We need a way to pass flags to rombuilds in Raptor via extension flm interfaces, so that the CPP pass
of the rom input files can be informed what toolchain we are building with and conditionally
include or exclude files depending on whether the toolchain could build them.
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\direct\minit.cpp
//
//
#include <memmodel.h>
#include "cache_maintenance.h"
_LIT(KLitRamAlloc,"RamAlloc");
void M::Init1()
{
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("M::Init1"));
MM::UserDataSectionBase=TheRomHeader().iUserDataAddress;
MM::UserRomDataSectionEnd=TheRomHeader().iUserDataAddress+TheRomHeader().iTotalUserDataSize;
MM::UserDataSectionEnd = TheSuperPage().iRamBase + TheSuperPage().iTotalRamSize;
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MM::UserDataSectionBase=%08x",MM::UserDataSectionBase));
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MM::UserRomDataSectionEnd=%08x",MM::UserRomDataSectionEnd));
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MM::UserDataSectionEnd=%08x",MM::UserDataSectionEnd));
// Memory model dependent CPU stuff
MM::Init1();
// Set up cache info
CacheMaintenance::Init1();
}
void M::Init2()
{
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("M::Init2"));
TInt userRam=MM::UserDataSectionEnd-MM::UserDataSectionBase;
TInt blocks=userRam>>MM::RamBlockShift;
MM::RamAllocator=TBitMapAllocator::New(blocks,ETrue);
if (!MM::RamAllocator)
MM::Panic(MM::ERamAllocCreateFailed);
TInt used_blocks=(MM::UserRomDataSectionEnd-MM::UserDataSectionBase)>>MM::RamBlockShift;
if (used_blocks)
MM::RamAllocator->Alloc(0,used_blocks);
__KTRACE_OPT(KBOOT,Kern::Printf("%d blocks, %d used",blocks,used_blocks));
TInt r=K::MutexCreate((DMutex*&)MM::RamAllocatorMutex, KLitRamAlloc, NULL, EFalse, KMutexOrdRamAlloc);
if (r!=KErrNone)
MM::Panic(MM::ERamAllocMutexCreateFailed);
const SRamBank* banks = (const SRamBank*)TheSuperPage().iRamBootData;
TInt nBanks = 0;
TInt maxBankBlocks = 0;
TInt bnum = 0;
const SRamBank* pB = banks;
for (; pB->iSize; ++nBanks, ++pB)
{
TInt nblocks = pB->iSize >> MM::RamBlockShift;
TInt abnum = bnum &~ 31;
TInt a_end = (bnum + nblocks + 31)&~31;
TInt a_count = a_end - abnum;
if (a_count > maxBankBlocks)
maxBankBlocks = a_count;
bnum += (pB->iSize >> MM::RamBlockShift);
}
__KTRACE_OPT(KBOOT,Kern::Printf("%d banks, max bank blocks %08x", nBanks, maxBankBlocks));
if (nBanks>1)
{
MM::SecondaryAllocator = TBitMapAllocator::New(maxBankBlocks, ETrue);
if (!MM::SecondaryAllocator)
MM::Panic(MM::ESecAllocCreateFailed);
}
}
void M::Init3()
{
// Third phase MMU initialisation
}
void M::Init4()
{
// Fourth phase MMU initialisation - Not required on this memory model.
}
TInt M::InitSvHeapChunk(DChunk* aChunk, TInt aSize)
{
DMemModelChunk* pC=(DMemModelChunk*)aChunk;
TLinAddr base = TheRomHeader().iKernDataAddress;
K::HeapInfo.iChunk = aChunk;
K::HeapInfo.iBase = (TUint8*)base;
K::HeapInfo.iMaxSize = pC->MaxSize();
pC->SetFixedAddress(base, aSize);
__KTRACE_OPT(KBOOT,Kern::Printf("Created SvHeap chunk, addr %08X, init size %08X max size %08X",pC->Base(),aSize,pC->MaxSize()));
return KErrNone;
}
TInt M::InitSvStackChunk()
{
return KErrNone;
}