kernel/eka/euser/maths/um_atan.cpp
author Mike Kinghan <mikek@symbian.org>
Tue, 16 Nov 2010 14:39:21 +0000
branchGCC_SURGE
changeset 303 9b85206a602c
parent 0 a41df078684a
permissions -rw-r--r--
We need a way to pass flags to rombuilds in Raptor via extension flm interfaces, so that the CPP pass of the rom input files can be informed what toolchain we are building with and conditionally include or exclude files depending on whether the toolchain could build them.

// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_atan.cpp
// Floating point arc tangent
// 
//

#include "um_std.h"

#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
#endif

#ifndef __USE_VFP_MATH

LOCAL_D const TUint32 ArctanCoeffs[] =
	{
	0x00000000,0x80000000,0x7FFF0000,	// polynomial approximation to arctan(x)
	0xAA84D6EE,0xAAAAAAAA,0x7FFD0001,	// for -(sqr2-1) <= x <= (sqr2-1)
	0x89C77453,0xCCCCCCCC,0x7FFC0000,
	0xEBC0261C,0x9249247B,0x7FFC0001,
	0x940BC4DB,0xE38E3121,0x7FFB0000,
	0x141C32F1,0xBA2DBF36,0x7FFB0001,
	0xA90615E7,0x9D7C807E,0x7FFB0000,
	0x1C632E93,0x87F6A873,0x7FFB0001,
	0x310FCFFD,0xE8BE5D0A,0x7FFA0000,
	0x92289F15,0xB17B930B,0x7FFA0001,
	0x546FE7CE,0xABDE562D,0x7FF90000
	};

LOCAL_D const TUint32 Sqr2m1data[] = {0xE7799211,0xD413CCCF,0x7FFD0000};		// sqr2-1
LOCAL_D const TUint32 Sqr2p1data[] = {0xFCEF3242,0x9A827999,0x80000000};		// sqr2+1
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};			// 1.0
LOCAL_D const TUint32 PiBy8data[] = {0x2168C235,0xC90FDAA2,0x7FFD0000};			// pi/8
LOCAL_D const TUint32 PiBy2data[] = {0x2168C235,0xC90FDAA2,0x7FFF0000};			// pi/2
LOCAL_D const TUint32 ThreePiBy8data[] = {0x990E91A8,0x96CBE3F9,0x7FFF0000};	// 3*pi/8

LOCAL_C void Arctan(TRealX& y, TRealX& x)
	{
	// Calculate arctan(x), write result to y
	// Algorithm:
	//		If x>1, replace x with 1/x and subtract result from pi/2
	//			( use identity tan(pi/2-x)=1/tan(x) )
	//		If x>sqr(2)-1, replace x with (x-(sqr(2)-1))/(1-(sqr2-1)x)
	//			( use identity tan(x-a)=(tanx-tana)/(1-tana.tanx)
	//			  where a=pi/8, tan a = sqr2-1
	//			and add pi/8 to result
	//		Use polynomial approximation to calculate arctan(x) for
	//		x in the interval [0,sqr2-1]

	const TRealX& Sqr2m1 = *(const TRealX*)Sqr2m1data;
	const TRealX& Sqr2p1 = *(const TRealX*)Sqr2p1data;
	const TRealX& One = *(const TRealX*)Onedata;
	const TRealX& PiBy8 = *(const TRealX*)PiBy8data;
	const TRealX& PiBy2 = *(const TRealX*)PiBy2data;
	const TRealX& ThreePiBy8 = *(const TRealX*)ThreePiBy8data;

	TInt section=0;
	TInt8 sign=x.iSign;
	x.iSign=0;
	if (x>Sqr2p1)
		{
		x=One/x;
		section=3;
		}
	else if (x>One)
		{
		x=(One-Sqr2m1*x)/(x+Sqr2m1);
		section=2;
		}
	else if (x>Sqr2m1)
		{
		x=(x-Sqr2m1)/(One+Sqr2m1*x);
		section=1;
		}
	Math::PolyX(y,x*x,10,(const TRealX*)ArctanCoeffs);
	y*=x;
	if (section==1)
		y+=PiBy8;
	else if (section==2)
		y=ThreePiBy8-y;
	else if (section==3)
		y=PiBy2-y;
	y.iSign=sign;
	}




EXPORT_C TInt Math::ATan(TReal& aTrg, const TReal& aSrc)
/**
Calculates the principal value of the inverse tangent of a number.

@param aTrg A reference containing the result in radians,
            a value between -pi/2 and +pi/2.
@param aSrc The argument of the arctan function,
            a value between +infinity and +infinity.

