Add the missing UDEB binaries for generic runtime support libraries - missing part of fix for bug 2926
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <memmodel.h>
#include "mmu/mm.h"
#include "mmu/maddrcont.h"
#include "mmboot.h"
#include <kernel/cache.h>
#include "execs.h"
#define iMState iWaitLink.iSpare1
NFastMutex TheSharedChunkLock;
#ifndef _DEBUG
const TInt KChunkGranularity = 4; // amount to grow SChunkInfo list by
const TInt KMaxChunkInfosInOneGo = 100; // max number of SChunkInfo objects to copy with System Lock held
#else // if debug...
const TInt KChunkGranularity = 1;
const TInt KMaxChunkInfosInOneGo = 1;
#endif
/********************************************
* Process
********************************************/
DMemModelProcess::~DMemModelProcess()
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelProcess destruct"));
Destruct();
}
void DMemModelProcess::Destruct()
{
__ASSERT_ALWAYS(!iOsAsidRefCount, MM::Panic(MM::EProcessDestructOsAsidRemaining));
__ASSERT_ALWAYS(!iChunkCount, MM::Panic(MM::EProcessDestructChunksRemaining));
Kern::Free(iChunks);
__ASSERT_ALWAYS(!iSharedChunks || iSharedChunks->Count()==0, MM::Panic(MM::EProcessDestructChunksRemaining));
delete iSharedChunks;
DProcess::Destruct();
}
TInt DMemModelProcess::TryOpenOsAsid()
{
if (__e32_atomic_tas_ord32(&iOsAsidRefCount, 1, 1, 0))
{
return iOsAsid;
}
return KErrDied;
}
void DMemModelProcess::CloseOsAsid()
{
if (__e32_atomic_tas_ord32(&iOsAsidRefCount, 1, -1, 0) == 1)
{// Last reference has been closed so free the asid.
MM::AddressSpaceFree(iOsAsid);
}
}
void DMemModelProcess::AsyncCloseOsAsid()
{
if (__e32_atomic_tas_ord32(&iOsAsidRefCount, 1, -1, 0) == 1)
{// Last reference has been closed so free the asid asynchronusly.
MM::AsyncAddressSpaceFree(iOsAsid);
}
}
TInt DMemModelProcess::NewChunk(DChunk*& aChunk, SChunkCreateInfo& aInfo, TLinAddr& aRunAddr)
{
aChunk=NULL;
DMemModelChunk* pC=new DMemModelChunk;
if (!pC)
return KErrNoMemory;
TChunkType type = aInfo.iType;
pC->iChunkType=type;
TInt r=pC->SetAttributes(aInfo);
if (r!=KErrNone)
{
pC->Close(NULL);
return r;
}
pC->iOwningProcess=(pC->iAttributes&DMemModelChunk::EPublic)?NULL:this;
r=pC->Create(aInfo);
if (r==KErrNone && (aInfo.iOperations & SChunkCreateInfo::EAdjust))
{
if (aInfo.iRunAddress!=0)
pC->SetFixedAddress(aInfo.iRunAddress,aInfo.iPreallocated);
if (aInfo.iPreallocated==0 && aInfo.iInitialTop!=0)
{
if (pC->iAttributes & DChunk::EDisconnected)
{
r=pC->Commit(aInfo.iInitialBottom,aInfo.iInitialTop-aInfo.iInitialBottom);
}
else if (pC->iAttributes & DChunk::EDoubleEnded)
{
r=pC->AdjustDoubleEnded(aInfo.iInitialBottom,aInfo.iInitialTop);
}
else
{
r=pC->Adjust(aInfo.iInitialTop);
}
}
}
if (r==KErrNone && (aInfo.iOperations & SChunkCreateInfo::EAdd))
{
r = AddChunk(pC, EFalse);
}
if (r==KErrNone)
{
if(pC->iKernelMapping)
aRunAddr = (TLinAddr)MM::MappingBase(pC->iKernelMapping);
pC->iDestroyedDfc = aInfo.iDestroyedDfc;
aChunk=(DChunk*)pC;
}
else
pC->Close(NULL); // NULL since chunk can't have been added to process
return r;
}
/**
Determine whether this process should be data paged.
@param aInfo A reference to the create info for this process.
