kerneltest/e32test/secure/t_sprioritycap.cpp
author Tom Cosgrove <tom.cosgrove@nokia.com>
Fri, 28 May 2010 16:29:07 +0100
changeset 137 8aab599e3476
parent 0 a41df078684a
permissions -rw-r--r--
Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h) Have multiple extension sections in the bld.inf, one for each version of the compiler. The RVCT version building the tools will build the runtime libraries for its version, but make sure we extract all the other versions from zip archives. Also add the archive for RVCT4.

// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\secure\t_sprioritycap.cpp
// Overview:
// Test the platform security aspects of the RThread class as affected by the process priority
// specified in the MMP file, mainly capping of higher thread priorities without ProtServ.
// API Information:
// Process priorities windowserver, fileserver, supervisor and realtimeserver set with
//

// # 'epocprocesspriority' keyword in MMP files
// # 'priority' keyword in OBEY (OBY/IBY) files
// Details:
// - Tests that the desired thread prioritisation results are obtained for process priorities
// SystemServer and RealTimeServer (established by separate MMP files):
// # without ECapabilityProtServ - priorities capped to SystemServer/More.
// # with ECapabilityProtServ - higher, "real-time" priorities obtainable.
// - Tests effect of reduction of SystemServer/More from nanothread priority 24 to 23,
// i.e. same priority as AbsoluteHigh
// Platforms/Drives/Compatibility:
// All.
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//

#include <e32test.h>

LOCAL_D RTest test(_L("T_SPRIORITYCAP"));
RMutex SyncMutex;
TInt threadMutexAcquireOrder; // where 132 = thread 1 acquires mutex, then thread 3 then thread 2
_LIT(KTestPanicCategory,"TEST PANIC");

class RTestThread : public RThread
	{
public:
	void Create(TThreadFunction aFunction,TAny* aArg=0);
	};

void RTestThread::Create(TThreadFunction aFunction,TAny* aThreadNumber)
	{
	TInt threadNumber = reinterpret_cast<TInt>(aThreadNumber);
	ASSERT((threadNumber > 0) && (threadNumber < 10));
	TBuf<20> threadName = _L("TestThread_");
	threadName.AppendNum(threadNumber);
	TInt r=RThread::Create(threadName,aFunction,KDefaultStackSize,KDefaultStackSize,KDefaultStackSize,aThreadNumber);
	test(r==KErrNone);
	}

TInt TestThreadWaitMutex(TAny* aThreadNumber)
	{
	TInt threadNumber = reinterpret_cast<TInt>(aThreadNumber);
	ASSERT((threadNumber > 0) && (threadNumber < 10));
	RThread thisThread;
	thisThread.Rendezvous(KErrNone);
	SyncMutex.Wait();
	threadMutexAcquireOrder = threadMutexAcquireOrder*10 + threadNumber;
	SyncMutex.Signal();
	return KErrNone;
	}

// Create three threads with priority 1, 2 and 1, each waiting on a mutex that is already held by the
// main thread. Signal the mutex from the main thread and return the order the threads acquire it
// as an integer where 132 = thread 1 acquires mutex, then thread 3 then thread 2.
//
// In order to work this test requires the three threads to wait on the mutex in the order listed.
// This cannot be guaranteed, but the following points make it a near-certainty:
// (1) This main thread runs at lowest priority
// (2) The three threads initially resume at higher, decreasing priorities.
// (3) We Rendezvous() with the thread just before it waits on the mutex
// (4) Wait some time before creating next thread
// (5) Actual priorities are set after all test threads are waiting
TInt TestThreadMutexAcquireOrder(TThreadPriority aPriorityThread1, TThreadPriority aPriorityThread2)
	{
	RTestThread thread1;
	RTestThread thread2;
	RTestThread thread3;
	TRequestStatus logonStatus1;
	TRequestStatus logonStatus2;
	TRequestStatus logonStatus3;
	TRequestStatus rendezvousStatus;

	threadMutexAcquireOrder = 0; // global variable to hold order in which threads obtain mutex

	RThread thisThread;
	thisThread.SetPriority(EPriorityAbsoluteVeryLow);
	
