kernel/eka/euser/maths/um_ln.cpp
author Mike Kinghan <mikek@symbian.org>
Tue, 16 Nov 2010 14:39:21 +0000
branchGCC_SURGE
changeset 303 9b85206a602c
parent 0 a41df078684a
permissions -rw-r--r--
We need a way to pass flags to rombuilds in Raptor via extension flm interfaces, so that the CPP pass of the rom input files can be informed what toolchain we are building with and conditionally include or exclude files depending on whether the toolchain could build them.

// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_ln.cpp
// Natural log.
// 
//

#include "um_std.h"

#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
#endif


#ifndef __USE_VFP_MATH

LOCAL_D const TUint32 ArtanhCoeffs[] =
	{
	0x5C17F0BC,0xB8AA3B29,0x80010000,	// polynomial approximation to (4/ln2)artanh(x)
	0xD02489EE,0xF6384EE1,0x7FFF0000,	// for |x| <= (sqr2-1)/(sqr2+1)
	0x7008CA5F,0x93BB6287,0x7FFF0000,
	0xE32D1D6B,0xD30BB16D,0x7FFE0000,
	0x461D071E,0xA4257CE2,0x7FFE0000,
	0xC3B0EC87,0x8650D459,0x7FFE0000,
	0x53BEC0CD,0xE23137E3,0x7FFD0000,
	0xC523F21B,0xDAF79221,0x7FFD0000
	};

LOCAL_D const TUint32 Ln2By2data[] = {0xD1CF79AC,0xB17217F7,0x7FFD0000};	// (ln2)/2
LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000};		// sqr2
LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000};	// 1/sqr2
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};		// 1.0




EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
/**
Calculates the natural logarithm of a number.

@param aTrg A reference containing the result. 
@param aSrc The number whose natural logarithm is required.

@return KErrNone if successful, otherwise another of
        the system-wide error codes. 
*/
	{
	// Calculate ln(aSrc) and write to aTrg
	// Algorithm:
	//		Calculate log2(aSrc) and multiply by ln2
	//		log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
	//		log2(aSrc)=e+log2(m)
	//		If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
	//		If x>Sqr2, replace x with x/Sqr2
	//		If x<Sqr2/2, replace x with x*Sqr2
	//		Replace x with (x-1)/(x+1)
	//		Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
	//			( use identity ln(x) = 2artanh((x-1)/(x+1)) )

	TRealX x;
	const TRealX& Ln2By2=*(const TRealX*)Ln2By2data;
	const TRealX& Sqr2=*(const TRealX*)Sqr2data;
	const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
	const TRealX& One=*(const TRealX*)Onedata;

	TInt r=x.Set(aSrc);
	if (r==KErrNone)
		{
		if (x.iExp==0)
			{
			SetInfinite(aTrg,1);
			return KErrOverflow;
			}
		if (x.iSign&1)
			{
			SetNaN(aTrg);
			return KErrArgument;
			}
		TInt n=(x.iExp-0x7FFF)<<1;
		x.iExp=0x7FFF;
		if (n!=-2)
			{
			if (x>Sqr2)
				{
				x*=Sqr2Inv;
				n++;
				}
			}
		else 
			{
			n=0;
			x.iExp=0x7FFE;
			if (x<Sqr2Inv)
				{
				x*=Sqr2;
				n--;
				}
			}
		x=(x-One)/(x+One);	// ln(x)=2artanh((x-1)/(x+1))
		TRealX y;
		PolyX(y,x*x,7,(const TRealX*)ArtanhCoeffs);
		y*=x;
		y+=TRealX(n);
		y*=Ln2By2;
		return y.GetTReal(aTrg);
		}
	if (r==KErrArgument || (r==KErrOverflow && (x.iSign&1)))
		{
		SetNaN(aTrg);
		return KErrArgument;
		}
	SetInfinite(aTrg,0);
	return KErrOverflow;
	}

#else // __USE_VFP_MATH

// definitions come from RVCT math library
extern "C" TReal log(TReal);

EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
	{
	aTrg = log(aSrc);
	if (Math::IsFinite(aTrg))
		return KErrNone;
	if (Math::IsInfinite(aTrg))
		return KErrOverflow;
	SetNaN(aTrg);
	return KErrArgument;
	}

#endif