*/
TInt DMemModelProcess::SetPaging(const TProcessCreateInfo& aInfo)
{
TUint pagedFlags = aInfo.iFlags & TProcessCreateInfo::EDataPagingMask;
// If KImageDataPaged and KImageDataUnpaged flags present then corrupt
// Check this first to ensure that it is always verified.
if (pagedFlags == TProcessCreateInfo::EDataPagingMask)
{
return KErrCorrupt;
}
if (aInfo.iAttr & ECodeSegAttKernel ||
!(K::MemModelAttributes & EMemModelAttrDataPaging))
{// Kernel process shouldn't be data paged or no data paging device installed.
return KErrNone;
}
TUint dataPolicy = TheSuperPage().KernelConfigFlags() & EKernelConfigDataPagingPolicyMask;
if (dataPolicy == EKernelConfigDataPagingPolicyAlwaysPage)
{
iAttributes |= EDataPaged;
return KErrNone;
}
if (dataPolicy == EKernelConfigDataPagingPolicyNoPaging)
{// No paging allowed so just return.
return KErrNone;
}
if (pagedFlags == TProcessCreateInfo::EDataPaged)
{
iAttributes |= EDataPaged;
return KErrNone;
}
if (pagedFlags == TProcessCreateInfo::EDataUnpaged)
{// No paging set so just return.
return KErrNone;
}
// Neither paged nor unpaged set so use default paging policy.
// dataPolicy must be EKernelConfigDataPagingPolicyDefaultUnpaged or
// EKernelConfigDataPagingPolicyDefaultPaged.
__NK_ASSERT_DEBUG(pagedFlags == TProcessCreateInfo::EDataPagingUnspecified);
__NK_ASSERT_DEBUG( dataPolicy == EKernelConfigDataPagingPolicyDefaultPaged ||
dataPolicy == EKernelConfigDataPagingPolicyDefaultUnpaged);
if (dataPolicy == EKernelConfigDataPagingPolicyDefaultPaged)
{
iAttributes |= EDataPaged;
}
return KErrNone;
}
TInt DMemModelProcess::DoCreate(TBool aKernelProcess, TProcessCreateInfo& aInfo)
{
// Required so we can detect whether a process has been created and added
// to its object container by checking for iContainerID!=EProcess.
__ASSERT_COMPILE(EProcess != 0);
__KTRACE_OPT(KPROC,Kern::Printf(">DMemModelProcess::DoCreate %O",this));
TInt r=KErrNone;
if (aKernelProcess)
{
iAttributes |= ESupervisor;
iOsAsid = KKernelOsAsid;
}
else
{
r = MM::AddressSpaceAlloc(iPageDir);
if (r>=0)
{
iOsAsid = r;
r = KErrNone;
}
}
if (r == KErrNone)
{// Add this process's own reference to its os asid.
__e32_atomic_store_ord32(&iOsAsidRefCount, 1);
}
#ifdef BTRACE_FLEXIBLE_MEM_MODEL
BTrace8(BTrace::EFlexibleMemModel,BTrace::EAddressSpaceId,this,iOsAsid);
#endif
__KTRACE_OPT(KPROC,Kern::Printf("OS ASID=%d, PD=%08x",iOsAsid,iPageDir));
__KTRACE_OPT(KPROC,Kern::Printf("<DMemModelProcess::DoCreate %d",r));
return r;
}
TInt DMemModelProcess::CreateDataBssStackArea(TProcessCreateInfo& aInfo)
{
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess::CreateDataBssStackArea %O",this));
TInt r = KErrNone;
TInt dataBssSize = MM::RoundToPageSize(aInfo.iTotalDataSize);
if(dataBssSize)
{
DMemoryObject* memory;
TMemoryObjectType memoryType = iAttributes&EDataPaged ? EMemoryObjectPaged : EMemoryObjectMovable;
r = MM::MemoryNew(memory,memoryType,MM::BytesToPages(dataBssSize));
if(r==KErrNone)
{
r = MM::MemoryAlloc(memory,0,MM::BytesToPages(dataBssSize));
if(r==KErrNone)
{
r = MM::MappingNew(iDataBssMapping,memory,EUserReadWrite,OsAsid());
}
if(r!=KErrNone)
MM::MemoryDestroy(memory);
else
{
iDataBssRunAddress = MM::MappingBase(iDataBssMapping);
#ifdef BTRACE_FLEXIBLE_MEM_MODEL
BTrace8(BTrace::EFlexibleMemModel,BTrace::EMemoryObjectIsProcessStaticData,memory,this);
#endif
}
}
}
__KTRACE_OPT(KPROC,Kern::Printf("DataBssSize=%x, ",dataBssSize));
return r;
}
TInt DMemModelProcess::AttachExistingCodeSeg(TProcessCreateInfo& aInfo)
{
TInt r = DEpocProcess::AttachExistingCodeSeg(aInfo);
if(r==KErrNone)
{
// allocate virtual memory for the EXEs codeseg...
DMemModelCodeSeg* seg = (DMemModelCodeSeg*)iTempCodeSeg;
if(seg->iAttr&ECodeSegAttAddrNotUnique)
{
TUint codeSize = seg->iSize;
TLinAddr codeAddr = seg->RamInfo().iCodeRunAddr;
TBool isDemandPaged = seg->iAttr&ECodeSegAttCodePaged;
// Allocate virtual memory for the code seg using the os asid.