	// create the SyncMutex global variable and hold it initially
	if(SyncMutex.CreateLocal()!=KErrNone)
		User::Invariant();
	SyncMutex.Wait();

	thread1.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(1));
	thread1.Logon(logonStatus1);
	thread1.SetPriority(EPriorityAbsoluteHigh);
	thread1.Rendezvous(rendezvousStatus);
	thread1.Resume();
	User::WaitForRequest(rendezvousStatus);
	User::After(500000);

	thread2.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(2));
	thread2.Logon(logonStatus2);
	thread2.SetPriority(EPriorityAbsoluteForeground);
	thread2.Rendezvous(rendezvousStatus);
	thread2.Resume();
	User::WaitForRequest(rendezvousStatus);
	User::After(500000);

	thread3.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(3));
	thread3.Logon(logonStatus3);
	thread3.SetPriority(EPriorityAbsoluteBackground);
	thread3.Rendezvous(rendezvousStatus);
	thread3.Resume();
	User::WaitForRequest(rendezvousStatus);
	User::After(500000);

	thread1.SetPriority(aPriorityThread1);
	thread2.SetPriority(aPriorityThread2);
	thread3.SetPriority(aPriorityThread1);

	SyncMutex.Signal();

	User::WaitForRequest(logonStatus1);
	User::WaitForRequest(logonStatus2);
	User::WaitForRequest(logonStatus3);
	test(thread1.ExitType()==EExitKill);
	test(logonStatus1==KErrNone);
	test(thread2.ExitType()==EExitKill);
	test(logonStatus2==KErrNone);
	test(thread3.ExitType()==EExitKill);
	test(logonStatus3==KErrNone);

	thread1.Close();
	thread2.Close();
	thread3.Close();
	SyncMutex.Close();

	return threadMutexAcquireOrder;
	}


enum TTestProcessFunctions
	{
	ETestProcessThreadPrioritiesEqual,
	ETestProcessThreadPrioritiesHighLow
	};

#include "testprocess.h"

TInt DoTestProcess(TInt aTestNum,TInt aArg1,TInt aArg2)
	{
	RThread thread;

	switch(aTestNum)
		{

	case ETestProcessThreadPrioritiesEqual:
		{
		TInt acquireOrder = TestThreadMutexAcquireOrder((TThreadPriority)aArg1, (TThreadPriority)aArg2);
		if (acquireOrder != 123)
			{
			thread.Panic(KTestPanicCategory,999);
			}
		break;
		}

	case ETestProcessThreadPrioritiesHighLow:
		{
		TInt acquireOrder = TestThreadMutexAcquireOrder((TThreadPriority)aArg1, (TThreadPriority)aArg2);
		if (acquireOrder != 132)
			{
			thread.Panic(KTestPanicCategory,999);
			}
		break;
		}

	default:
		User::Panic(_L("T_SPRIORITYCAP"),1);
		}

	return KErrNone;
	}


//---------------------------------------------
//! @SYMTestCaseID KBASE-T_SPRIORITYCAP-0121
//! @SYMTestCaseDesc Check prioritisation of threads with ProtServ capability
//! @SYMTestType UT
//! @SYMREQ PREQ955
//! @SYMTestActions Create sets of three threads with various priorities and have them wait on
//!     a mutex. Signal the mutex to see whether the threads obtain it in priority or wait order.
//!     Note: 2 MMP files build test exe with RealTimeServer and WindowServer process priorities.
//!     Test creates copy of this executable with/without required capabilities.
//! @SYMTestExpectedResults All thread priorities are obtainable to processes with ProtServ, so
//!     confirm they are correctly mapped to absolute priorities, that MuchMore > More etc. and
//!     that SystemServer/More is correctly mapped for SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES macro.
//! @SYMTestPriority Critical
//! @SYMTestStatus Implemented
//---------------------------------------------
void TestPriorityMappingWithProtServ()
	{
	const TUint32 capability = 1u<<ECapabilityProtServ; // only ProtServ capability
	RTestProcess process;

	TProcessPriority processPriority = process.Priority();
	// only call with the following process priorities
	ASSERT((processPriority == EPriorityWindowServer) || (processPriority == EPriorityFileServer)
		|| (processPriority == EPrioritySupervisor) || (processPriority == EPriorityRealTimeServer));

	test.Start(_L("Test EPriorityRealTime is greater than EPriorityMuchMore"));
	process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityRealTime,EPriorityMuchMore);
	process.Run();

	test.Next(_L("Test EPriorityMuchMore is greater than EPriorityMore"));
	process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityMuchMore,EPriorityMore);
	process.Run();

	test.Next(_L("Test EPriorityMore is greater than EPriorityNormal"));
	process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityMore,EPriorityNormal);
	process.Run();

