// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test/iic/t_iic.cpp
//
// This file interacts with test-specific LDD to instigate tests of functionality
// that would normally be invoked by kernel-side device driver clients of the IIC.
#include <e32test.h>
#include <e32cmn.h>
#include <e32cmn_private.h>
#include <e32def.h>
#include <e32def_private.h>
#include "t_iic.h"
//for memory leak checking
#include <e32svr.h>
#include <u32hal.h>
_LIT(testName,"t_iic");
_LIT(KIicProxyFileNameCtrlLess, "iic_client_ctrless.ldd"); // Kernel-side proxy LDD acting as a client of the IIC
_LIT(KIicProxyFileNameRootCtrlLess, "iic_client_ctrless");
_LIT(KIicProxySlaveFileNameCtrlLess, "iic_slaveclient_ctrless.ldd"); // Kernel-side proxy LDD acting as a slave client of the IIC
_LIT(KIicProxySlaveFileNameRootCtrlLess, "iic_slaveclient_ctrless");
_LIT(KIicProxyFileName, "iic_client.ldd"); // Kernel-side proxy LDD acting as a client of the IIC
_LIT(KIicProxyFileNameRoot, "iic_client");
_LIT(KIicProxySlaveFileName, "iic_slaveclient.ldd"); // Kernel-side proxy LDD acting as a slave client of the IIC
_LIT(KIicProxySlaveFileNameRoot, "iic_slaveclient");
#ifdef IIC_SIMULATED_PSL
_LIT(KSpiFileNameCtrlLess, "spi_ctrless.pdd"); // Simulated PSL bus implementation
_LIT(KI2cFileNameCtrlLess, "i2c_ctrless.pdd"); // Simulated PSL bus implementation
_LIT(KIicPslFileName, "iic_testpsl.pdd"); // Simulated PSL implementation
_LIT(KSpiFileName, "spi.pdd"); // Simulated PSL bus implementation
_LIT(KI2cFileName, "i2c.pdd"); // Simulated PSL bus implementation
#endif
_LIT(KIicPslFileNameRoot, "iic.pdd");
// Specify a stand-alone channel
GLDEF_D TBool aStandAloneChan;
GLDEF_D RTest gTest(testName);
// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
GLDEF_D RBusDevIicClient gChanMasterSpi;
GLDEF_D RBusDevIicClient gChanSlaveSpi;
// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
// I2C has Master channel number 10 and Slave channel number 11 if built with both MASTER_MODE and SLAVE_MODE
GLDEF_D RBusDevIicClient gChanMasterI2c;
GLDEF_D RBusDevIicClient gChanSlaveI2c;
LOCAL_C TInt CreateSingleUserSideTransfer(TUsideTferDesc*& aTfer, TInt8 aType, TInt8 aBufGran, TDes8* aBuf, TUsideTferDesc* aNext)
// Utility function to create a single transfer
{
aTfer = new TUsideTferDesc();
if(aTfer==NULL)
return KErrNoMemory;
aTfer->iType=aType;
aTfer->iBufGranularity=aBufGran;
aTfer->iBuffer = aBuf;
aTfer->iNext = aNext;
return KErrNone;
}
LOCAL_C TInt CreateSingleUserSideTransaction(TUsideTracnDesc*& aTracn, TBusType aType, TDes8* aHdr, TUsideTferDesc* aHalfDupTrans, TUsideTferDesc* aFullDupTrans, TUint8 aFlags, TAny* aPreambleArg, TAny* aMultiTranscArg)
// Utility function to create a single transaction
{
aTracn = new TUsideTracnDesc();
if(aTracn==NULL)
return KErrNoMemory;
aTracn->iType=aType;
aTracn->iHeader=aHdr;
aTracn->iHalfDuplexTrans=aHalfDupTrans;
aTracn->iFullDuplexTrans=aFullDupTrans;
aTracn->iFlags=aFlags;
aTracn->iPreambleArg = aPreambleArg;
aTracn->iMultiTranscArg = aMultiTranscArg;
return KErrNone;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2402
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case test the Master channel basic functionality
//! @SYMTestActions 0) Create a transaction and invoke the synchronous Queue Transaction API
//!
//! 1) Re-use the transaction and invoke asynchronous Queue Transaction API. Wait for
//| the TRequestStatus to be completed.
//!
//! 2) Instruct the Kernel-side proxy client to instigate testing of priority queuing.
//! The proxy uses controlIO to block the transaction queue, then queues 5 transactions in reverse
//! priority order. The proxy then uses controlIO to unblock the transaction queue and checks that
//! the transactions complete in priority order.
//!
//! 3) Attempt to cancel a previously-completed asynchronous request for a queued transaction
//!
//! 4) Use controlio to block request completion. Issue two asynchronous Queue Transaction requests.
//! Request cancellation of the second transaction. Wait for completion of the TRequestStatus for
//! the second request. Attempt to de-register the channel. Use controlio to unblock request completion.
//! Wait for completion of the TRequestStatus for the first request.
//!
//! 5) Attempt to de-register a channel that is not busy.
//!
//! 6) Attempt to queue a transaction on an invalid (de-registered) channel
//!
//! 7) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction.
//!
//! 8) Instruct the Kernel-side proxy client to instigate construction of a invalid full duplex transaction,
//! where both transfer in same direction
//!
//! 9) Instruct the Kernel-side proxy client to instigate construction of a invalid full duplex transaction,
//! where with different node length (not the number of node on opposite linklist ) at the same
//! position on the opposite transfer linklist
//!
//! 10) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction,
//! with different size for the last node
//!
//! 11) Instruct the Kernel-side proxy client to instigate construction of a valid full duplex transaction,
//! with different number of transfer
//!
//!
//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 1) Kernel-side proxy client should return with KErrNone, exits otherwise. TRequestStatus should
//! be set to KErrNone, exits otherwise.