// No need to open a reference on os asid as process not fully
// created yet so it can't die and free the os asid.
r = MM::VirtualAlloc(OsAsid(),codeAddr,codeSize,isDemandPaged);
if(r==KErrNone)
{
iCodeVirtualAllocSize = codeSize;
iCodeVirtualAllocAddress = codeAddr;
}
}
}
return r;
}
TInt DMemModelProcess::AddChunk(DChunk* aChunk, TBool aIsReadOnly)
{
DMemModelChunk* pC=(DMemModelChunk*)aChunk;
if(pC->iOwningProcess && this!=pC->iOwningProcess)
return KErrAccessDenied;
TInt r = WaitProcessLock();
if(r==KErrNone)
{
TInt i = ChunkIndex(pC);
if(i>=0) // Found the chunk in this process, just up its count
{
iChunks[i].iAccessCount++;
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess::AddChunk %08x to %08x (Access count incremented to %d)",aChunk,this,iChunks[i].iAccessCount));
SignalProcessLock();
return KErrNone;
}
r = DoAddChunk(pC,aIsReadOnly);
SignalProcessLock();
}
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess::AddChunk returns %d",r));
return r;
}
void M::FsRegisterThread()
{
TInternalRamDrive::Unlock();
}
void ExecHandler::UnlockRamDrive()
{
}
EXPORT_C TLinAddr TInternalRamDrive::Base()
{
DMemModelChunk* pC=(DMemModelChunk*)PP::TheRamDriveChunk;
DMemModelProcess* pP=(DMemModelProcess*)TheCurrentThread->iOwningProcess;
NKern::LockSystem();
TLinAddr addr = (TLinAddr)pC->Base(pP);
NKern::UnlockSystem();
if(!addr)
{
Unlock();
NKern::LockSystem();
addr = (TLinAddr)pC->Base(pP);
NKern::UnlockSystem();
}
return addr;
}
EXPORT_C void TInternalRamDrive::Unlock()
{
DMemModelChunk* pC=(DMemModelChunk*)PP::TheRamDriveChunk;
DMemModelProcess* pP=(DMemModelProcess*)TheCurrentThread->iOwningProcess;
TInt r = pP->WaitProcessLock();
if(r==KErrNone)
if(pP->ChunkIndex(pC)==KErrNotFound)
r = pP->DoAddChunk(pC,EFalse);
__ASSERT_ALWAYS(r==KErrNone, MM::Panic(MM::EFsRegisterThread));
pP->SignalProcessLock();
}
EXPORT_C void TInternalRamDrive::Lock()
{
}
TInt DMemModelProcess::DoAddChunk(DMemModelChunk* aChunk, TBool aIsReadOnly)
{
//
// Must hold the process $LOCK mutex before calling this.
// As the process lock is held it is safe to access iOsAsid without a reference.
//
__NK_ASSERT_DEBUG(ChunkIndex(aChunk)==KErrNotFound); // shouldn't be adding a chunk which is already added
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess::DoAddChunk %O to %O",aChunk,this));
// create mapping for chunk...
DMemoryMapping* mapping;
TMappingPermissions perm = MM::MappingPermissions
(
iOsAsid!=(TInt)KKernelOsAsid, // user?
aIsReadOnly==false, // write?
aChunk->iAttributes&DMemModelChunk::ECode // execute?
);
TInt r;
if(aChunk->iFixedBase) // HACK, kernel chunk has a fixed iBase
r = MM::MappingNew(mapping,aChunk->iMemoryObject,perm,iOsAsid,EMappingCreateExactVirtual,(TLinAddr)aChunk->iFixedBase);
else
r = MM::MappingNew(mapping,aChunk->iMemoryObject,perm,iOsAsid);
if(r!=KErrNone)
return r;
if(iOsAsid==0)
aChunk->iKernelMapping = mapping;
TLinAddr base = MM::MappingBase(mapping);
// expand chunk info memory if required...
if(iChunkCount==iChunkAlloc)
{
TInt newAlloc = iChunkAlloc+KChunkGranularity;
r = Kern::SafeReAlloc((TAny*&)iChunks,iChunkAlloc*sizeof(SChunkInfo),newAlloc*sizeof(SChunkInfo));
if(r!=KErrNone)
{
MM::MappingDestroy(mapping);
return r;
}
iChunkAlloc = newAlloc;
}
// insert new chunk info...
TUint i = ChunkInsertIndex(aChunk);
SChunkInfo* info = iChunks+i;
SChunkInfo* infoEnd = iChunks+iChunkCount;
NKern::LockSystem();
++iChunkCount;
for(;;)
{
// make space for new chunk info by shuffling along
// existing infos KMaxChunkInfosInOneGo at a time...
