kerneltest/e32test/math/t_roundtrip.cpp
author Mike Kinghan <mikek@symbian.org>
Tue, 16 Nov 2010 14:39:21 +0000
branchGCC_SURGE
changeset 303 9b85206a602c
parent 0 a41df078684a
permissions -rw-r--r--
We need a way to pass flags to rombuilds in Raptor via extension flm interfaces, so that the CPP pass of the rom input files can be informed what toolchain we are building with and conditionally include or exclude files depending on whether the toolchain could build them.

// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\math\t_roundtrip.cpp
// Tests round-trip convertibility of double->string->double
// 
//

#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32math.h>

//#define __ALWAYS_PRINT__

RTest test(_L("T_ROUNDTRIP"));

void PrintRealHex(const char* aTitle, const TReal& aIn)
	{
	volatile TUint32* in = (volatile TUint32*)&aIn;
#ifdef __DOUBLE_WORDS_SWAPPED__
	TUint32 high = in[0];
	TUint32 low = in[1];
#else
	TUint32 high = in[1];
	TUint32 low = in[0];
#endif
	TBuf<256> title;
	if (aTitle)
		title.Copy(TPtrC8((const TUint8*)aTitle));
	test.Printf(_L("%S%08x %08x\n"), &title, high, low);
	}

TInt RoundTrip(TReal& aOut, const TReal& aIn)
	{
	TBuf8<64> text;
	TRealFormat fmt;
	fmt.iType = KRealFormatExponent | KRealInjectiveLimit | KUseSigFigs | KDoNotUseTriads | KAllowThreeDigitExp;
	fmt.iWidth = 32;
	fmt.iPlaces = KIEEEDoubleInjectivePrecision;
	fmt.iPoint = '.';
#ifdef __ALWAYS_PRINT__
	PrintRealHex("Input : ", aIn);
#endif
	TInt r = text.Num(aIn, fmt);
	if (r<0)
		{
		test.Printf(_L("Result %d (Num)\n"), r);
		return r;
		}
#ifdef __ALWAYS_PRINT__
	TBuf16<64> text16;
	text16.Copy(text);
	test.Printf(_L("Text  : %S\n"), &text16);
#endif
	TLex8 lex(text);
	r = lex.Val(aOut);
	if (r < 0)
		{
		test.Printf(_L("Result %d (Val)\n"), r);
		return r;
		}
#ifdef __ALWAYS_PRINT__
	PrintRealHex("Output: ", aOut);
#endif
	volatile TUint32* in = (volatile TUint32*)&aIn;
	volatile TUint32* out = (volatile TUint32*)&aOut;
	if (in[0]!=out[0] || in[1]!=out[1])
		{
		test.Printf(_L("Unsuccessful\n"));
#ifndef __ALWAYS_PRINT__
		PrintRealHex("Input : ", aIn);
		TBuf16<64> text16;
		text16.Copy(text);
		test.Printf(_L("Text  : %S\n"), &text16);
		PrintRealHex("Output: ", aOut);
#endif
		return KErrUnknown;
		}
	return KErrNone;
	}

const TUint64 KMantissaOverflow =	UI64LIT(0x20000000000000);	// 2^53
const TUint64 KMantissaThreshold =	UI64LIT(0x10000000000000);	// 2^52

class R
	{
public:
	enum {EMinExp=0, EMinNormExp=1, EMaxNormExp=2046, EMaxExp=2047};
public:
	R();
	R(const TReal& aIn);
	TReal Value() const;
	TInt Next();
	TInt Prev();
public:
	TUint64	iMant;		//	if iExp>0 2^52<=iMant<2^53 else 0<=iMant<2^52
	TInt	iExp;		//	0 < iExp < 2047
	TInt	iSign;
	};

R::R()
	{
	iMant = 0;
	iExp = 0;
	iSign = 0;
	}

R::R(const TReal& aIn)
	{
	const volatile TUint32* in = (const volatile TUint32*)&aIn;
#ifdef __DOUBLE_WORDS_SWAPPED__
	TUint32 high = in[0];
	TUint32 low = in[1];
#else
	TUint32 high = in[1];
	TUint32 low = in[0];
#endif
	iSign = high >> 31;
	iExp = (high >> 20) & EMaxExp;
	iMant = MAKE_TUINT64(high, low);
	iMant <<= 12;
	iMant >>= 12;
	if (iExp)
		iMant += KMantissaThreshold;
	}