//! 2) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 3) Kernel-side proxy client should return with KErrNone, exits otherwise.TRequestStatus should
//! be set to KErrNone, exits otherwise.
//! 4) The TRequestStatus for the cancelled request should be set to KErrCancel, exits otherwise.
//! The attempt to de-register the channel should return KErrInUse, exits otherwise. The
//! TRequestStatus for the first request should be set to KErrNone, exits otherwise.
//! 5) Kernel-side proxy client should return with KErrNone or KErrArgument, exits otherwise.
//! 6) Kernel-side proxy client should return with KErrArgument, exits otherwise.
//! 7) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 8) Kernel-side proxy client should return with KErrNotSupported, exits otherwise.
//! 9) Kernel-side proxy client should return with KErrNotSupported, exits otherwise.
//! 10) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 11) Kernel-side proxy client should return with KErrNone, exits otherwise.
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt MasterBasicTests()
//
// Exercise the Master Channel API with trivial data
//
{
gTest.Printf(_L("\n\nStarting MasterBasicTests\n"));
TInt r=KErrNone;
TUint32 busIdSpi = 0;
// Use the SPI bus
// SPI uses channel numbers 1,2,3 and 4
SET_BUS_TYPE(busIdSpi,ESpi);
SET_CHAN_NUM(busIdSpi,2);
TConfigSpiBufV01* spiBuf = NULL;
// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000, ESpiPolarityLowRisingEdge, 100 ,ELittleEndian, EMsbFirst, 10, ESpiCSPinActiveLow);
gTest(r==KErrNone);
// Use a single transfer
_LIT(halfDuplexText,"Half Duplex Text");
TBuf8<17> halfDuplexBuf_8;
halfDuplexBuf_8.Copy(halfDuplexText);
TUsideTferDesc* tfer = NULL;
r = CreateSingleUserSideTransfer(tfer, EMasterWrite, 8, &halfDuplexBuf_8, NULL);
gTest(r==KErrNone);
// Create the transaction object
TUsideTracnDesc* tracn = NULL;
r = CreateSingleUserSideTransaction(tracn, ESpi, spiBuf, tfer, NULL, 0, NULL, NULL);
gTest(r==KErrNone);
// Test basic queueing operations
// inline TInt QueueTransaction(TInt aBusId, TUsideTracnDesc* aTransaction)
gTest.Printf(_L("\n\nStarting synchronous QueueTransaction \n"));
r = gChanMasterSpi.QueueTransaction(busIdSpi, tracn);
gTest.Printf(_L("Synchronous QueueTransaction returned = %d\n"),r);
gTest(r==KErrNone);
// inline void QueueTransaction(TRequestStatus& aStatus, TInt aBusId, TUsideTracnDesc* aTransaction)
gTest.Printf(_L("\n\nStarting asynchronous QueueTransaction \n"));
TRequestStatus status;
gChanMasterSpi.QueueTransaction(status, busIdSpi, tracn);
User::WaitForRequest(status);
if(status != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after queue = %d\n"), status.Int());
gTest(EFalse);
}
// Test message with priorities
gTest.Printf(_L("\n\nStarting test for message with priorities\n\n"),r);
r = gChanMasterSpi.TestPriority(busIdSpi);
gTest(r==KErrNone);
// Test cancel operation (on previously completed request)
// inline void CancelAsyncOperation(TRequestStatus* aStatus, TInt aBusId) {TInt* parms[2]; parms[0]=(TInt*)aStatus; parms[1]=(TInt*)aBusId;DoCancel((TInt)&parms[0]);}
gTest.Printf(_L("\n\nStarting CancelAsyncOperation \n"));
gChanMasterSpi.CancelAsyncOperation(&status, busIdSpi);
if(status == KRequestPending)
User::WaitForRequest(status);
if(status != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after (belated) cancel = %d\n"), status.Int());
gTest(EFalse);
}
// Test cancel operation (on pending request)
// Also test that a channel with a transaction queued can not be de-registered.
// For this:
// (1) create a second transaction object
// (2) use controlio/StaticExtension to block request completion
// (3) use asynchronous queue transaction for the two transaction objects
// (4) request cancellation of the second request
// (5) check that the TRequestStatus object associated with the second request is completed with KErrCancel
// (6) check that attempt to de-register the channel fails with KErrInUse
// (7) use controlio/StaticExtension to unblock request completion
// (8) check that the TRequestStatus object associated with the first request is completed with KErrNone
//
gTest.Printf(_L("\n\nStarting (successful) cancellation test\n\n"),r);
_LIT(halfDuplexText2,"2 Half Duplex Text 2");
TBuf8<21> halfDuplexBuf2_8;
halfDuplexBuf2_8.Copy(halfDuplexText2);
TUsideTferDesc* tfer2 = NULL;
r = CreateSingleUserSideTransfer(tfer2, EMasterRead, 16, &halfDuplexBuf2_8, NULL);
gTest(r == KErrNone);
TUsideTracnDesc* tracn2 = NULL;
delete spiBuf;
spiBuf = NULL;
// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000, ESpiPolarityLowRisingEdge, 100 ,ELittleEndian, EMsbFirst, 10, ESpiCSPinActiveLow);
gTest(r == KErrNone);
r = CreateSingleUserSideTransaction(tracn2, ESpi, spiBuf, tfer2, NULL, 0, NULL, NULL);
gTest(r == KErrNone);
//
gTest.Printf(_L("Invoking BlockReqCompletion\n"));
r = gChanMasterSpi.BlockReqCompletion(busIdSpi);
gTest.Printf(_L("BlockReqCompletion returned = %d\n"),r);
gTest(r == KErrNone);
//
gTest.Printf(_L("Queueing first transaction \n"));
gChanMasterSpi.QueueTransaction(status, busIdSpi, tracn);
TRequestStatus status2;
gTest.Printf(_L("Queueing second transaction \n"));
gChanMasterSpi.QueueTransaction(status2, busIdSpi, tracn2);
//
User::After(50000);
//
gTest.Printf(_L("Issuing Cancel for second transaction\n"));
gChanMasterSpi.CancelAsyncOperation(&status2, busIdSpi);
gTest.Printf(_L("Returned from Cancel for second transaction\n"));
if(status2 == KRequestPending)
User::WaitForRequest(status2);
if(status2 != KErrCancel)
{
gTest.Printf(_L("TRequestStatus (2) value after cancel = %d\n"), status2.Int());
gTest(EFalse);
}
// If it is stand-alone channel, the client is reponsible for channel creation.
