrNotSupported;
}
}
// Fail a test by returning an error code indicating the problem
#define FAIL_ALLOC_TEST(testIndex, byteOffset, unexepectedValue) \
err = ((testIndex) << 16) | ((byteOffset) << 8) | (unexepectedValue)
TInt DMemoryTestChannel::TestAllocZerosMemory()
{
TInt count = 100;
TInt r = KErrNotSupported;
do { //re-try up to 100 times if memory conditions are not correct
r=AllocTest1();
} while(((r == KErrNoMemory)||(r == KErrUnknown)) && --count);
return r;
}
TInt DMemoryTestChannel::AllocTest1()
{
const TInt KSize = 256;
TInt err = KErrNone;
TUint8* mem1 = (TUint8*)Kern::Alloc(KSize);
if (!mem1)
return KErrNoMemory;
memset(mem1, KSize, 0xff);
Kern::Free(mem1);
TUint8* mem2 = (TUint8*)Kern::Alloc(KSize);
if (!mem2)
return KErrNoMemory;
if (mem1 != mem2)
err = KErrUnknown; // Test inconclusive, can retry
for (TInt i = 0 ; i<KSize && err==KErrNone; ++i)
{
if (mem2[i] != 0)
FAIL_ALLOC_TEST(1, i, mem2[i]);
}
Kern::Free(mem2);
return err;
}
TInt DMemoryTestChannel::TestReAllocZerosMemory()
{
TInt count = 100;
TInt r = KErrNotSupported;
do { //re-try up to 100 times if memory conditions are not correct
r=ReAllocTest1();
} while(((r == KErrNoMemory)||(r == KErrUnknown)) && --count);
if (r!=KErrNone)
return r;
count = 100;
do { // re-try up to 100 times if memory conditions are not correct
TUint8* mem1 = NULL;
TUint8* mem2 = NULL;
TUint8* mem3 = NULL;
r=ReAllocTest2(mem1, mem2, mem3);
if (mem1)
Kern::Free(mem1);
if (mem2)
Kern::Free(mem2);
if (mem3)
Kern::Free(mem3);
} while(((r == KErrNoMemory)||(r == KErrUnknown)) && --count);
return r;
}
// The actual size of the block allocated given the size requested.
#define ALIGNED_SIZE(aReqSize) (_ALIGN_UP(aReqSize + RHeap::EAllocCellSize, RHeap::ECellAlignment) - RHeap::EAllocCellSize)
// We only acllocate blocks where the size we get is the size we ask for - this
// just makes testing easier.
const TInt KSize = ALIGNED_SIZE(200), KHalfSize = ALIGNED_SIZE(100), KSmallSize = ALIGNED_SIZE(50);
TInt DMemoryTestChannel::ReAllocTest1()
{
// Test case where cell grows
//
// Expected heap layout:
// 1: [-mem1-------]
// 2: [-mem1-]
// 3: [-mem1-------]
TInt err = KErrNone;
TUint8* mem1 = (TUint8*)Kern::Alloc(KSize); // 1
if (!mem1)
return KErrNoMemory;
memset(mem1, 0xff, KSize);
TUint8* mem2 = (TUint8*)Kern::ReAlloc(mem1, KHalfSize); // 2
if (mem1 != mem2)
{
mem1 = 0;
Kern::Free(mem2);
return KErrUnknown; // Don't expect move on shrink
}
mem2 = (TUint8*)Kern::ReAlloc(mem1, KSize); // 3
if (mem1 != mem2)
{
mem1 = 0;
Kern::Free(mem2);
return KErrUnknown; // Expect growth into original area
}
TInt i;
for (i = 0 ; i<KHalfSize && err==KErrNone; ++i)
{
if (mem1[i] != 0xff)
FAIL_ALLOC_TEST(2, i, mem1[i]);
}
for (i = KHalfSize ; i<KSize && err==KErrNone; ++i)
{
if (mem1[i] != 0)
FAIL_ALLOC_TEST(3, i, mem1[i]);
}
Kern::Free(mem1);
return err;
}
TInt DMemoryTestChannel::ReAllocTest2(TUint8*& mem1, TUint8*& mem2, TUint8*& mem3)
{