	test.Next(_L("Test EPriorityNormal is greater than EPriorityLess"));
	process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityNormal,EPriorityLess);
	process.Run();

	test.Next(_L("Test EPriorityLess is greater than EPriorityMuchLess"));
	process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityLess,EPriorityMuchLess);
	process.Run();

	test.Next(_L("Test EPriorityMore versus independent capping priority"));
	process.Create(capability,
		(processPriority == EPriorityRealTimeServer) ? ETestProcessThreadPrioritiesHighLow : ETestProcessThreadPrioritiesEqual,
		EPriorityMore,
#ifdef SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES
		EPriorityAbsoluteHigh
#else
		EPriorityAbsoluteRealTime1
#endif	
		);
	process.Run();

	test.End();
	}


//---------------------------------------------
//! @SYMTestCaseID KBASE-T_SPRIORITYCAP-0122
//! @SYMTestCaseDesc Check prioritisation of threads without ProtServ capability
//! @SYMTestType UT
//! @SYMREQ PREQ955
//! @SYMTestActions Create sets of three threads with various priorities and have them wait on
//!     a mutex. Signal the mutex to see whether the threads obtain it in priority or wait order.
//!     Note: 2 MMP files build test exe with RealTimeServer and WindowServer process priorities.
//!     Test creates copy of this executable with/without required capabilities.
//! @SYMTestExpectedResults Confirm thread priorities are capped at SystemServer/More without ProtServ,
//!     so many priority enumerations will map to the same absolute priority. Confirm that
//!     SystemServer/More is correctly mapped for SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES macro.
//! @SYMTestPriority Critical
//! @SYMTestStatus Implemented
//---------------------------------------------
void TestPriorityMappingWithoutProtServ()
	{
	const TUint32 capability = ~(1u<<ECapabilityProtServ); // all capabilities except ProtServ
	RTestProcess process;

	TProcessPriority processPriority = process.Priority();
	// only call with the following process priorities
	ASSERT((processPriority == EPriorityWindowServer) || (processPriority == EPriorityFileServer)
		|| (processPriority == EPrioritySupervisor) || (processPriority == EPriorityRealTimeServer));

	test.Start(_L("Test EPriorityRealTime and EPriorityMuchMore are capped and equal"));
	process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityRealTime,EPriorityMuchMore);
	process.Run();

	test.Next(_L("Test EPriorityMuchMore and EPriorityMore are capped and equal"));
	process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityMuchMore,EPriorityMore);
	process.Run();

	if (processPriority == EPriorityRealTimeServer)
		{
		test.Next(_L("Test EPriorityMore and EPriorityMuchLess are capped and equal"));
		process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityMore,EPriorityMuchLess);
		process.Run();

		test.Next(_L("Test EPriorityNormal and EPriorityMuchLess are capped and equal"));
		process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityNormal,EPriorityMuchLess);
		process.Run();

		test.Next(_L("Test EPriorityLess and EPriorityMuchLess are capped and equal"));
		process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityLess,EPriorityMuchLess);
		process.Run();
		}

	test.Next(_L("Test EPriorityMore versus EPriorityAbsoluteHigh"));
	process.Create(capability,
#ifdef SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES
		ETestProcessThreadPrioritiesEqual,
#else
		ETestProcessThreadPrioritiesHighLow,
#endif	
		EPriorityMore,EPriorityAbsoluteHigh);
	process.Run();

	test.End();
	}


GLDEF_C TInt E32Main()
    {
	TBuf16<512> cmd;
	User::CommandLine(cmd);
	if(cmd.Length() && TChar(cmd[0]).IsDigit())
		{
		TInt function = -1;
		TInt arg1 = -1;
		TInt arg2 = -1;
		TLex lex(cmd);

		lex.Val(function);
		lex.SkipSpace();
		lex.Val(arg1);
		lex.SkipSpace();
		lex.Val(arg2);
		return DoTestProcess(function,arg1,arg2);
		}

	test.Title();

	if(!PlatSec::ConfigSetting(PlatSec::EPlatSecEnforcement))
		{
		test.Start(_L("TESTS NOT RUN - EPlatSecEnforcement is OFF"));
		test.End();
		return 0;
		}

	test.Next(_L("Test thread priority mappings for processes with ECapabilityProtServ"));
	TestPriorityMappingWithProtServ();

	test.Start(_L("Test thread priority mappings for processes without ECapabilityProtServ"));
	TestPriorityMappingWithoutProtServ();

	test.End();

	return(0);
    }