// So the RegisterChan and DeRegisterChan are not needed.
if (aStandAloneChan == 0)
{
gTest.Printf(_L("Invoking DeRegisterChan\n"));
r = gChanMasterSpi.DeRegisterChan(busIdSpi);
gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
gTest(r==KErrInUse);
}
//
gTest.Printf(_L("Invoking UnlockReqCompletion\n"));
r = gChanMasterSpi.UnblockReqCompletion(busIdSpi);
gTest.Printf(_L("UnblockReqCompletion returned = %d\n"),r);
//
User::After(50000);
//
User::WaitForRequest(status);
if(status != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after queue = %d\n"), status.Int());
gTest(EFalse);
}
// Clean up
delete spiBuf;
delete tfer;
delete tracn;
delete tfer2;
delete tracn2;
gTest.Printf(_L("\n\nStarting full duplex transaction creation test\n\n"),r);
TUint32 busIdSpiFd = 0;
// Use the SPI bus
// SPI uses channel numbers 1,2,3 and 4
SET_BUS_TYPE(busIdSpi,ESpi);
SET_CHAN_NUM(busIdSpi,4);
// Test creating a valid full duplex transaction
gTest.Printf(_L("\n\nStarting valid full duplex transaction test\n\n"),r);
r = gChanMasterSpi.TestValidFullDuplexTrans(busIdSpiFd);
gTest(r==KErrNone);
// Test creating a full duplex transaction with both transfer in same direction (invalid)
gTest.Printf(_L("\n\nStarting invalid direction full duplex transaction test\n\n"),r);
r = gChanMasterSpi.TestInvalidFullDuplexTrans1(busIdSpiFd);
gTest.Printf(_L("Full duplex transaction with invalid direction returned = %d\n"),r);
gTest(r==KErrNotSupported);
// Test creating a full duplex transaction with different node length (not the number of node on opposite linklist )
// at the same position on the opposite transfer linklist
gTest.Printf(_L("\n\nStarting invalid transfer length full duplex transaction test\n\n"),r);
r = gChanMasterSpi.TestInvalidFullDuplexTrans2(busIdSpiFd);
gTest(r==KErrNotSupported);
// Test creating a valid full duplex transaction with different size for the last node
gTest.Printf(_L("\n\nStarting valid full duplex transaction test with diff size last node\n\n"),r);
r = gChanMasterSpi.TestLastNodeFullDuplexTrans(busIdSpiFd);
gTest(r==KErrNone);
// Test creating a valid full duplex transaction with different number of transfer
gTest.Printf(_L("\n\nStarting valid full duplex transaction test with diff number of transfer\n\n"),r);
r = gChanMasterSpi.TestDiffNodeNumFullDuplexTrans(busIdSpiFd);
gTest(r==KErrNone);
return KErrNone;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2403
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case tests the Master channel data handling for transactions
//! @SYMTestActions 0) Instruct the kernel-side proxy to construct a transaction of pre-defined data
//! and inform the simulated bus to expect to receive this data. Then the proxy invokes
//! the synchronous Queue Transaction API. On receipt of the transaction, the simulated bus
//! checks the header and transafer content of the transaction to confirm that it is correct.
//!
//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt MasterTransactionTests()
//
// Exercise the Master Channel API with trivial data
//
{
gTest.Printf(_L("\n\nStarting MasterTransactionTests\n"));
TInt r = KErrNone;
// Prove that the simulated bus can access the transfer data contained within a transaction
// Do this by instructing the proxy client to:
// (1) Inform the bus of the test about to be informed
// (2) Send a transaction with a known number of transfers with known data
// (3) Check the result announced by the bus.
//
// Use the SPI bus
// SPI uses channel numbers 1,2,3 and 4
TUint32 busIdSpi = 0;
SET_BUS_TYPE(busIdSpi,ESpi);
SET_CHAN_NUM(busIdSpi,4); // Master, Full-duplex - required by TestBufferReUse
r = gChanMasterSpi.TestTracnOne(busIdSpi);
gTest.Printf(_L("TestTracnOne returned = %d\n"),r);
gTest(r==KErrNone);
// Test that transfer and transaction buffers can be modifed for re-use
// This test modifies the content of a full-duplex transaction - so a full-duplex channel must be used
TRequestStatus status;
gChanMasterSpi.TestBufferReUse(busIdSpi, status);
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after CaptureChannel = %d\n"),r);
gTest(r==KErrCompletion);
}
return KErrNone;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2401
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case test the Master channel preamble and multi-transaction functionality.
//! @SYMTestActions 0) Create a transaction that requires preamble support, and queue it for processing
//!
//! 1) If the test has been invoked for preamble testing, wait for the preamble-specific
//! TRequestStatus to be completed.
//!
//! 2) If the test has been invoked for multi-transaction testing, wait for the multi-transaction
//! -specific TRequestStatus to be completed.
//!
//!
//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 1) If waiting on the preamble-specific TRequestStatus, it should be set to KErrNone, exists otherwise.
//! 2) If waiting on the multi-transaction-specific TRequestStatus, it should be set to KErrNone, exists otherwise.
