Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\misc\t_ipccpy.cpp
// Overview:
// Test and benchmark IPC reading, writing, copying.
// API Information:
// RBusLogicalChannel, DLogicalChannel.
// Details:
// - Load the specified logical device driver, open a channel to it, allocate
// a cell of specified size from the current thread's heap, get Kernel HAL
// memory model information.
// - Make a synchronous Kernel Executive type request to the logical channel
// to write specified data to the buffer, read the data and calculate the
// time taken for writing and reading the data. Benchmark the time required
// to for 1000 64K user->kernel and kernel->user copies.
// - Create a chunk, get a pointer to the base of the chunk's reserved region,
// create a server thread, establish a session with the server, signal
// completion of the client's request when message is received, read,
// write specified bits and check it is as expected.
// Platforms/Drives/Compatibility:
// All.
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#include <e32test.h>
#include "d_ipccpy.h"
#include "u32std.h"
#include <e32kpan.h>
#include "../mmu/mmudetect.h"
#include <hal.h>
RTest test(_L("T_IPCCPY"));
TUint8* Buffer;
TUint8* Disc;
RIpcCpy Ipccpy;
TUint32 MainId;
TUint8 Bss[4096];
TUint8* Kern;
TUint8* RamDrive;
TUint8* Nonexistent;
TUint8* Unaligned=Bss+1;
TInt CloseTime;
TLinAddr HwChunkAddr[RIpcCpy::ENumHwChunkTypes];
TPtr8 UserDes(Buffer+96,96,96);
void SetupAddresses()
{
Kern=KernData();
TUint32 mm_attr=MemModelAttributes();
TUint32 mm_type=mm_attr & EMemModelTypeMask;
switch (mm_type)
{
case EMemModelTypeDirect:
RamDrive=(TUint8*)0; // not used anyway
Nonexistent=(TUint8*)0xa8000000;
break;
case EMemModelTypeMoving:
RamDrive=(TUint8*)0x40000000;
Nonexistent=(TUint8*)0x60f00000;
break;
case EMemModelTypeMultiple:
RamDrive=(TUint8*)0xa0000000;
Nonexistent=(TUint8*)0xfe000000;
break;
case EMemModelTypeFlexible:
RamDrive=(TUint8*)0;
Nonexistent=(TUint8*)0x8ff00000;
break;
case EMemModelTypeEmul:
RamDrive=(TUint8*)0; // not used anyway
Nonexistent=(TUint8*)0xf0000000;
break;
default:
test(0);
break;
}
new (&UserDes) TPtr8(Buffer+96,96,96);
Ipccpy.HardwareChunks(HwChunkAddr,UserDes);
test.Printf(_L("Buffer=%08x\n"),Buffer);
test.Printf(_L("Bss=%08x\n"),Bss);
test.Printf(_L("Kern=%08x\n"),Kern);
test.Printf(_L("RamDrive=%08x\n"),RamDrive);
test.Printf(_L("Nonexistent=%08x\n"),Nonexistent);
test.Printf(_L("Unaligned=%08x\n"),Unaligned);
test.Printf(_L("HwChunkSupRw=%08x\n"),HwChunkAddr[RIpcCpy::EHwChunkSupRw]);
test.Printf(_L("HwChunkUserRw=%08x\n"),HwChunkAddr[RIpcCpy::EHwChunkUserRw]);
test.Printf(_L("HwChunkUserRo=%08x\n"),HwChunkAddr[RIpcCpy::EHwChunkUserRo]);
}
_LIT(KLitKernExec,"KERN-EXEC");
void TestEq(TInt a, TInt b, TInt l);
void Test(TBool c, TInt l);
#define TESTEQ(a,b) TestEq((a),(b),__LINE__)
#define TEST(c) Test((c),__LINE__)
void TestEq(TInt a, TInt b, TInt l)
{
if (a!=b)
{
if (TUint32(RThread().Id())==MainId)
{
test.Printf(_L("Line %d a=%d, b=%d\n"),l,a,b);
test(0);
}
else
User::Panic(_L("TESTEQ"),l);
}
}
void Test(TBool c, TInt l)
{
if (!c)
{
if (TUint32(RThread().Id())==MainId)
{
test.Printf(_L("Line %d FAIL\n"),l);
