// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\secure\t_sprioritycap.cpp
// Overview:
// Test the platform security aspects of the RThread class as affected by the process priority
// specified in the MMP file, mainly capping of higher thread priorities without ProtServ.
// API Information:
// Process priorities windowserver, fileserver, supervisor and realtimeserver set with
//
// # 'epocprocesspriority' keyword in MMP files
// # 'priority' keyword in OBEY (OBY/IBY) files
// Details:
// - Tests that the desired thread prioritisation results are obtained for process priorities
// SystemServer and RealTimeServer (established by separate MMP files):
// # without ECapabilityProtServ - priorities capped to SystemServer/More.
// # with ECapabilityProtServ - higher, "real-time" priorities obtainable.
// - Tests effect of reduction of SystemServer/More from nanothread priority 24 to 23,
// i.e. same priority as AbsoluteHigh
// Platforms/Drives/Compatibility:
// All.
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
#include <e32test.h>
LOCAL_D RTest test(_L("T_SPRIORITYCAP"));
RMutex SyncMutex;
TInt threadMutexAcquireOrder; // where 132 = thread 1 acquires mutex, then thread 3 then thread 2
_LIT(KTestPanicCategory,"TEST PANIC");
class RTestThread : public RThread
{
public:
void Create(TThreadFunction aFunction,TAny* aArg=0);
};
void RTestThread::Create(TThreadFunction aFunction,TAny* aThreadNumber)
{
TInt threadNumber = reinterpret_cast<TInt>(aThreadNumber);
ASSERT((threadNumber > 0) && (threadNumber < 10));
TBuf<20> threadName = _L("TestThread_");
threadName.AppendNum(threadNumber);
TInt r=RThread::Create(threadName,aFunction,KDefaultStackSize,KDefaultStackSize,KDefaultStackSize,aThreadNumber);
test(r==KErrNone);
}
TInt TestThreadWaitMutex(TAny* aThreadNumber)
{
TInt threadNumber = reinterpret_cast<TInt>(aThreadNumber);
ASSERT((threadNumber > 0) && (threadNumber < 10));
RThread thisThread;
thisThread.Rendezvous(KErrNone);
SyncMutex.Wait();
threadMutexAcquireOrder = threadMutexAcquireOrder*10 + threadNumber;
SyncMutex.Signal();
return KErrNone;
}
// Create three threads with priority 1, 2 and 1, each waiting on a mutex that is already held by the
// main thread. Signal the mutex from the main thread and return the order the threads acquire it
// as an integer where 132 = thread 1 acquires mutex, then thread 3 then thread 2.
//
// In order to work this test requires the three threads to wait on the mutex in the order listed.
// This cannot be guaranteed, but the following points make it a near-certainty:
// (1) This main thread runs at lowest priority
// (2) The three threads initially resume at higher, decreasing priorities.
// (3) We Rendezvous() with the thread just before it waits on the mutex
// (4) Wait some time before creating next thread
// (5) Actual priorities are set after all test threads are waiting
TInt TestThreadMutexAcquireOrder(TThreadPriority aPriorityThread1, TThreadPriority aPriorityThread2)
{
RTestThread thread1;
RTestThread thread2;
RTestThread thread3;
TRequestStatus logonStatus1;
TRequestStatus logonStatus2;
TRequestStatus logonStatus3;
TRequestStatus rendezvousStatus;
threadMutexAcquireOrder = 0; // global variable to hold order in which threads obtain mutex
RThread thisThread;
thisThread.SetPriority(EPriorityAbsoluteVeryLow);
// create the SyncMutex global variable and hold it initially
if(SyncMutex.CreateLocal()!=KErrNone)
User::Invariant();
SyncMutex.Wait();
thread1.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(1));
thread1.Logon(logonStatus1);
thread1.SetPriority(EPriorityAbsoluteHigh);
thread1.Rendezvous(rendezvousStatus);
thread1.Resume();
User::WaitForRequest(rendezvousStatus);
User::After(500000);
thread2.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(2));
thread2.Logon(logonStatus2);
thread2.SetPriority(EPriorityAbsoluteForeground);
thread2.Rendezvous(rendezvousStatus);
thread2.Resume();
User::WaitForRequest(rendezvousStatus);
User::After(500000);
thread3.Create(TestThreadWaitMutex, reinterpret_cast<TAny*>(3));
thread3.Logon(logonStatus3);
thread3.SetPriority(EPriorityAbsoluteBackground);
thread3.Rendezvous(rendezvousStatus);
thread3.Resume();
User::WaitForRequest(rendezvousStatus);
User::After(500000);
thread1.SetPriority(aPriorityThread1);
thread2.SetPriority(aPriorityThread2);
