We need a way to pass flags to rombuilds in Raptor via extension flm interfaces, so that the CPP pass
of the rom input files can be informed what toolchain we are building with and conditionally
include or exclude files depending on whether the toolchain could build them.
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_int.cpp
// Writes the integer part aTrg to aSrc (aSrc is either TReal,TInt16 orTInt32)
//
//
#include "um_std.h"
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
#endif
#ifndef __USE_VFP_MATH
#ifndef __REALS_MACHINE_CODED__
EXPORT_C TInt Math::Int(TReal &aTrg,const TReal &aSrc)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
TRealX f;
TInt ret=f.Set(aSrc);
if (ret!=KErrNone)
{
aTrg=aSrc;
return(ret);
}
TInt intbits=f.iExp-0x7FFE; // number of integer bits in mantissa
if (intbits<=0)
{
SetZero(aTrg,f.iSign&1); // no integer part
return(KErrNone);
}
if (intbits>=KMantissaBits)
{
aTrg=aSrc; // fractional part is outside range of significance
return(KErrNone);
}
TUint64 mask = ~(UI64LIT(0));
mask <<= (64 - intbits);
f.iMantHi &= static_cast<TUint32>(mask >> 32);
f.iMantLo &= static_cast<TUint32>(mask);
f.GetTReal(aTrg);
return(KErrNone);
}
EXPORT_C TInt Math::Int(TInt16 &aTrg,const TReal &aSrc)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
This function is suitable when the result is known to be small enough
for a 16-bit signed integer.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
//
// If the integer part of aSrc is in the range -32768 to +32767
// inclusive, write the integer part to the TInt16 at aTrg
// Negative numbers are rounded towards zero.
// If an overflow or underflow occurs, aTrg is set to the max/min value
//
{
TRealX f;
TInt ret=f.Set(aSrc);
if (ret==KErrArgument)
{
aTrg=0;
return(ret);
}
TInt intbits=f.iExp-0x7FFE; // number of integer bits in mantissa
if (intbits<=0)
{
aTrg=0;
return(KErrNone);
}
if (intbits>16)
{
aTrg=(TInt16)((f.iSign&1) ? KMinTInt16 : KMaxTInt16);
return((f.iSign&1) ? KErrUnderflow : KErrOverflow);
}
TUint val = f.iMantHi >> (32 - intbits);
if ((f.iSign&1)==0 && val>(TUint)KMaxTInt16)
{
aTrg=TInt16(KMaxTInt16);
return(KErrOverflow);
}
if ((f.iSign&1) && val>(TUint)(KMaxTInt16+1))
{
aTrg=TInt16(KMinTInt16);
return(KErrUnderflow);
}
aTrg = (f.iSign&1) ? (TInt16)(-(TInt)val) : (TInt16)val;
return(KErrNone);
}
EXPORT_C TInt Math::Int(TInt32 &aTrg,const TReal &aSrc)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
This function is suitable when the result is known to be small enough
for a 32-bit signed integer.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
//
// If the integer part of the float is in the range -2147483648 to +2147483647
// inclusive, write the integer part to the TInt32 at aTrg
// Negative numbers are rounded towards zero.
// If an overflow or underflow occurs, aTrg is set to the max/min value
//
{
TRealX f;
TInt ret=f.Set(aSrc);
if (ret==KErrArgument)
{
aTrg=0;
return(ret);
}
TInt intbits=f.iExp-0x7FFE; // number of integer bits in mantissa
if (intbits<=0)
{
aTrg=0;
return(KErrNone);
}
if (intbits>32)
{
aTrg=((f.iSign&1) ? KMinTInt32 : KMaxTInt32);
return((f.iSign&1) ? KErrUnderflow : KErrOverflow);
}
TUint val = f.iMantHi >> (32 - intbits);
if ((f.iSign&1)==0 && val>(TUint)KMaxTInt32)
{
aTrg=KMaxTInt32;
return(KErrOverflow);
}
if ((f.iSign&1) && val>((TUint)KMaxTInt32+1))
{
aTrg=KMinTInt32;
return(KErrUnderflow);
}
aTrg=(f.iSign&1) ? -(TInt32)val : val;
return(KErrNone);
}
#endif //__REALS_MACHINE_CODED__
#else // __USE_VFP_MATH
// definitions come from RVCT math library
extern "C" TReal modf(TReal,TReal*);
EXPORT_C TInt Math::Int(TReal& aTrg, const TReal& aSrc)
{
if (Math::IsNaN(aSrc))
{
SetNaN(aTrg);
return KErrArgument;
}
if (Math::IsInfinite(aSrc))
{
aTrg=aSrc;
return KErrOverflow;
}
modf(aSrc,&aTrg);
return KErrNone;
}
EXPORT_C TInt Math::Int(TInt32& aTrg, const TReal& aSrc)
{
TReal aIntPart;
TInt r = Math::Int(aIntPart,aSrc);
if (r==KErrArgument)
{
aTrg = 0;
return r;
}
if (aIntPart>KMaxTInt32)
{
aTrg = KMaxTInt32;
return KErrOverflow;
}
if (aIntPart<KMinTInt32)
{
aTrg = KMinTInt32;
return KErrUnderflow;
}
aTrg = aIntPart;
return KErrNone;
}
EXPORT_C TInt Math::Int(TInt16& aTrg, const TReal& aSrc)
{
TReal aIntPart;
TInt r = Math::Int(aIntPart,aSrc);
if (r==KErrArgument)
{
aTrg = 0;
return r;
}
if (aIntPart>KMaxTInt16)
{
aTrg = KMaxTInt16;
return KErrOverflow;
}
if (aIntPart<KMinTInt16)
{
aTrg = KMinTInt16;
return KErrUnderflow;
}
aTrg = aIntPart;
return KErrNone;
}
#endif