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt MasterExtTests(TUint8 aFlags)
//
// Exercise the Master Channel API for Preamble functionality
//
// For the multi-transaction test, a bus Master might not know
// how much data to write to a Slave until it performs a single read on it.
// However, specifying a read separately from the subsequent write
// introduces the risk of allowing another transaction to go ahead of the
// following write and thus invalidating it. The multi-transaction feature of IIC
// allows a callback to be called(in the context of the bus channel) after
// the transfers of a preliminary transaction have taken place
// (could be a single read), without completing the overall transaction,
// then extend the delayed transaction by inserting more transfers
//
{
gTest.Printf(_L("\n\nStarting MasterExtTests\n"));
TInt r = KErrNone;
// Create a transaction that requires preamble support
// To prove required operation has executed, make callback complete a TRequestStatus object
TRequestStatus preamblestatus;
TRequestStatus multitranscstatus;
// Use the SPI bus
// SPI uses channel numbers 1,2,3 and 4
TUint32 busIdSpi = 0;
SET_BUS_TYPE(busIdSpi, ESpi);
SET_CHAN_NUM(busIdSpi, 1);
TConfigSpiBufV01* spiBuf = NULL;
// aDeviceId=1 ... 100kHz ... aTimeoutPeriod=100 ... aTransactionWaitCycles=10 - arbitrary paarmeters.
r = CreateSpiBuf(spiBuf, ESpiWordWidth_8, 100000,
ESpiPolarityLowRisingEdge, 100, ELittleEndian, EMsbFirst, 10,
ESpiCSPinActiveLow);
if (r != KErrNone)
return r;
// Use a single transfer
_LIT(extText, "Ext Text");
TBuf8<14> extBuf_8;
extBuf_8.Copy(extText);
TUsideTferDesc* tfer = NULL;
r = CreateSingleUserSideTransfer(tfer, EMasterRead, 8, &extBuf_8, NULL);
if (r != KErrNone)
{
delete spiBuf;
return r;
}
// Create the transaction object
TUsideTracnDesc* tracn = NULL;
r = CreateSingleUserSideTransaction(tracn, ESpi, spiBuf, tfer, NULL,
aFlags, (TAny*) &preamblestatus, (TAny*) &multitranscstatus);
if (r != KErrNone)
{
delete spiBuf;
delete tfer;
return r;
}
// Send the transaction to the kernel-side proxy
// inline TInt QueueTransaction(TInt aBusId, TUsideTracnDesc* aTransaction)
gTest.Printf(_L("\nInvoke synchronous QueueTransaction for preamble test %x\n"), tracn);
r = gChanMasterSpi.QueueTransaction(busIdSpi, tracn);
gTest.Printf(_L("synchronous QueueTransaction returned = %d\n"), r);
if (r == KErrNone)
{
// ... and wait for the TRequestStatus object to be completed
if (aFlags & KTransactionWithPreamble)
{
User::WaitForRequest(preamblestatus);
r = preamblestatus.Int();
if (r != KErrNone)
{
gTest.Printf(_L("MasterPreambleTests: TRequestStatus completed with = %d\n"), r);
}
}
if (aFlags & KTransactionWithMultiTransc)
{
User::WaitForRequest(multitranscstatus);
if (r != KErrNone)
{
gTest.Printf(_L("MasterMultiTranscTests: TRequestStatus completed with = %d\n"), r);
}
}
}
delete spiBuf;
delete tfer;
delete tracn;
return r;
}
#ifdef SLAVE_MODE
LOCAL_C TInt CreateSlaveChanI2cConfig(TConfigI2cBufV01*& aI2cBuf, TUint32& aBusIdI2c, TUint8 aChanNum)
{
// Initialise TConfigI2cBufV01 and the Bus Realisation Config for gChanSlaveI2c.
// Customised:
// - token containing the bus realisation variability.
// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be
// used by this client
aBusIdI2c = 0;
SET_BUS_TYPE(aBusIdI2c,EI2c);
SET_CHAN_NUM(aBusIdI2c,aChanNum);
//
// clock speed=36Hz, aTimeoutPeriod=100 - arbitrary parameter
TInt r=CreateI2cBuf(aI2cBuf, EI2cAddr7Bit, 36, ELittleEndian, 100);
return r;
}
LOCAL_C TInt SyncCaptureGChanSlaveI2c(TInt& aChanId, TConfigI2cBufV01* aI2cBuf, TUint32 aBusIdI2c)
{
// Synchronous capture of a Slave channel. Need to provide:
// - token containing the bus realisation variability.
// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be used by this client
gTest.Printf(_L("\n\nStarting synchronous CaptureChannel \n"));
TInt r = gChanSlaveI2c.CaptureChannel(aBusIdI2c, aI2cBuf, aChanId );
gTest.Printf(_L("Synchronous CaptureChannel returned = %d, aChanId=0x%x\n"),r,aChanId);
return r;
}
LOCAL_C TInt AsyncCaptureGChanSlaveI2c(TInt& aChanId, TConfigI2cBufV01* aI2cBuf, TUint32 aBusIdI2c)
{
// Asynchronous capture of a Slave channel. Need to provide:
// - token containing the bus realisation variability.
// - pointer to a descriptor containing the device specific configuration option applicable to all transactions.
// - reference to variable to hold a platform-specific cookie that uniquely identifies the channel instance to be used by this client
// - pointer to TRequestStatus used to indicate operation completion
gTest.Printf(_L("\n\nStarting asynchronous CaptureChannel \n"));
TRequestStatus status;
TInt r = gChanSlaveI2c.CaptureChannel(aBusIdI2c, aI2cBuf, aChanId, status );
gTest(r==KErrNone);
User::WaitForRequest(status);
r=status.Int();
if(r != KErrCompletion)
{
gTest.Printf(_L("TRequestStatus value after CaptureChannel = %d\n"),r);
gTest(r==KErrCompletion);
}
gTest.Printf(_L("Asynchronous CaptureChannel gave aChanId=0x%x\n"),aChanId);
return KErrNone;
}
#endif
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2399
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case tests Slave channel capture and release APIs.