@return KErrNone if successful, otherwise another of
        the system-wide error codes. 
*/
	{
	TRealX x;
	TInt r=x.Set(aSrc);
	if (r==KErrNone)
		{
		TRealX y;
		Arctan(y,x);
		return y.GetTReal(aTrg);
		}
	if (r==KErrArgument)
		{
		SetNaN(aTrg);
		return KErrArgument;
		}
	aTrg=KPiBy2;		// arctan(+/- infinity) = +/- pi/2
	if (x.iSign&1)
		aTrg=-aTrg;
	return KErrNone;
	}

LOCAL_D const TUint32 Pidata[] = {0x2168C235,0xC90FDAA2,0x80000000};
LOCAL_D const TUint32 PiBy4data[] = {0x2168C235,0xC90FDAA2,0x7FFE0000};
LOCAL_D const TUint32 MinusPiBy4data[] = {0x2168C235,0xC90FDAA2,0x7FFE0001};
LOCAL_D const TUint32 ThreePiBy4data[] = {0x990E91A8,0x96CBE3F9,0x80000000};
LOCAL_D const TUint32 MinusThreePiBy4data[] = {0x990E91A8,0x96CBE3F9,0x80000001};
LOCAL_D const TUint32 Zerodata[] = {0x00000000,0x00000000,0x00000000};




EXPORT_C TInt Math::ATan(TReal &aTrg,const TReal &aY,const TReal &aX)
/**
Calculates the angle between the x-axis and a line drawn from the origin
to a point represented by its (x,y) co-ordinates.

The co-ordinates are passed as arguments to the function.
This function returns the same result as arctan(y/x), but:

1. it adds +/-pi to the result, if x is negative

2. it sets the result to +/-pi/2, if x is zero but y is non-zero.

@param aTrg A reference containing the result in radians,
            a value between -pi exclusive and +pi inclusive.
@param aY   The y argument of the arctan(y/x) function. 
@param aX   The x argument of the arctan(y/x) function.

@return KErrNone if successful, otherwise another of
        the system-wide error codes. 
*/
	{
	const TRealX& Zero=*(const TRealX*)Zerodata;
	const TRealX& Pi=*(const TRealX*)Pidata;
	const TRealX& PiBy4=*(const TRealX*)PiBy4data;
	const TRealX& MinusPiBy4=*(const TRealX*)MinusPiBy4data;
	const TRealX& ThreePiBy4=*(const TRealX*)ThreePiBy4data;
	const TRealX& MinusThreePiBy4=*(const TRealX*)MinusThreePiBy4data;

	TRealX x, y;
	TInt rx=x.Set(aX);
	TInt ry=y.Set(aY);
	if (rx!=KErrArgument && ry!=KErrArgument)
		{
		if (x.iExp==0)
			x.iSign=0;
		TRealX q;
		TInt rq=y.Div(q,x);
		if (rq!=KErrArgument)
			{
			TRealX arg;
			Arctan(arg,q);
			if (x<Zero)
				{
				if (y>=Zero)
					arg+=Pi;
				else
					arg-=Pi;
				}
			aTrg=arg;
			return KErrNone;
			}
		if (!x.IsZero())
			{
			// Both x and y must be infinite
			TInt quadrant=((y.iSign & 1)<<1) + (x.iSign&1);
			TRealX arg;
			if (quadrant==0)
				arg=PiBy4;
			else if (quadrant==1)
				arg=ThreePiBy4;
			else if (quadrant==3)
				arg=MinusThreePiBy4;
			else
				arg=MinusPiBy4;
			aTrg=(TReal)arg;
			return KErrNone;
			}
		}
	SetNaN(aTrg);
	return KErrArgument;
	}

#else // __USE_VFP_MATH

LOCAL_D const TUint32 PiBy4data[] = {0x54442D18,0x3FE921FB};
LOCAL_D const TUint32 MinusPiBy4data[] = {0x54442D18,0xBFE921FB};
LOCAL_D const TUint32 ThreePiBy4data[] = {0x7F3321D2,0x4002D97C};
LOCAL_D const TUint32 MinusThreePiBy4data[] = {0x7F3321D2,0xC002D97C};

// definitions come from RVCT math library
extern "C" TReal atan(TReal);
extern "C" TReal atan2(TReal,TReal);

EXPORT_C TInt Math::ATan(TReal& aTrg, const TReal& aSrc)
	{
	aTrg = atan(aSrc);
	if (Math::IsFinite(aTrg))
		return KErrNone;
	SetNaN(aTrg);
	return KErrArgument;
	}

EXPORT_C TInt Math::ATan(TReal &aTrg,const TReal &aY,const TReal &aX)
	{
	aTrg = atan2(aY,aX);
	if (Math::IsFinite(aTrg))
		return KErrNone;
	
	// Return is a NaN, but ARM implementation returns NaN for atan(inf/inf)
	// whereas implementation above returns multiples of pi/4 - fix up here
	SReal64 *pY=(SReal64 *)&aY;
	SReal64 *pX=(SReal64 *)&aX;
	
	if (   pY->msm==0 && pY->lsm==0 && pY->exp==KTReal64SpecialExponent
		&& pX->msm==0 && pX->lsm==0 && pX->exp==KTReal64SpecialExponent)
		{
		TInt quadrant=((pY->sign)<<1) + (pX->sign);
		if (quadrant==0)
			aTrg=*(const TReal*)PiBy4data;
		else if (quadrant==1)
			aTrg=*(const TReal*)ThreePiBy4data;
		else if (quadrant==3)
			aTrg=*(const TReal*)MinusThreePiBy4data;
		else
			aTrg=*(const TReal*)MinusPiBy4data;
		return KErrNone;
		}

	// If we get here then the args weren't inf/inf so one of them must've
	// been a NaN to start with
	SetNaN(aTrg);
	return KErrArgument;
	}

#endif