test(0);
}
else
User::Panic(_L("TEST"),l);
}
}
struct SIpcTestInfo
{
const TAny* iLocal;
const TAny* iRemote;
TInt iOffset;
TInt iMode; // bit 0 = 1 for 16 bit, bit 1 = 1 for write
};
class RLocalSession : public RSessionBase
{
public:
TInt Connect(RServer2 aSrv,TRequestStatus* aStat)
{return CreateSession(aSrv,TVersion(),-1,EIpcSession_Unsharable,0,aStat);}
void Test(const TAny* aRemote)
{Send(0,TIpcArgs((const TDesC8*)aRemote,(const TDesC16*)aRemote,(TDes8*)aRemote,(TDes16*)aRemote));}
void Wait()
{SendReceive(1);}
};
RServer2 IpcServer;
TInt IpcTestFn(TAny* aInfo)
{
SIpcTestInfo& i=*(SIpcTestInfo*)aInfo;
if (IpcServer.Handle())
IpcServer.Close();
TESTEQ(IpcServer.CreateGlobal(KNullDesC),KErrNone);
RLocalSession sess;
TRequestStatus stat;
TESTEQ(sess.Connect(IpcServer,&stat),KErrNone);
RMessage2 m;
IpcServer.Receive(m);
m.Complete(KErrNone); // connect
User::WaitForRequest(stat); // connection message report
sess.Test(i.iRemote);
IpcServer.Receive(m);
TInt r=KMinTInt;
switch (i.iMode)
{
case 0:
{ // read 8 bit
TDesC8* pR=(TDesC8*)i.iRemote;
TDes8* pL=(TDes8*)i.iLocal;
r=m.Read(0,*pL,i.iOffset);
if (r==KErrNone)
{
TESTEQ(pL->Length(),pR->Length()-i.iOffset);
TEST(*pL==pR->Mid(i.iOffset));
}
break;
}
case 1:
{ // read 16 bit
TDesC16* pR=(TDesC16*)i.iRemote;
TDes16* pL=(TDes16*)i.iLocal;
r=m.Read(1,*pL,i.iOffset);
if (r==KErrNone)
{
TESTEQ(pL->Length(),pR->Length()-i.iOffset);
TEST(*pL==pR->Mid(i.iOffset));
}
break;
}
case 2:
{ // write 8 bit
TDes8* pR=(TDes8*)i.iRemote;
TDesC8* pL=(TDesC8*)i.iLocal;
r=m.Write(2,*pL,i.iOffset);
if (r==KErrNone)
{
TESTEQ(pR->Length(),pL->Length()+i.iOffset);
TEST(*pL==pR->Mid(i.iOffset));
}
break;
}
case 3:
{ // write 16 bit
TDes16* pR=(TDes16*)i.iRemote;
TDesC16* pL=(TDesC16*)i.iLocal;
r=m.Write(3,*pL,i.iOffset);
if (r==KErrNone)
{
TESTEQ(pR->Length(),pL->Length()+i.iOffset);
TEST(*pL==pR->Mid(i.iOffset));
}
break;
}
default:
User::Panic(_L("MODE"),i.iMode);
}
m.Complete(0);
sess.Close();
IpcServer.Close();
return r;
}
void _DoIpcTest(const TAny* aLocal, const TAny* aRemote, TInt aOffset, TInt aMode, const TDesC* aPanicCat, TInt aResult, TInt aLine)
{
test.Printf(_L("Line %d\n"),aLine);
SIpcTestInfo info;
info.iLocal=aLocal;
info.iRemote=aRemote;
info.iOffset=aOffset;
info.iMode=aMode;
if (!aPanicCat)
{
// do test in this thread
TInt r=IpcTestFn(&info);
TESTEQ(r,aResult);
return;
}
TBool jit=User::JustInTime();
RThread t;
TInt r=t.Create(KNullDesC(),IpcTestFn,0x2000,NULL,&info);
test(r==KErrNone);
TRequestStatus s;
t.Logon(s);
User::SetJustInTime(EFalse);
t.Resume();
User::WaitForRequest(s);
User::SetJustInTime(jit);
test(t.ExitType()==EExitPanic);
test(t.ExitCategory()==*aPanicCat);
TESTEQ(t.ExitReason(),aResult);
t.Close();
}
void DoIpcTest(const TUint8* aLocal, const TUint8* aRemote, TInt aLength, TInt aMode, const TDesC* aPanicCat, TInt aResult, TInt aLine)
{
TPtr8 local((TUint8*)aLocal,aLength,aLength);
TPtr8 remote((TUint8*)aRemote,aLength,aLength);
_DoIpcTest(&local,&remote,0,aMode,aPanicCat,aResult,aLine);
}
void DoIpcTest(const TUint8* aLocal, const TDesC8& aRemote, TInt aLength, TInt aMode, const TDesC* aPanicCat, TInt aResult, TInt aLine)
{
TPtr8 local((TUint8*)aLocal,aLength,aLength);