//! @SYMTestActions 0) Perform synchronous capture of a channel
//!
//! 1) Release the channel
//!
//! 2) Perform asynchronous capture of a channel
//!
//! 3) Attempt synchronous capture of a channel that is already captured
//!
//! 4) Attempt asynchronous capture of a channel that is already captured
//!
//! 5) Release the channel
//!
//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrCompletion, exits otherwise.
//! 1) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 2) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 3) Kernel-side proxy client should return with KErrInUse, exits otherwise.
//! 4) Kernel-side proxy client should return with KErrNone, exits otherwise. The associated
//! TRequestStatus should be set to KErrInUse, exits otherwise.
//! 5) Kernel-side proxy client should return with KErrNone, exits otherwise.
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt SlaveChannelCaptureReleaseTests()
//
// Exercise the Slave Channel API for channel capture and release
//
{
gTest.Printf(_L("\n\nStarting SlaveChannelCaptureReleaseTests\n"));
TInt r=KErrNone;
#ifdef SLAVE_MODE
// Create a I2C configuration buffer and the configuration data for use in capturing gChanSlaveI2c
TUint32 busIdI2c = 0;
TConfigI2cBufV01* i2cBuf=NULL;
r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 11); // 11 is the Slave channel number
gTest(r==KErrNone);
// Synchronous capture of a Slave channel.
TInt chanId = 0; // Initialise to zero to silence compiler ...
r=SyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
gTest(r==KErrNone);
//
// Release the channel
gTest.Printf(_L("\n\nInvoke ReleaseChannel for chanId=0x%x \n"),chanId);
r = gChanSlaveI2c.ReleaseChannel( chanId );
gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
gTest(r==KErrNone);
//
// Asynchronous capture of a Slave channel.
chanId = 0; // Re-initialise to zero to silence compiler ...
r=AsyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
gTest(r==KErrNone);
// Try capturing a slave channel that is already captured
//
// Create another instance of a client, and use to attempt duplicated capture
TInt dumChanId = 0; // Initialise to zero to silence compiler ...
RBusDevIicClient tempChanSlaveI2c;
TBufC<24> proxySlaveName;
if(aStandAloneChan == 0)
proxySlaveName = KIicProxySlaveFileNameRoot;
else
proxySlaveName = KIicProxySlaveFileNameRootCtrlLess;
r = tempChanSlaveI2c.Open(proxySlaveName);
gTest(r==KErrNone);
r = tempChanSlaveI2c.InitSlaveClient();
gTest(r==KErrNone);
//
// Synchronous capture
gTest.Printf(_L("\n\nStarting attempted synchronous CaptureChannel of previously-captured channel\n"));
r = tempChanSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, dumChanId );
gTest.Printf(_L("Synchronous CaptureChannel returned = %d, dumChanId=0x%x\n"),r,dumChanId);
gTest(r==KErrInUse);
//
// Asynchronous capture
dumChanId = 0;
gTest.Printf(_L("\n\nStarting attempted asynchronous CaptureChannel of previously-captured channel\n"));
TRequestStatus status;
r = tempChanSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, dumChanId, status );
gTest(r==KErrNone);
User::WaitForRequest(status);
r=status.Int();
if(r != KErrInUse)
{
gTest.Printf(_L("TRequestStatus value after attempted CaptureChannel of previously-captured channel = %d\n"),r);
gTest(r==KErrInUse);
}
gTest.Printf(_L("Asynchronous CaptureChannel gave dumChanId=0x%x\n"),dumChanId);
tempChanSlaveI2c.Close();
//
// Clean up, release the channel
r = gChanSlaveI2c.ReleaseChannel( chanId );
gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
gTest(r==KErrNone);
delete i2cBuf;
#else
gTest.Printf(_L("\nSlaveChannelCaptureReleaseTests only supported when SLAVE_MODE is defined\n"));
#endif
return r;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2400
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case tests Slave channel capture operation for receive and transmit of data
//! @SYMTestActions 0) Check that the timeout threshold values can be updated
//!
//! 1) Check that an Rx Buffer can be registered, and that a replacement buffer can be registered in its place
//! if a notification has not been requested.
//!
//! 2) Specify a notification trigger for Rx events
//!
//! 3) Attempt to register a replacement Rx buffer
//!
//! 4) Use controlIO to instruct the simulated bus to indicate that it has received the required number of words
//! and wait for the TRequestStatus to be completed.
//!
//! 5) Specify a notification trigger for Rx events, use controlIO to instruct the simulated bus to indicate that
//! it has received less than the required number of words and wait for the TRequestStatus to be completed.
//!
//! 6) Specify a notification trigger for Rx events, use controlIO to instruct the simulated bus to indicate that
//! it has received more than the required number of words and wait for the TRequestStatus to be completed.
//!
//! 7) Repeat steps 1-6, but for Tx
//!
//! 8) Specify a notification trigger for Rx and Tx events. Use controlIO to instruct the simulated bus to indicate that
//! it has received the required number of words, then that it has transmitted the required number of words, and wait
//! for the TRequestStatus to be completed.
//!
//! 9) Repeat step 8, but simulate Tx, then Rx.
//!
//! 10) Specify a notification trigger for bus error events. Use controlIO to instruct the simulated bus to indicate that
//! it has encountered a bus error, and wait for the TRequestStatus to be completed.
//!
//! 11) Use controlIO to instruct the simulated bus to block Master response. Specify a notification trigger for bus error
//! events. Use controlIO to instruct the simulated bus to indicate that it has received more than the required number
//! of words. Wait for the TRequestStatus to be completed (with KErrNone). Specify a notification trigger for Tx and
//! Tx Overrun, then use controlIO to instruct the simulated bus to unblock Master responses.Wait for the TRequestStatus
//! to be completed.