SChunkInfo* infoPtr = infoEnd-KMaxChunkInfosInOneGo;
if(infoPtr<info)
infoPtr = info;
memmove(infoPtr+1,infoPtr,(TLinAddr)infoEnd-(TLinAddr)infoPtr);
infoEnd = infoPtr;
if(infoEnd<=info)
break;
NKern::FlashSystem();
}
info->iChunk = aChunk;
info->iMapping = mapping;
info->iAccessCount = 1;
info->iIsReadOnly = aIsReadOnly;
NKern::UnlockSystem();
// add chunk to list of Shared Chunks...
if(aChunk->iChunkType==ESharedKernelSingle || aChunk->iChunkType==ESharedKernelMultiple)
{
if(!iSharedChunks)
iSharedChunks = new RAddressedContainer(&TheSharedChunkLock,iProcessLock);
if(!iSharedChunks)
r = KErrNoMemory;
else
r = iSharedChunks->Add(base,aChunk);
if(r!=KErrNone)
{
DoRemoveChunk(i);
return r;
}
}
// done OK...
__DEBUG_EVENT(EEventUpdateProcess, this);
return KErrNone;
}
void DMemModelProcess::DoRemoveChunk(TInt aIndex)
{
__DEBUG_EVENT(EEventUpdateProcess, this);
DMemModelChunk* chunk = iChunks[aIndex].iChunk;
DMemoryMapping* mapping = iChunks[aIndex].iMapping;
if(chunk->iChunkType==ESharedKernelSingle || chunk->iChunkType==ESharedKernelMultiple)
{
// remove chunk from list of Shared Chunks...
if(iSharedChunks)
{
iSharedChunks->Remove(MM::MappingBase(mapping));
#ifdef _DEBUG
// delete iSharedChunks if it's empty, so memory leak test code passes...
if(iSharedChunks->Count()==0)
{
NKern::FMWait(&TheSharedChunkLock);
RAddressedContainer* s = iSharedChunks;
iSharedChunks = 0;
NKern::FMSignal(&TheSharedChunkLock);
delete s;
}
#endif
}
}
// remove chunk from array...
SChunkInfo* infoStart = iChunks+aIndex+1;
SChunkInfo* infoEnd = iChunks+iChunkCount;
NKern::LockSystem();
for(;;)
{
// shuffle existing infos down KMaxChunkInfosInOneGo at a time...
SChunkInfo* infoPtr = infoStart+KMaxChunkInfosInOneGo;
if(infoPtr>infoEnd)
infoPtr = infoEnd;
memmove(infoStart-1,infoStart,(TLinAddr)infoPtr-(TLinAddr)infoStart);
infoStart = infoPtr;
if(infoStart>=infoEnd)
break;
NKern::FlashSystem();
}
--iChunkCount;
NKern::UnlockSystem();
if(mapping==chunk->iKernelMapping)
chunk->iKernelMapping = 0;
MM::MappingDestroy(mapping);
}
/**
Final chance for process to release resources during its death.
Called with process $LOCK mutex held (if it exists).
This mutex will not be released before it is deleted.
I.e. no other thread will ever hold the mutex again.
*/
void DMemModelProcess::FinalRelease()
{
// Clean up any left over chunks (such as SharedIo buffers)
if(iProcessLock)
while(iChunkCount)
DoRemoveChunk(0);
// Destroy the remaining mappings and memory objects owned by this process
MM::MappingAndMemoryDestroy(iDataBssMapping);
if(iCodeVirtualAllocSize)
MM::VirtualFree(iOsAsid,iCodeVirtualAllocAddress,iCodeVirtualAllocSize);
// Close the original reference on the os asid.
CloseOsAsid();
}
void DMemModelProcess::RemoveChunk(DMemModelChunk *aChunk)
{
// note that this can't be called after the process $LOCK mutex has been deleted
// since it can only be called by a thread in this process doing a handle close or
// dying, or by the process handles array being deleted due to the process dying,
// all of which happen before $LOCK is deleted.
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess %O RemoveChunk %O",this,aChunk));
Kern::MutexWait(*iProcessLock);
TInt i = ChunkIndex(aChunk);
if(i>=0) // Found the chunk
{
__KTRACE_OPT(KPROC,Kern::Printf("Chunk access count %d",iChunks[i].iAccessCount));
if(--iChunks[i].iAccessCount==0)
{
DoRemoveChunk(i);
}
}
Kern::MutexSignal(*iProcessLock);
}
TUint8* DMemModelChunk::Base(DProcess* aProcess)
{
DMemModelProcess* pP = (DMemModelProcess*)aProcess;
DMemoryMapping* mapping = 0;
if(iKernelMapping && pP==K::TheKernelProcess)
{
// shortcut for shared chunks...
mapping = iKernelMapping;
}
else
{
// find chunk in process...