_DoIpcTest(&local,&aRemote,0,aMode,aPanicCat,aResult,aLine);
}
void TestIpcCopyErrors()
{
RChunk c;
TInt r=c.CreateDisconnectedLocal(0,0,0x500000);
test(r==KErrNone);
r=c.Commit(0,0x1000);
test(r==KErrNone);
r=c.Commit(0x2000,0x1000);
test(r==KErrNone);
r=c.Commit(0x3ff000,0x1000);
test(r==KErrNone);
Disc=c.Base();
test.Printf(_L("Disc=%08x\n"),Disc);
DoIpcTest(Buffer,(const TUint8*)&TestEq,100,0,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,(const TUint8*)&TestEq,100,2,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest((const TUint8*)&TestEq,Buffer,100,2,NULL,KErrNone,__LINE__);
DoIpcTest((const TUint8*)&TestEq,Buffer,100,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,Nonexistent,100,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(Buffer,Nonexistent,100,2,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(Nonexistent,Buffer,100,2,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Nonexistent,Buffer,100,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,Unaligned,100,0,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,Unaligned,100,2,NULL,KErrNone,__LINE__);
DoIpcTest(Unaligned,Buffer,100,2,NULL,KErrNone,__LINE__);
DoIpcTest(Unaligned,Buffer,100,0,NULL,KErrNone,__LINE__);
DoIpcTest(Disc+4001,Buffer,95,0,NULL,KErrNone,__LINE__);
if (HaveVirtMem())
DoIpcTest(Disc+4001,Buffer,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,Disc+4001,95,0,NULL,KErrNone,__LINE__);
if (HaveVirtMem())
DoIpcTest(Buffer,Disc+4001,96,0,NULL,KErrBadDescriptor,__LINE__);
TPtr8* pdes;
if (HaveVirtMem())
{
// test descriptor stored stradling chunk end...
pdes = (TPtr8*)(Disc+0x3ffff4);
memcpy(pdes,&UserDes,12);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrNone,__LINE__);
pdes = (TPtr8*)(Disc+0x3ffff8);
memcpy(pdes,&UserDes,8);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrBadDescriptor,__LINE__);
pdes = (TPtr8*)(Disc+0x3ffffc);
memcpy(pdes,&UserDes,4);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrBadDescriptor,__LINE__);
r=c.Commit(0x400000,0x1000);
test(r==KErrNone);
pdes = (TPtr8*)(Disc+0x3ffff4);
memcpy(pdes,&UserDes,12);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrNone,__LINE__);
pdes = (TPtr8*)(Disc+0x3ffff8);
memcpy(pdes,&UserDes,12);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrNone,__LINE__);
pdes = (TPtr8*)(Disc+0x3ffffc);
memcpy(pdes,&UserDes,12);
DoIpcTest(Buffer,*pdes,pdes->Size(),0,NULL,KErrNone,__LINE__);
}
if (HaveMultAddr())
{
if(RamDrive)
{
DoIpcTest(Disc+0x100000,Buffer,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,Disc+0x100000,96,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(RamDrive,Buffer,4,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,RamDrive,4,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(RamDrive,Buffer,4,2,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,RamDrive,4,2,NULL,KErrBadDescriptor,__LINE__);
}
// if memory alising happens during IPC then the memory at 'Disc' would be aliased
// at KIPCAliasAddress and so would not be protected by MMU permission checks.
// However, the kernel should still prevent this, to avoid degrading process
// protection for memory in other parts of the alias region.