//!
//! @SYMTestExpectedResults 0) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 1) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 2) Kernel-side proxy client should return with KErrNone, exits otherwise.
//! 3) Kernel-side proxy client should return with KErrAlreadyExists, exits otherwise.
//! 4) Kernel-side proxy client should return with KErrNone, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 5) Kernel-side proxy client should return with KErrNone for both API calls, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 6) Kernel-side proxy client should return with KErrNone for both API calls, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 7) Results should be the same as for steps 1-6.
//! 8) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 9) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 10) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone, exits otherwise.
//! 11) Kernel-side proxy client should return with KErrNone for each API call, exits otherwise. The associated
//! TRequestStatus should be set to KErrNone in both cases, exits otherwise.
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt SlaveRxTxNotificationTests()
//
// Exercise the Slave channel operation for receive and transmit of data
//
// The means to supply a buffer to be filled with data received from the Master, and the number of words expected.
// It is only after the reception of the number of words specified that the notification should be issued
// (or on under-run/overrun/timeout/bus specific error).
//
// The means to supply a buffer with data to be transmitted to the Master, and the number of words to transmit.
// It is only after the transmission of the number of words specified that the notification should be issued
// (or under-run/overrun/timeout/bus specific error).
//
// The means to enable and disable the events which will trigger the notification callback. These events are:
// 1) the complete reception of the number of words specified,
// 2) the complete transmission of the number of words specified,
// 3) errors: receive buffer under-run (the Master terminates the transaction or reverts the direction of
// transfer before all expected data has been received), receive buffer overrun
// (Master attempts to write more data than this channel expected to receive), transmit buffer overrun
// (Master attempts to read more data than supplied by client), transmit buffer under-run
// (the Master terminates the transaction or reverts the direction of transfer before all expected data
// has been transmitted to it), access timeout(1) error, or bus specific error (e.g. collision, framing).
{
gTest.Printf(_L("\n\nStarting SlaveRxTxNotificationTests\n"));
TInt r=KErrNone;
#ifdef SLAVE_MODE
//Configure and capture a channel
gTest.Printf(_L("Create and capture channel\n"));
TUint32 busIdI2c;
TConfigI2cBufV01* i2cBuf=NULL;
r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 11); // 11 is the Slave channel number
gTest(r==KErrNone);
TInt chanId = 0; // Initialise to zero to silence compiler ...
r=SyncCaptureGChanSlaveI2c(chanId, i2cBuf, busIdI2c);
gTest(r==KErrNone);
// Update wait times for Master and Client
// Delegate the operation of this test to the proxy client (iic_client). The proxy will read, modify, and reinstate
// the timeout values.
gTest.Printf(_L("Starting UpdateTimeoutValues\n"));
r=gChanSlaveI2c.UpdateTimeoutValues(busIdI2c, chanId);
gTest(r==KErrNone);
// Receive and transmit buffers must be created by the client in Kernel heap and remain in their ownership throughout.
// Therefore, the kernel-side proxy will provide the buffer
// The buffers are of size KRxBufSizeInBytes and KRxBufSizeInBytes (currently 64)
//
// Rx tests
//
// For Rx, specify buffer granularity=4 (32-bit words), 8 words to receive, offset of 16 bytes
// 64 bytes as 16 words: words 0-3 offset, words 4-11 data, words 12-15 unused
gTest.Printf(_L("Starting RegisterRxBuffer\n"));
r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
gTest(r==KErrNone);
//
// If a buffer is already registered but a notification has not yet been requested the API should return KErrNone
gTest.Printf(_L("Starting (repeated) RegisterRxBuffer\n"));
r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
gTest(r==KErrNone);
//
// Now set the notification trigger
TRequestStatus status;
TInt triggerMask=ERxAllBytes;
gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes\n"));
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
//
// If a buffer is registered and a notification has been requested the API should return KErrAlreadyExists
gTest.Printf(_L("Starting RegisterRxBuffer (to be rejected)\n"));
r=gChanSlaveI2c.RegisterRxBuffer(chanId, 4, 8, 16);
gTest(r==KErrAlreadyExists);
//
// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
gTest.Printf(_L("Starting SimulateRxNWords\n"));
r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Starting Rx test completed OK\n"));
//
// Repeat for each error condition. Re-use the buffer previously registered.
//
//
triggerMask=ERxAllBytes|ERxUnderrun;
gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes\n"));
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent the bus master transmitting less words than anticipated (Rx Underrun)
gTest.Printf(_L("Starting SimulateRxNWords for Underrun\n"));
r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 6);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Rx Underrun test completed OK\n"));
// Re-set the notification trigger
triggerMask=ERxAllBytes|ERxOverrun;
gTest.Printf(_L("Starting SetNotificationTrigger\n"));
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent the bus master attempting to transmit more words than
// anticipated (Rx Overrun)
gTest.Printf(_L("Starting SimulateRxNWords for Overrun\n"));
r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 10);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Rx Overrun test completed OK\n"));
//
// Tx tests
//
// For Tx, specify buffer granularity=4 (32-bit words), 12 words to transmit, offset of 8 bytes
// 64 bytes as 16 words: words 0-1 offset, words 2-13 data, words 14-15 unused
gTest.Printf(_L("\nStarting RegisterTxBuffer\n"));
r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
gTest(r==KErrNone);
//
// If a buffer is already registered but a notification has not yet been requested the API should return KErrNone
gTest.Printf(_L("Starting (repeated) RegisterTxBuffer\n"));
r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
gTest(r==KErrNone);
//
// Re-set the notification trigger
// Now set the notification trigger
gTest.Printf(_L("Starting SetNotificationTrigger\n"));
triggerMask=ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
//
// If a buffer is already registered, a subsequent request to do the same should return KErrAlreadyExists
gTest.Printf(_L("Starting RegisterTxBuffer (to be rejected)\n"));
r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
gTest(r==KErrAlreadyExists);
//
// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
gTest.Printf(_L("Starting SimulateTxNWords (to be rejected)\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Tx test completed OK\n"));
//
// Repeat for each error condition. Re-use the buffer previously registered
//
// Re-set the notification trigger
gTest.Printf(_L("Starting SetNotificationTrigger\n"));
triggerMask=ETxAllBytes|ETxOverrun;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent transmission of less than the required number of words
// to the bus master (Tx Overrun)
gTest.Printf(_L("Starting SimulateTxNWords for Tx Overrun\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 10);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Tx Overrun test completed OK\n"));
// Re-set the notification trigger
triggerMask=ETxAllBytes|ETxUnderrun;
gTest.Printf(_L("Starting SetNotificationTrigger\n"));
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent the bus master attempting to read more words than
// anticipated (Tx Underrun)
gTest.Printf(_L("Starting SimulateTxNWords for Tx Underrun\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 14);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Tx Underrun test completed OK\n"));
//
// Simultaneous Rx,Tx tests
//
// For these tests, the proxy client (iic_slaveclient) will check that the expected results are witnessed
// in the required order, and will complete the TRequestStatus when the sequence is complete (or error occurs).