TInt i = pP->ChunkIndex(this);
if(i>=0)
mapping = pP->iChunks[i].iMapping;
}
if(!mapping)
return 0;
return (TUint8*)MM::MappingBase(mapping);
}
DChunk* DThread::OpenSharedChunk(const TAny* aAddress, TBool aWrite, TInt& aOffset)
{
DMemModelChunk* chunk = 0;
NKern::FMWait(&TheSharedChunkLock);
RAddressedContainer* list = ((DMemModelProcess*)iOwningProcess)->iSharedChunks;
if(list)
{
// search list...
TUint offset;
chunk = (DMemModelChunk*)list->Find((TLinAddr)aAddress,offset);
if(chunk && offset<TUint(chunk->iMaxSize) && chunk->Open()==KErrNone)
aOffset = offset; // chunk found and opened successfully
else
chunk = 0; // failed
}
NKern::FMSignal(&TheSharedChunkLock);
return chunk;
}
TUint DMemModelProcess::ChunkInsertIndex(DMemModelChunk* aChunk)
{
// need to hold iProcessLock or System Lock...
#ifdef _DEBUG
if(K::Initialising==false && iProcessLock!=NULL && iProcessLock->iCleanup.iThread!=&Kern::CurrentThread())
{
// don't hold iProcessLock, so...
__ASSERT_SYSTEM_LOCK;
}
#endif
// binary search...
SChunkInfo* list = iChunks;
TUint l = 0;
TUint r = iChunkCount;
TUint m;
while(l<r)
{
m = (l+r)>>1;
DChunk* x = list[m].iChunk;
if(x<=aChunk)
l = m+1;
else
r = m;
}
return r;
}
TInt DMemModelProcess::ChunkIndex(DMemModelChunk* aChunk)
{
TUint i = ChunkInsertIndex(aChunk);
if(i && iChunks[--i].iChunk==aChunk)
return i;
return KErrNotFound;
}
TInt DMemModelProcess::MapCodeSeg(DCodeSeg* aSeg)
{
__ASSERT_CRITICAL; // Must be in critical section so can't leak os asid references.
DMemModelCodeSeg& seg=*(DMemModelCodeSeg*)aSeg;
__KTRACE_OPT(KDLL,Kern::Printf("Process %O MapCodeSeg %C", this, aSeg));
TBool kernel_only=( (seg.iAttr&(ECodeSegAttKernel|ECodeSegAttGlobal)) == ECodeSegAttKernel );
TBool user_local=( (seg.iAttr&(ECodeSegAttKernel|ECodeSegAttGlobal)) == 0 );
if (kernel_only && !(iAttributes&ESupervisor))
return KErrNotSupported;
if (seg.iAttr&ECodeSegAttKernel)
return KErrNone; // no extra mappings needed for kernel code
// Attempt to open a reference on the os asid it is required so
// MapUserRamCode() and CommitDllData() can use iOsAsid safely.
TInt osAsid = TryOpenOsAsid();
if (osAsid < 0)
{// The process has died.
return KErrDied;
}
TInt r=KErrNone;
if (user_local)
r=MapUserRamCode(seg.Memory());
if (seg.IsDll())
{
TInt total_data_size;
TLinAddr data_base;
seg.GetDataSizeAndBase(total_data_size, data_base);
if (r==KErrNone && total_data_size)
{
TInt size=MM::RoundToPageSize(total_data_size);
r=CommitDllData(data_base, size, aSeg);
if (r!=KErrNone && user_local)
UnmapUserRamCode(seg.Memory());
}
}
CloseOsAsid();
return r;
}
void DMemModelProcess::UnmapCodeSeg(DCodeSeg* aSeg)
{
__ASSERT_CRITICAL; // Must be in critical section so can't leak os asid references.
DMemModelCodeSeg& seg=*(DMemModelCodeSeg*)aSeg;
__KTRACE_OPT(KDLL,Kern::Printf("Process %O UnmapCodeSeg %C", this, aSeg));
if (seg.iAttr&ECodeSegAttKernel)
return; // no extra mappings needed for kernel code
// Attempt to open a reference on the os asid it is required so
// UnmapUserRamCode() and DecommitDllData() can use iOsAsid safely.
TInt osAsid = TryOpenOsAsid();
if (osAsid < 0)
{// The process has died and it the process it will have cleaned up any code segs.
return;
}
if (seg.IsDll())
{
TInt total_data_size;
TLinAddr data_base;
seg.GetDataSizeAndBase(total_data_size, data_base);
if (total_data_size)
DecommitDllData(data_base, MM::RoundToPageSize(total_data_size));
}
if (seg.Memory())
UnmapUserRamCode(seg.Memory());
CloseOsAsid();
}
void DMemModelProcess::RemoveDllData()
//
// Call with CodeSegLock held
//
{
}
TInt DMemModelProcess::MapUserRamCode(DMemModelCodeSegMemory* aMemory)
{
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess %O MapUserRamCode %C %d %d",
this, aMemory->iCodeSeg, iOsAsid, aMemory->iPagedCodeInfo!=0));
__ASSERT_MUTEX(DCodeSeg::CodeSegLock);
TMappingCreateFlags createFlags = EMappingCreateExactVirtual;
if(!(aMemory->iCodeSeg->iAttr&ECodeSegAttAddrNotUnique))
{
// codeseg memory address is globally unique, (common address across all processes)...