#ifdef __CPU_X86
const TUint8* KIPCAliasAddress;
if((MemModelAttributes()&EMemModelTypeMask) == EMemModelTypeFlexible)
KIPCAliasAddress = (TUint8*)0x7e000000;
else
KIPCAliasAddress = (TUint8*)0xc0400000;
#else
const TUint8* KIPCAliasAddress = (TUint8*)0x00200000;
#endif
DoIpcTest(KIPCAliasAddress,Disc,4,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Disc,KIPCAliasAddress,4,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(KIPCAliasAddress,Disc,4,2,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Disc,KIPCAliasAddress,4,2,NULL,KErrBadDescriptor,__LINE__);
}
if (HaveIPCKernProt())
{
DoIpcTest(Kern,Buffer,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,Kern,96,0,NULL,KErrBadDescriptor,__LINE__);
TUint8* addrRW = (TUint8*)HwChunkAddr[RIpcCpy::EHwChunkSupRw];
if(addrRW)
{
DoIpcTest(Buffer,*(TDes8*)addrRW,96,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(Buffer,*(TDes8*)addrRW,96,2,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(addrRW+96,Buffer,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,addrRW,96,0,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(addrRW+96,Buffer,96,2,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,addrRW,96,2,NULL,KErrBadDescriptor,__LINE__);
}
}
if((MemModelAttributes()&EMemModelTypeMask) == EMemModelTypeMultiple
|| (MemModelAttributes()&EMemModelTypeMask) == EMemModelTypeFlexible
)
{
// On multiple memory model, test IPC to Hardware Chunks.
// IPC to hardware chunks not supported on Moving Memory
TUint8* addrRW = (TUint8*)HwChunkAddr[RIpcCpy::EHwChunkUserRw];
if(addrRW)
{
DoIpcTest(Buffer,*(TDes8*)addrRW,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,*(TDes8*)addrRW,96,2,NULL,KErrNone,__LINE__);
DoIpcTest(addrRW+96,Buffer,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,addrRW,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(addrRW+96,Buffer,96,2,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,addrRW,96,2,NULL,KErrNone,__LINE__);
DoIpcTest(addrRW+96,addrRW,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(addrRW+96,addrRW,96,2,NULL,KErrNone,__LINE__);
}
TUint8* addrRO = (TUint8*)HwChunkAddr[RIpcCpy::EHwChunkUserRo];
if(addrRO && HaveWriteProt())
{
DoIpcTest(Buffer,*(TDes8*)addrRO,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,*(TDes8*)addrRO,96,2,&KLitKernExec,EBadIpcDescriptor,__LINE__);
DoIpcTest(addrRO+96,Buffer,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(Buffer,addrRO,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(addrRO+96,Buffer,96,2,NULL,KErrNone,__LINE__);
DoIpcTest(Buffer,addrRO,96,2,NULL,KErrBadDescriptor,__LINE__);
DoIpcTest(addrRW+96,addrRO,96,0,NULL,KErrNone,__LINE__);
DoIpcTest(addrRW+96,addrRW,96,2,NULL,KErrNone,__LINE__);
DoIpcTest(addrRO+96,addrRO,96,0,&KLitKernExec,ECausedException,__LINE__);
DoIpcTest(addrRO+96,addrRW,96,2,NULL,KErrNone,__LINE__);
}
}
c.Close();
}
RMessage2 Msg1, Msg2;
TInt SendAndExit(TAny* aPtr)
{
RLocalSession sess;
TInt r=sess.Connect(IpcServer,NULL);
if (r!=KErrNone)
return r;
sess.Test(aPtr);
sess.Wait();
sess.Close();
User::AfterHighRes(1000*CloseTime);
Msg1.Complete(0); // complete my own message! - this removes message reference to thread
return 0;
}
void TestIpcAsyncClose()
{
// Create a 16MB chunk
const TInt desSize = 8*1024*1024;
RChunk chunk;
test(chunk.CreateLocal(2 * desSize, 2 * desSize) == KErrNone);
test(chunk.Adjust(2 * desSize) == KErrNone);
TUint8* bigBuf=chunk.Base();
test(bigBuf!=NULL);
TUint8* bigBuf2=chunk.Base() + desSize;
test(bigBuf2!=NULL);
TPtr8 bigBufPtr(bigBuf, desSize, desSize);