//
// Set the notification trigger for both Rx and Tx
triggerMask=ERxAllBytes|ETxAllBytes;
gTest.Printf(_L("\nStarting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
gTest.Printf(_L("Starting SimulateRxNWords\n"));
r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
gTest.Printf(_L("Starting SimulateTxNWords\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Rx, Tx test completed OK\n"));
//
// Set the notification trigger for both Rx and Tx
gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
triggerMask=ERxAllBytes|ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent transmission of the required number of words to the bus master.
gTest.Printf(_L("Starting SimulateTxNWords\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent receipt of the required number of words from the bus master.
gTest.Printf(_L("Starting SimulateRxNWords\n"));
r=gChanSlaveI2c.SimulateRxNWords(busIdI2c, chanId, 8);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Tx, Rx test completed OK\n"));
//
// Set the notification trigger for both Rx and Tx
gTest.Printf(_L("Starting SetNotificationTrigger with ERxAllBytes|ETxAllBytes\n"));
triggerMask=ERxAllBytes|ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to represent simultaneous transmission of the required number of words (12)
// to the bus master and receipt of the required number of words (8) from the bus master
gTest.Printf(_L("Starting SimulateRxTxNWords\n"));
r=gChanSlaveI2c.SimulateRxTxNWords(busIdI2c, chanId, 8, 12);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving and transmitting data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Tx with Rx test completed OK\n"));
// Clear the trigger mask - this is just invoking SetNotificationTrigger with a zero trigger
// so that no subsequent triggers are expected (and so no TRequestStatus is provided)
gTest.Printf(_L("Starting SetNotificationTrigger with 0\n"));
triggerMask=0;
r=gChanSlaveI2c.SetNotifNoTrigger(chanId,triggerMask);
gTest(r==KErrNone);
//
// Rx Overrun and Tx Underrun when both Rx and Tx notifications are requested
//
gTest.Printf(_L("Starting RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests\n"));
gChanSlaveI2c.TestOverrunUnderrun(busIdI2c,chanId,status);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests= %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("RxOverrun-TxUnderrun with simultaneous Rx,Tx notification requests test completed OK\n"));
//
// Bus Error tests
//
// Simulate a bus error
// A bus error will cause all pending bus activity to be aborted.
// Request a notification, then simulate a bus error
triggerMask=ERxAllBytes|ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
gTest.Printf(_L("Starting SimulateBusErr\n"));
r = gChanSlaveI2c.SimulateBusErr(busIdI2c,chanId);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Bus error test completed OK\n"));
// Clear the trigger mask and prepare for the next test
// This is unnecessary if the SetNotificationTrigger for the following test
// is called within the timeout period applied for Client responses ...
// but it represents a Client ending a transaction cleanly, and so is
// left here as an example
gTest.Printf(_L("\nStarting SetNotificationTrigger with 0\n"));
triggerMask=0;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Simulate Master timeout
// Do this by:
// - Requesting a trigger for Tx
// - simulating the Master performing a read (ie the PSL indicates a Tx event) to start the transaction
// - provide a buffer for Tx, and request notification of Tx events, ie wait for Master response
// - block the PSL Tx notification to the PIL, so that the PIL timeout timer expires when a simulated Tx event
// is next requested
//
// Indicate the test to be performed
gTest.Printf(_L("\nStarting BlockNotification\n"));
// Register a buffer for Tx, then set the notification trigger
gTest.Printf(_L("RegisterTxBuffer - for Master to start the transaction\n"));
r=gChanSlaveI2c.RegisterTxBuffer(chanId, 4, 12, 8);
gTest(r==KErrNone);
gTest.Printf(_L("SetNotificationTrigger - for Master to start the transaction\n"));
triggerMask=ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Now instruct the bus implementation to simulate the Master reading the expected number of words
gTest.Printf(_L("Starting SimulateTxNWords\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
gTest(r==KErrNone);
// Wait for the notification
User::WaitForRequest(status);
gTest.Printf(_L("Status request completed\n"));
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
// Client is now expected to perform its part of the transaction - so pretend we need another Tx
// - but block completion of the Tx so that we generate a bus error
gTest.Printf(_L("SetNotificationTrigger - for second part of the transaction\n"));
triggerMask=ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
gTest.Printf(_L("BlockNotification\n"));
r=gChanSlaveI2c.BlockNotification(busIdI2c, chanId);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("Blocked notification test completed OK\n"));
// Now instruct the bus implementation to represent the bus master attempting to read the required number of words