// Test case where cell is moved
//
// Expected heap layout:
// 1: [ mem1 ]
// 2: [ mem1 ] [ mem2 ]
// 3: [ mem1 ] [ mem2 ] [ mem3 ]
// 4: [ mem2 ] [ mem1 ]
mem1 = (TUint8*)Kern::Alloc(KSmallSize); // 1
if (!mem1)
return KErrNoMemory;
memset(mem1, 0xff, KSmallSize);
mem2 = (TUint8*)Kern::Alloc(KSmallSize); // 2
if (!mem2)
return KErrNoMemory;
if (mem2 <= (mem1 + KSmallSize))
return KErrUnknown; // Expect mem2 higher than mem1
memset(mem2, 0xee, KSmallSize);
mem3 = (TUint8*)Kern::Alloc(KSize); // 3
if (!mem3)
return KErrNoMemory;
if (mem3 <= (mem2 + KSmallSize))
return KErrUnknown; // Expect mem3 higher than mem2
memset(mem3, 0xdd, KSize);
Kern::Free(mem3);
TUint8* m3 = mem3;
mem3 = NULL;
TUint8* mem4 = (TUint8*)Kern::ReAlloc(mem1, KSize); // 4
if (!mem4)
return KErrNoMemory;
if (mem4 == mem1)
return KErrUnknown; // Expect move on grow
mem1=mem4;
if (mem4 != m3)
return KErrUnknown; // Expect to realloc to use old mem3 space
TInt i;
TInt err = KErrNone;
for (i = 0 ; i<KSmallSize && err==KErrNone; ++i)
{
if (mem1[i] != 0xff)
FAIL_ALLOC_TEST(4, i, mem1[i]);
}
for (i = KSmallSize; i<KSize && err==KErrNone; ++i)
{
if (mem1[i] != 0)
FAIL_ALLOC_TEST(5, i, mem1[i]);
}
return err;
}
#ifdef __EPOC32__
#define CHECK(c) { if(!(c)) { Kern::Printf("Fail %d", __LINE__); ; ret = __LINE__;} }
TInt DMemoryTestChannel::AllocPhysTest(TUint32 aIters, TUint32 aSize)
{
TInt ret = KErrNone;
TUint32 index;
TUint32 pageSize = 0;
CHECK(Kern::HalFunction(EHalGroupKernel,EKernelHalPageSizeInBytes,&pageSize,0)==KErrNone);
TUint32 numPages = aSize / pageSize;
TUint32 pageIndex;
TPhysAddr* addrArray = (TPhysAddr *)Kern::AllocZ(sizeof(TPhysAddr) * numPages);
CHECK(addrArray);
if(!addrArray)
{
return KErrNoMemory;
}
for (index = 0; index < aIters; index ++)
{
for (pageIndex = 0; pageIndex < numPages; pageIndex ++)
{
ret = Epoc::AllocPhysicalRam(pageSize, addrArray[pageIndex], 0);
if (ret != KErrNone)
{
break;
}
}
for (pageIndex = 0; pageIndex < numPages; pageIndex ++)
{
if (addrArray[pageIndex])
{
Epoc::FreePhysicalRam(addrArray[pageIndex], pageSize);
addrArray[pageIndex] = NULL;
}
}
if (ret != KErrNone)
{
break;
}
}
Kern::Free(addrArray);
return ret;
}
#else
TInt DMemoryTestChannel::AllocPhysTest(TUint32 , TUint32 )
{
return KErrNone;
}
#endif
#ifdef __EPOC32__
TInt DMemoryTestChannel::AllocPhysTest1(TUint32 aIters, TUint32 aSize)
{
TInt ret = KErrNone;
TUint32 index;
TUint32 pageSize = 0;
CHECK(Kern::HalFunction(EHalGroupKernel,EKernelHalPageSizeInBytes,&pageSize,0)==KErrNone);
TUint32 numPages = aSize / pageSize;
TPhysAddr* addrArray = (TPhysAddr *)Kern::AllocZ(sizeof(TPhysAddr) * numPages);
for (index = 0; index < aIters; index ++)
{
ret = Epoc::AllocPhysicalRam(numPages, addrArray);
if (ret != KErrNone)
{
break;
}
Epoc::FreePhysicalRam(numPages, addrArray);
}
Kern::Free(addrArray);
return ret;
}
#else
TInt DMemoryTestChannel::AllocPhysTest1(TUint32 , TUint32 )
{
return KErrNone;
}
#endif