TReal R::Value() const
	{
	TUint32 high = iSign ? 1 : 0;
	high <<= 31;
	high |= (iExp<<20);
	TUint32 mh = I64HIGH(iMant);
	mh <<= 12;
	high |= (mh>>12);
	TUint32 low = I64LOW(iMant);

	union {TReal iReal; TUint32 iX[2];} result;
#ifdef __DOUBLE_WORDS_SWAPPED__
	result.iX[0] = high;
	result.iX[1] = low;
#else
	result.iX[0] = low;
	result.iX[1] = high;
#endif
	return result.iReal;
	}

TInt R::Next()
	{
	if (iExp>0)
		{
		if (++iMant == KMantissaOverflow)
			{
			iMant >>= 1;
			if (++iExp == EMaxExp)
				return KErrOverflow;
			}
		return KErrNone;
		}
	if (++iMant == KMantissaThreshold)
		iExp = 1;
	return KErrNone;
	}

TInt R::Prev()
	{
	if (iExp == EMaxExp)
		{
		if (iMant == KMantissaThreshold)
			{
			--iExp;
			return KErrNone;
			}
		return KErrGeneral;
		}
	if (iExp>0)
		{
		if (--iMant < KMantissaThreshold)
			{
			if (--iExp)
				{
				iMant <<= 1;
				iMant++;
				}
			}
		return KErrNone;
		}
	if (iMant==0)
		return KErrUnderflow;
	--iMant;
	return KErrNone;
	}

void DoTest(R& aR, TInt& aErrorCount)
	{
	TReal out;
	TInt r;
	r = RoundTrip(out, aR.Value());
	if (r==KErrUnknown)
		++aErrorCount;
	R R1(aR);
	R R2(aR);
	if (R1.Next()==KErrNone)
		{
		r = RoundTrip(out, R1.Value());
		if (r==KErrUnknown)
			++aErrorCount;
		}
	if (R2.Prev()==KErrNone)
		{
		r = RoundTrip(out, R2.Value());
		if (r==KErrUnknown)
			++aErrorCount;
		}
	}

void DoTest(TInt aExp, TInt& aErrorCount)
	{
	R x;
	x.iExp = aExp;
	x.iMant = KMantissaThreshold;
	if (aExp==0)
		{
		do	{
			x.iMant >>= 1;
			DoTest(x, aErrorCount);
			} while (x.iMant);
		}
	else
		{
		DoTest(x, aErrorCount);
		}
	}

void DoTestPow10(TInt aPow, TInt& aErrorCount)
	{
	TReal64 r64;
	TInt r = Math::Pow10(r64, aPow);
	if (r<0)
		return;
	R x(r64);
	DoTest(x, aErrorCount);
	}

void DoTestRandom(TInt& aErrorCount)
	{
	static TInt64 randSeed = I64LIT(0x3333333333333333);
	R x;
	x.iExp = Math::Rand(randSeed) & R::EMaxExp;
	x.iMant = ((TUint64)Math::Rand(randSeed) << 32) | (TUint64)Math::Rand(randSeed);
	while (x.iMant > KMantissaThreshold)
		x.iMant >>= 1;
	x.iSign = Math::Rand(randSeed) & 0x1;
	DoTest(x, aErrorCount);
	}

TInt E32Main()
	{
	test.Title();
	test.Start(_L("Testing conversion from double->string->double"));

	TInt exp;
	TInt errors = 0;
	test.Next(_L("Test the conversion of powers of 2"));
	for (exp = 0; exp < 2047; ++exp)
		{
		DoTest(exp, errors);
		}

	test.Next(_L("Test the conversion of powers of 10"));
	for (exp = -325; exp < 325; ++exp)
		{
		DoTestPow10(exp, errors);
		}

	test.Next(_L("Test the conversion of some random numbers"));
	for (exp = 0; exp < 100; ++exp)
		{
		DoTestRandom(errors);
		}

	test_Equal(0, errors);

	test.End();
	return KErrNone;
	}