thread3.SetPriority(aPriorityThread1);
SyncMutex.Signal();
User::WaitForRequest(logonStatus1);
User::WaitForRequest(logonStatus2);
User::WaitForRequest(logonStatus3);
test(thread1.ExitType()==EExitKill);
test(logonStatus1==KErrNone);
test(thread2.ExitType()==EExitKill);
test(logonStatus2==KErrNone);
test(thread3.ExitType()==EExitKill);
test(logonStatus3==KErrNone);
thread1.Close();
thread2.Close();
thread3.Close();
SyncMutex.Close();
return threadMutexAcquireOrder;
}
enum TTestProcessFunctions
{
ETestProcessThreadPrioritiesEqual,
ETestProcessThreadPrioritiesHighLow
};
#include "testprocess.h"
TInt DoTestProcess(TInt aTestNum,TInt aArg1,TInt aArg2)
{
RThread thread;
switch(aTestNum)
{
case ETestProcessThreadPrioritiesEqual:
{
TInt acquireOrder = TestThreadMutexAcquireOrder((TThreadPriority)aArg1, (TThreadPriority)aArg2);
if (acquireOrder != 123)
{
thread.Panic(KTestPanicCategory,999);
}
break;
}
case ETestProcessThreadPrioritiesHighLow:
{
TInt acquireOrder = TestThreadMutexAcquireOrder((TThreadPriority)aArg1, (TThreadPriority)aArg2);
if (acquireOrder != 132)
{
thread.Panic(KTestPanicCategory,999);
}
break;
}
default:
User::Panic(_L("T_SPRIORITYCAP"),1);
}
return KErrNone;
}
//---------------------------------------------
//! @SYMTestCaseID KBASE-T_SPRIORITYCAP-0121
//! @SYMTestCaseDesc Check prioritisation of threads with ProtServ capability
//! @SYMTestType UT
//! @SYMREQ PREQ955
//! @SYMTestActions Create sets of three threads with various priorities and have them wait on
//! a mutex. Signal the mutex to see whether the threads obtain it in priority or wait order.
//! Note: 2 MMP files build test exe with RealTimeServer and WindowServer process priorities.
//! Test creates copy of this executable with/without required capabilities.
//! @SYMTestExpectedResults All thread priorities are obtainable to processes with ProtServ, so
//! confirm they are correctly mapped to absolute priorities, that MuchMore > More etc. and
//! that SystemServer/More is correctly mapped for SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES macro.
//! @SYMTestPriority Critical
//! @SYMTestStatus Implemented
//---------------------------------------------
void TestPriorityMappingWithProtServ()
{
const TUint32 capability = 1u<<ECapabilityProtServ; // only ProtServ capability
RTestProcess process;
TProcessPriority processPriority = process.Priority();
// only call with the following process priorities
ASSERT((processPriority == EPriorityWindowServer) || (processPriority == EPriorityFileServer)
|| (processPriority == EPrioritySupervisor) || (processPriority == EPriorityRealTimeServer));
test.Start(_L("Test EPriorityRealTime is greater than EPriorityMuchMore"));
process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityRealTime,EPriorityMuchMore);
process.Run();
test.Next(_L("Test EPriorityMuchMore is greater than EPriorityMore"));
process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityMuchMore,EPriorityMore);
process.Run();
test.Next(_L("Test EPriorityMore is greater than EPriorityNormal"));
process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityMore,EPriorityNormal);
process.Run();
test.Next(_L("Test EPriorityNormal is greater than EPriorityLess"));
process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityNormal,EPriorityLess);
process.Run();
test.Next(_L("Test EPriorityLess is greater than EPriorityMuchLess"));
process.Create(capability,ETestProcessThreadPrioritiesHighLow,EPriorityLess,EPriorityMuchLess);
process.Run();
test.Next(_L("Test EPriorityMore versus independent capping priority"));
process.Create(capability,
(processPriority == EPriorityRealTimeServer) ? ETestProcessThreadPrioritiesHighLow : ETestProcessThreadPrioritiesEqual,
EPriorityMore,
#ifdef SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES
EPriorityAbsoluteHigh
#else
EPriorityAbsoluteRealTime1
#endif
);
process.Run();
test.End();
}
//---------------------------------------------
//! @SYMTestCaseID KBASE-T_SPRIORITYCAP-0122
//! @SYMTestCaseDesc Check prioritisation of threads without ProtServ capability
//! @SYMTestType UT
//! @SYMREQ PREQ955
//! @SYMTestActions Create sets of three threads with various priorities and have them wait on
//! a mutex. Signal the mutex to see whether the threads obtain it in priority or wait order.