TPtr8 bigBufPtr2(bigBuf2, 0, desSize);
if (IpcServer.Handle())
IpcServer.Close();
TESTEQ(IpcServer.CreateGlobal(KNullDesC),KErrNone);
RThread t;
TInt r=t.Create(KNullDesC,SendAndExit,0x1000,NULL,&bigBufPtr);
test(r==KErrNone);
TFullName fn(t.FullName());
TRequestStatus s;
t.Logon(s);
t.SetPriority(EPriorityMuchMore);
t.Resume();
IpcServer.Receive(Msg1); // connect
Msg1.Complete(KErrNone);
IpcServer.Receive(Msg1); // test message
IpcServer.Receive(Msg2); // wait/synch message
TUint32 initial = User::NTickCount();
r=Msg1.Read(2,bigBufPtr2,0); // arg2 is writable 8 bit descriptor
TUint32 final = User::NTickCount();
TUint32 elapsed = final - initial;
if (elapsed<3)
test.Printf(_L("*** WARNING! The big IPC only took %dms, which means the next test might fail! \n"),elapsed);
else
test.Printf(_L("Big IPC took %dms\n"),elapsed);
CloseTime = (TInt)(elapsed>>2);
Msg2.Complete(0);
IpcServer.Receive(Msg2); // disconnect
TUint32 disconnect = User::NTickCount();
// We expect this IPC read to fail part way through
r=Msg1.Read(2,bigBufPtr2,0); // arg2 is writable 8 bit descriptor
test.Printf(_L("counters: initial=%d final=%d disconnect=%d current=%d\n"),initial,final,disconnect,User::NTickCount());
test.Printf(_L("2nd Big IPC returned %d\n"),r);
test(r==KErrDied);
test(Msg1.IsNull());
Msg2.Complete(0); // complete session closure as well
User::WaitForRequest(s);
test(s==KErrNone);
CLOSE_AND_WAIT(t);
test(t.Open(fn)==KErrNotFound);
IpcServer.Close();
// t already closed
// User::Free(bigBuf);
// User::Free(bigBuf2);
chunk.Close();
}
void BenchmarkTest()
{
TAny* bigbuf = User::Alloc(65536);
test(bigbuf != NULL);
TInt i;
TUint32 initial, final;
initial = User::NTickCount();
for (i=0; i<1000; ++i)
Ipccpy.BigWrite(bigbuf, 0);
final = User::NTickCount();
TUint32 wcal = final - initial;
initial = User::NTickCount();
for (i=0; i<1000; ++i)
Ipccpy.BigWrite(bigbuf, 65536);
final = User::NTickCount();
TUint32 write = final - initial;
test.Printf(_L("64K user->kernel copy takes %d us\n"), write - wcal);
initial = User::NTickCount();
for (i=0; i<1000; ++i)
Ipccpy.BigRead(bigbuf, 0);
final = User::NTickCount();
TUint32 rcal = final - initial;
initial = User::NTickCount();
for (i=0; i<1000; ++i)
Ipccpy.BigRead(bigbuf, 65536);
final = User::NTickCount();
TUint32 read = final - initial;
test.Printf(_L("64K kernel->user copy takes %d us\n"), read - rcal);
User::Free(bigbuf);
// User::After(10*1000*1000);
}
RMessage2 IpcMesage;
const TInt KTestChunkSize = 1024*1024;
const TInt KReadSize = 4096;
TInt IpcMultipleAliasesThread(TAny* aBuffer)
{
TBuf8<KReadSize> data;
TAny** dataStart = (TAny**)data.Ptr();
TAny** dataEnd = (TAny**)(data.Ptr()+KReadSize-sizeof(TAny*));
for(;;)
{
TInt offset;
for(offset=0; offset<KTestChunkSize; offset+=KReadSize)
{
TInt r = IpcMesage.Read(0,data,offset);
if(r!=KErrNone)
return r;
if(data.Size()!=KReadSize)
return 1;
TAny* expected = (TAny*)((TInt)aBuffer+offset);
if(*dataStart != expected)
{
RDebug::Printf("Offset=%x, expected %x but read %x",offset,expected,*dataStart);
return 2;
}
expected = (TAny*)((TInt)aBuffer+offset+KReadSize-sizeof(TAny*));
if(*dataEnd != expected)
{
RDebug::Printf("Offset=%x, expected %x but read %x",offset,expected,*dataEnd);
return 3;
}
}
}
}
/*
This tests exercises the situation where multiple threads are doing IPC simultaneousely.
On the Multiple Memory Model, this aims to test the per-thread memory aliasing code.
(DMemModelThread::Alias and company)
*/
void TestIpcMultipleThreads()
{
test.Start(_L("Test Multiple Threads IPC"));
// create chunk for threads to do IPC from...