FlagSet(createFlags,EMappingCreateCommonVirtual);
}
if(aMemory->iCodeSeg->IsExe())
{
// EXE codesegs have already had their virtual address allocated so we must adopt that...
__NK_ASSERT_DEBUG(iCodeVirtualAllocSize);
__NK_ASSERT_DEBUG(iCodeVirtualAllocAddress==aMemory->iRamInfo.iCodeRunAddr);
iCodeVirtualAllocSize = 0;
iCodeVirtualAllocAddress = 0;
FlagSet(createFlags,EMappingCreateAdoptVirtual);
}
DMemoryMapping* mapping;
return MM::MappingNew(mapping,aMemory->iCodeMemoryObject,EUserExecute,iOsAsid,createFlags,aMemory->iRamInfo.iCodeRunAddr);
}
void DMemModelProcess::UnmapUserRamCode(DMemModelCodeSegMemory* aMemory)
{
__KTRACE_OPT(KPROC,Kern::Printf("DMemModelProcess %O UnmapUserRamCode %C %d %d",
this, aMemory->iCodeSeg, iOsAsid, aMemory->iPagedCodeInfo!=0));
__ASSERT_MUTEX(DCodeSeg::CodeSegLock);
MM::MappingDestroy(aMemory->iRamInfo.iCodeRunAddr,iOsAsid);
}
TInt DMemModelProcess::CommitDllData(TLinAddr aBase, TInt aSize, DCodeSeg* aCodeSeg)
{
__KTRACE_OPT(KDLL,Kern::Printf("DMemModelProcess %O CommitDllData %08x+%x",this,aBase,aSize));
DMemoryObject* memory;
TMemoryObjectType memoryType = aCodeSeg->iAttr&ECodeSegAttDataPaged ? EMemoryObjectPaged : EMemoryObjectMovable;
TInt r = MM::MemoryNew(memory,memoryType,MM::BytesToPages(aSize));
if(r==KErrNone)
{
r = MM::MemoryAlloc(memory,0,MM::BytesToPages(aSize));
if(r==KErrNone)
{
DMemoryMapping* mapping;
r = MM::MappingNew(mapping,memory,EUserReadWrite,iOsAsid,EMappingCreateCommonVirtual,aBase);
}
if(r!=KErrNone)
MM::MemoryDestroy(memory);
else
{
#ifdef BTRACE_FLEXIBLE_MEM_MODEL
BTrace12(BTrace::EFlexibleMemModel,BTrace::EMemoryObjectIsDllStaticData,memory,aCodeSeg,this);
#endif
}
}
__KTRACE_OPT(KDLL,Kern::Printf("CommitDllData returns %d",r));
return r;
}
void DMemModelProcess::DecommitDllData(TLinAddr aBase, TInt aSize)
{
__KTRACE_OPT(KDLL,Kern::Printf("DMemModelProcess %O DecommitDllData %08x+%x",this,aBase,aSize));
MM::MappingAndMemoryDestroy(aBase,iOsAsid);
}
void DMemModelProcess::BTracePrime(TInt aCategory)
{
DProcess::BTracePrime(aCategory);
#ifdef BTRACE_FLEXIBLE_MEM_MODEL
if (aCategory == BTrace::EFlexibleMemModel || aCategory == -1)
{
BTrace8(BTrace::EFlexibleMemModel,BTrace::EAddressSpaceId,this,iOsAsid);
if (iDataBssMapping)
{
DMemoryObject* memory = MM::MappingGetAndOpenMemory(iDataBssMapping);
if (memory)
{
MM::MemoryBTracePrime(memory);
BTrace8(BTrace::EFlexibleMemModel,BTrace::EMemoryObjectIsProcessStaticData,memory,this);
MM::MemoryClose(memory);
}
}
// Trace memory objects for DLL static data
SDblQue cs_list;
DCodeSeg::UnmarkAll(DCodeSeg::EMarkListDeps|DCodeSeg::EMarkUnListDeps);
TraverseCodeSegs(&cs_list, NULL, DCodeSeg::EMarkListDeps, 0);
SDblQueLink* anchor=&cs_list.iA;
SDblQueLink* pL=cs_list.First();
for(; pL!=anchor; pL=pL->iNext)
{
DMemModelCodeSeg* seg = _LOFF(pL,DMemModelCodeSeg,iTempLink);
if (seg->IsDll())
{
TInt total_data_size;
TLinAddr data_base;
seg->GetDataSizeAndBase(total_data_size, data_base);
if (total_data_size)
{
TUint offset;
// The instance count can be ignored as a dll data mapping is only ever
// used with a single memory object.