//! Note: 2 MMP files build test exe with RealTimeServer and WindowServer process priorities.
//! Test creates copy of this executable with/without required capabilities.
//! @SYMTestExpectedResults Confirm thread priorities are capped at SystemServer/More without ProtServ,
//! so many priority enumerations will map to the same absolute priority. Confirm that
//! SystemServer/More is correctly mapped for SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES macro.
//! @SYMTestPriority Critical
//! @SYMTestStatus Implemented
//---------------------------------------------
void TestPriorityMappingWithoutProtServ()
{
const TUint32 capability = ~(1u<<ECapabilityProtServ); // all capabilities except ProtServ
RTestProcess process;
TProcessPriority processPriority = process.Priority();
// only call with the following process priorities
ASSERT((processPriority == EPriorityWindowServer) || (processPriority == EPriorityFileServer)
|| (processPriority == EPrioritySupervisor) || (processPriority == EPriorityRealTimeServer));
test.Start(_L("Test EPriorityRealTime and EPriorityMuchMore are capped and equal"));
process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityRealTime,EPriorityMuchMore);
process.Run();
test.Next(_L("Test EPriorityMuchMore and EPriorityMore are capped and equal"));
process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityMuchMore,EPriorityMore);
process.Run();
if (processPriority == EPriorityRealTimeServer)
{
test.Next(_L("Test EPriorityMore and EPriorityMuchLess are capped and equal"));
process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityMore,EPriorityMuchLess);
process.Run();
test.Next(_L("Test EPriorityNormal and EPriorityMuchLess are capped and equal"));
process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityNormal,EPriorityMuchLess);
process.Run();
test.Next(_L("Test EPriorityLess and EPriorityMuchLess are capped and equal"));
process.Create(capability,ETestProcessThreadPrioritiesEqual,EPriorityLess,EPriorityMuchLess);
process.Run();
}
test.Next(_L("Test EPriorityMore versus EPriorityAbsoluteHigh"));
process.Create(capability,
#ifdef SYMBIAN_CURB_SYSTEMSERVER_PRIORITIES
ETestProcessThreadPrioritiesEqual,
#else
ETestProcessThreadPrioritiesHighLow,
#endif
EPriorityMore,EPriorityAbsoluteHigh);
process.Run();
test.End();
}
GLDEF_C TInt E32Main()
{
TBuf16<512> cmd;
User::CommandLine(cmd);
if(cmd.Length() && TChar(cmd[0]).IsDigit())
{
TInt function = -1;
TInt arg1 = -1;
TInt arg2 = -1;
TLex lex(cmd);
lex.Val(function);
lex.SkipSpace();
lex.Val(arg1);
lex.SkipSpace();
lex.Val(arg2);
return DoTestProcess(function,arg1,arg2);
}
test.Title();
if(!PlatSec::ConfigSetting(PlatSec::EPlatSecEnforcement))
{
test.Start(_L("TESTS NOT RUN - EPlatSecEnforcement is OFF"));
test.End();
return 0;
}
test.Next(_L("Test thread priority mappings for processes with ECapabilityProtServ"));
TestPriorityMappingWithProtServ();
test.Start(_L("Test thread priority mappings for processes without ECapabilityProtServ"));
TestPriorityMappingWithoutProtServ();
test.End();
return(0);
}