RChunk chunk;
TESTEQ(chunk.CreateLocal(KTestChunkSize,KTestChunkSize),KErrNone);
TAny** buffer = (TAny**)chunk.Base();
TAny** bufferEnd = (TAny**)((TInt)buffer+KTestChunkSize);
for(; buffer<bufferEnd; ++buffer)
*buffer=buffer;
// create a server message which test threads can use to do IPC memory operations
if (IpcServer.Handle())
IpcServer.Close();
TESTEQ(IpcServer.CreateGlobal(KNullDesC),KErrNone);
RLocalSession sess;
TRequestStatus stat;
TESTEQ(sess.Connect(IpcServer,&stat),KErrNone);
RMessage2 m;
IpcServer.Receive(m);
m.Complete(KErrNone); // connect
User::WaitForRequest(stat); // connection message report
TAny* ptrMem = User::Alloc(0x2000);
TPtr8* pptr = (TPtr8*)(((TInt)ptrMem&~0xfff)+0x1000-sizeof(TInt));
new (pptr) TPtr8(chunk.Base(),KTestChunkSize,KTestChunkSize); // create a TPtr8 which straddles a page boundary
sess.Test(pptr);
IpcServer.Receive(IpcMesage);
// create some test threads...
const TInt KNumIpcThreads = 10;
RThread threads[KNumIpcThreads];
TRequestStatus stats[KNumIpcThreads];
TInt i;
for(i=0; i<KNumIpcThreads; i++)
{
TESTEQ(threads[i].Create(KNullDesC,IpcMultipleAliasesThread,KReadSize+0x1000,&User::Allocator(),chunk.Base()),KErrNone);
threads[i].Logon(stats[i]);
}
test.Printf(_L("Resuming threads...\n"));
for(i=0; i<KNumIpcThreads; i++)
threads[i].Resume();
User::After(10*1000000);
for(i=0; i<KNumIpcThreads; i++)
{
test(stats[i]==KRequestPending); // theads should still be running
}
// close chunk whilst test threads are still doing IPC...
test.Printf(_L("Closing chunk...\n"));
chunk.Close();
for(i=0; i<KNumIpcThreads; i++)
{
User::WaitForRequest(stats[i]);
TInt r=stats[i].Int();
test.Printf(_L("Thread %d result = %d\n"),i,r);
test(r==KErrBadDescriptor);
}
IpcServer.Close();
User::Free(ptrMem);
test.End();
}
GLDEF_C TInt E32Main()
{
MainId=TUint32(RThread().Id());
// RThread().SetPriority(EPriorityAbsoluteForeground);
test.Title();
test.Start(_L("Load LDD"));
TInt r=User::LoadLogicalDevice(_L("D_IPCCPY"));
test(r==KErrNone || r==KErrAlreadyExists);
test.Next(_L("Open channel"));
r=Ipccpy.Open();
test(r==KErrNone);
test.Next(_L("Allocate heap buffer"));
Buffer=(TUint8*)User::Alloc(4096);
test(Buffer!=NULL);
SetupAddresses();
BenchmarkTest();
TestIpcCopyErrors();
TestIpcAsyncClose();
TestIpcMultipleThreads();
FOREVER
{
TRequestStatus s;
Mem::Fill(Buffer,272,0xcd);
TPtr8 ptr(Buffer,0,272);
Ipccpy.IpcCpy(s,ptr);
User::WaitForRequest(s);
TInt x=s.Int();
if (x<0)
{
test.Printf(_L("Error %d\n"),x);
test(0);
}
TInt src_offset=x&3;
TInt dest_offset=(x>>2)&3;
TInt length=(x>>4)+1;
TInt err=-1;
TInt i;
for (i=0; i<dest_offset && err<0; ++i)
{
if (Buffer[i]!=0xcd)
err=i;
}
TUint8 v=(TUint8)src_offset;
for (i=0; i<length && err<0; ++i)
{
++v;
if (Buffer[i+dest_offset]!=v)
err=i+dest_offset;
}
for (i=dest_offset+length; i<272 && err<0; ++i)
{
if (Buffer[i]!=0xcd)
err=i;
}
if (err>=0)
{
test.Printf(_L("Sequence number %03x\nSrcOffset %d, DestOffset %d, Length %d\n"),x,src_offset,dest_offset,length);
test.Printf(_L("First error at %d"),err);
for (i=0; i<272; i+=16)
{
TInt j;
test.Printf(_L("%03x:"),i);
for (j=0; j<16; ++j)
{
test.Printf(_L(" %02x"),Buffer[i+j]);
}
}
test(0);
}
if (x==4095)
break;
}
Ipccpy.Close();
test.End();
return KErrNone;
}