TUint mappingInstanceCount;
NKern::ThreadEnterCS();
DMemoryMapping* mapping = MM::FindMappingInAddressSpace(iOsAsid, data_base, 0, offset, mappingInstanceCount);
if (mapping)
{
DMemoryObject* memory = MM::MappingGetAndOpenMemory(mapping);
if (memory)
{
MM::MemoryBTracePrime(memory);
BTrace12(BTrace::EFlexibleMemModel,BTrace::EMemoryObjectIsDllStaticData,memory,seg,this);
MM::MemoryClose(memory);
}
MM::MappingClose(mapping);
}
NKern::ThreadLeaveCS();
}
}
}
DCodeSeg::EmptyQueue(cs_list, 0); // leave cs_list empty
}
#endif
}
TInt DMemModelProcess::NewShPool(DShPool*& aPool, TShPoolCreateInfo& aInfo)
{
aPool = NULL;
DMemModelShPool* pC = NULL;
if (aInfo.iInfo.iFlags & TShPoolCreateInfo::EPageAlignedBuffer)
{
pC = new DMemModelAlignedShPool();
}
else
{
pC = new DMemModelNonAlignedShPool();
}
if (pC == NULL)
{
return KErrNoMemory;
}
TInt r = pC->Create(this, aInfo);
if (r == KErrNone)
{
aPool = pC;
}
else
{
pC->Close(NULL);
}
return r;
}
TInt DThread::RawRead(const TAny* aSrc, TAny* aDest, TInt aLength, TInt aFlags, TIpcExcTrap* aExcTrap)
//
// Read from the thread's process.
// aSrc Run address of memory to read
// aDest Current address of destination
// aExcTrap Exception trap object to be updated if the actual memory access is performed on other memory area than specified.
// It happens when reading is performed on un-aligned memory area.
//
{
(void)aExcTrap;
DMemModelThread& t=*(DMemModelThread*)TheCurrentThread;
DMemModelProcess* pP=(DMemModelProcess*)iOwningProcess;
TLinAddr src=(TLinAddr)aSrc;
TLinAddr dest=(TLinAddr)aDest;
TInt result = KErrNone;
TBool have_taken_fault = EFalse;
while (aLength)
{
if (iMState==EDead)
{
result = KErrDied;
break;
}
TLinAddr alias_src;
TUint alias_size;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
TInt pagingTrap;
XTRAP_PAGING_START(pagingTrap);
#endif
TInt len = have_taken_fault ? Min(aLength, KPageSize - (src & KPageMask)) : aLength;
TInt alias_result=t.Alias(src, pP, len, alias_src, alias_size);
if (alias_result<0)
{
result = KErrBadDescriptor; // bad permissions
break;
}
#ifdef __BROADCAST_CACHE_MAINTENANCE__
// need to let the trap handler know where we are accessing in case we take a page fault
// and the alias gets removed
aExcTrap->iRemoteBase = alias_src;
aExcTrap->iSize = alias_size;
#endif
__KTRACE_OPT(KTHREAD2,Kern::Printf("DThread::RawRead %08x<-%08x+%x",dest,alias_src,alias_size));
CHECK_PAGING_SAFE;
if(aFlags&KCheckLocalAddress)
MM::ValidateLocalIpcAddress(dest,alias_size,ETrue);
UNLOCK_USER_MEMORY();
memcpy( (TAny*)dest, (const TAny*)alias_src, alias_size);
LOCK_USER_MEMORY();
src+=alias_size;
dest+=alias_size;
aLength-=alias_size;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
XTRAP_PAGING_END;
if(pagingTrap)
have_taken_fault = ETrue;
#endif
}
t.RemoveAlias();
#ifdef __BROADCAST_CACHE_MAINTENANCE__
t.iPagingExcTrap = NULL; // in case we broke out of the loop and skipped XTRAP_PAGING_END
#endif
return result;
}
TInt DThread::RawWrite(const TAny* aDest, const TAny* aSrc, TInt aLength, TInt aFlags, DThread* /*anOriginatingThread*/, TIpcExcTrap* aExcTrap)
//
// Write to the thread's process.
// aDest Run address of memory to write
// aSrc Current address of destination
// aExcTrap Exception trap object to be updated if the actual memory access is performed on other memory area then specified.
// It happens when reading is performed on un-aligned memory area.
//
{
(void)aExcTrap;
DMemModelThread& t=*(DMemModelThread*)TheCurrentThread;
DMemModelProcess* pP=(DMemModelProcess*)iOwningProcess;
TLinAddr src=(TLinAddr)aSrc;
TLinAddr dest=(TLinAddr)aDest;
TInt result = KErrNone;
TBool have_taken_fault = EFalse;
while (aLength)
{
if (iMState==EDead)
{
result = KErrDied;
break;
}
TLinAddr alias_dest;
TUint alias_size;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
TInt pagingTrap;
XTRAP_PAGING_START(pagingTrap);
#endif
TInt len = have_taken_fault ? Min(aLength, KPageSize - (dest & KPageMask)) : aLength;
TInt alias_result=t.Alias(dest, pP, len, alias_dest, alias_size);
if (alias_result<0)
{
result = KErrBadDescriptor; // bad permissions
break;
}
#ifdef __BROADCAST_CACHE_MAINTENANCE__
// need to let the trap handler know where we are accessing in case we take a page fault
// and the alias gets removed
aExcTrap->iRemoteBase = alias_dest;
aExcTrap->iSize = alias_size;
#endif
__KTRACE_OPT(KTHREAD2,Kern::Printf("DThread::RawWrite %08x+%x->%08x",src,alias_size,alias_dest));
// Must check that it is safe to page, unless we are reading from unpaged ROM in which case
// we allow it.
CHECK_PAGING_SAFE_RANGE(src, aLength);
CHECK_DATA_PAGING_SAFE_RANGE(dest, aLength);
if(aFlags&KCheckLocalAddress)
MM::ValidateLocalIpcAddress(src,alias_size,EFalse);
UNLOCK_USER_MEMORY();
memcpy( (TAny*)alias_dest, (const TAny*)src, alias_size);
LOCK_USER_MEMORY();
src+=alias_size;
dest+=alias_size;
aLength-=alias_size;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
XTRAP_PAGING_END;
if(pagingTrap)
have_taken_fault = ETrue;
#endif
}
t.RemoveAlias();
#ifdef __BROADCAST_CACHE_MAINTENANCE__
t.iPagingExcTrap = NULL; // in case we broke out of the loop and skipped XTRAP_PAGING_END
#endif
return result;
}
#ifndef __MARM__
TInt DThread::ReadAndParseDesHeader(const TAny* aSrc, TDesHeader& aDest)
//
// Read the header of a remote descriptor.
//
{
static const TUint8 LengthLookup[16]={4,8,12,8,12,0,0,0,0,0,0,0,0,0,0,0};
CHECK_PAGING_SAFE;
DMemModelThread& t=*(DMemModelThread*)TheCurrentThread;
DMemModelProcess* pP=(DMemModelProcess*)iOwningProcess;
TLinAddr src=(TLinAddr)aSrc;
__NK_ASSERT_DEBUG(t.iIpcClient==NULL);
t.iIpcClient = this;
TLinAddr pAlias;
TUint8* pDest = (TUint8*)&aDest;
TUint alias_size = 0;
TInt length = 12;
TInt type = KErrBadDescriptor;
while (length > 0)
{
#ifdef __BROADCAST_CACHE_MAINTENANCE__
TInt pagingTrap;
XTRAP_PAGING_START(pagingTrap);
#endif
if (alias_size == 0)
{
// no alias present, so must create one here
if (t.Alias(src, pP, length, pAlias, alias_size) != KErrNone)
break;
__NK_ASSERT_DEBUG(alias_size >= sizeof(TUint32));
}
// read either the first word, or as much as aliased of the remainder
TInt l = length == 12 ? sizeof(TUint32) : Min(length, alias_size);
if (Kern::SafeRead((TAny*)pAlias, (TAny*)pDest, l))
break; // exception reading from user space
if (length == 12)
{
// we have just read the first word, so decode the descriptor type
type = *(TUint32*)pDest >> KShiftDesType8;
length = LengthLookup[type];
// invalid descriptor type will have length 0 which will get decrease by 'l' and
// terminate the loop with length < 0
}
src += l;
alias_size -= l;
pAlias += l;
pDest += l;
length -= l;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
XTRAP_PAGING_END;
if (pagingTrap)
alias_size = 0; // a page fault caused the alias to be removed
#endif
}
t.RemoveAlias();
t.iIpcClient = NULL;
#ifdef __BROADCAST_CACHE_MAINTENANCE__
t.iPagingExcTrap = NULL; // in case we broke out of the loop and skipped XTRAP_PAGING_END
#endif
return length == 0 ? K::ParseDesHeader(aSrc, (TRawDesHeader&)aDest, aDest) : KErrBadDescriptor;
}
#endif
TInt DThread::PrepareMemoryForDMA(const TAny* aLinAddr, TInt aSize, TPhysAddr* aPhysicalPageList)
{
// not supported, new Physical Pinning APIs should be used for DMA
return KErrNotSupported;
}
TInt DThread::ReleaseMemoryFromDMA(const TAny* aLinAddr, TInt aSize, TPhysAddr* aPhysicalPageList)
{
// not supported, new Physical Pinning APIs should be used for DMA
return KErrNotSupported;
}