gTest.Printf(_L("\nStarting SimulateTxNWords\n"));
r=gChanSlaveI2c.SimulateTxNWords(busIdI2c, chanId, 12);
gTest(r==KErrNone);
// Re-set the notification trigger - for the 'blocked' Tx
// This is required because, in the event of a bus error, the set of requested Rx,Tx
// flags are cleared
gTest.Printf(_L("Starting SetNotificationTrigger with ETxAllBytes\n"));
triggerMask=ETxAllBytes;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Remove the block
gTest.Printf(_L("Starting UnblockNotification\n"));
r=gChanSlaveI2c.UnblockNotification(busIdI2c, chanId);
gTest(r==KErrNone);
//
// Wait for the notification
User::WaitForRequest(status);
r=status.Int();
if(r != KErrNone)
{
gTest.Printf(_L("TRequestStatus value after receiving data = %d\n"),r);
gTest(r==KErrNone);
}
gTest.Printf(_L("UnBlocked notification test completed OK\n"));
// Clear the trigger mask
gTest.Printf(_L("Starting SetNotificationTrigger with 0\n"));
triggerMask=0;
r=gChanSlaveI2c.SetNotificationTrigger(chanId,triggerMask,&status);
gTest(r==KErrNone);
// Release the channel
r = gChanSlaveI2c.ReleaseChannel( chanId );
gTest(r==KErrNone);
delete i2cBuf;
#else
gTest.Printf(_L("\nSlaveRxTxNotificationTests only supported when SLAVE_MODE is defined\n"));
#endif
return r;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2404
//! @SYMTestType UT
//! @SYMPREQ PREQ2128,2129
//! @SYMTestCaseDesc This test case tests that MasterSlave channels can only be used in one mode at a time, and that
//! if captured for Slave operation or with transactions queued for Master operation the channel can
//! not be de-registered.
//! @SYMTestActions 0) Capture the channel for Slave operation. Attempt to synchronously queue a transaction
//! on the channel. Attempt to asynchronously queue a transaction on the channel. Attempt
//! to de-register the channel.Release the Slave channel
//!
//! 1) Use controlio to block completion of queued transactions. Request asynchronous queue
//! transaction. Attempt to capture the channel for Slave operation. Attempt to de-register
//! the channel. Unblock completion of transactions and wait for the TRequestStatus for the
//! transaction to be completed.
//!
//! @SYMTestExpectedResults 0) Once captured for Slave operation, attempts to queue a transaction or de-register the channel
//! return KErrInUse, exits otherwise.
//! 1) With a transaction queued, attempt to capture the channel returns KErrInUse, exits otherwise.
//! Attempt to de-register channel returns KErrInUse, exits otherwise. The TRequestStatus should
//! be set to KErrTimedOut, exits otherwise.
//!
//!
//! @SYMTestPriority High
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt MasterSlaveAcquisitionTests()
//
// Test to check that:
// (1) A Master-Slave channel that has been captured for use in Slave mode will not allow requests for
// queing transactions to be accepted
// (2) A Master-Slave channel that has been captured for use in Slave mode can not be de-registered
// (3) A Master-Slave channel that has one or more transactions queued in its Master channel transaction queue
// can not be captured for use in Slave Made
// (4) A Master-Slave channel that has one or more transactions queued in its Master channel transaction queue
// can not be de-registered
//
{
gTest.Printf(_L("\n\nStarting MasterSlaveAcquisitionTests\n"));
TInt r=KErrNone;
#if defined(MASTER_MODE) && defined(SLAVE_MODE)
// Create a Master-Slave channel
RBusDevIicClient chanMasterSlaveI2c;
TBufC<18> proxyName;
if(!aStandAloneChan)
proxyName = KIicProxyFileNameRoot;
else
proxyName = KIicProxyFileNameRootCtrlLess;
r = chanMasterSlaveI2c.Open(proxyName);
gTest(r==KErrNone);
r = chanMasterSlaveI2c.InitSlaveClient(); // Initialise callback used for Slave processing
gTest(r==KErrNone);
//
// Capture the channel for Slave operation
// Attempt to synchronously queue a transaction on the channel - expect KErrInUse as a response
// Attempt to asynchronously queue a transaction on the channel - expect KErrInUse as a response
// Attempt to de-register the channel - expect KErrInUse as a response
// Release the Slave channel
//
// Create a I2C configuration buffer and the configuration data for use in capturing gChanSlaveI2c
TUint32 busIdI2c = 0;
TConfigI2cBufV01* i2cBuf=NULL;
r=CreateSlaveChanI2cConfig(i2cBuf, busIdI2c, 12); // 12 is the MasterSlave channel number
gTest(r==KErrNone);
TInt chanId;
gTest.Printf(_L("\nStarting synchronous CaptureChannel \n"));
r = chanMasterSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, chanId );
gTest.Printf(_L("Synchronous CaptureChannel returned = %d, chanId=0x%x\n"),r,chanId);
gTest(r==KErrNone);
//
_LIT(halfDuplexText,"Half Duplex Text");
TBuf8<17> halfDuplexBuf_8;
halfDuplexBuf_8.Copy(halfDuplexText);
TUsideTferDesc* tfer = NULL;
r=CreateSingleUserSideTransfer(tfer, EMasterWrite, 8, &halfDuplexBuf_8, NULL);
if(r!=KErrNone)
return r;
if(tfer==NULL)
return KErrGeneral;
//
TUsideTracnDesc* tracn = NULL;
r = CreateSingleUserSideTransaction(tracn, EI2c, i2cBuf, tfer, NULL, 0, NULL, NULL);
if(r!=KErrNone)
return r;
if(tracn==NULL)
return KErrGeneral;
gTest.Printf(_L("\nStarting synchronous QueueTransaction \n"));
r = chanMasterSlaveI2c.QueueTransaction(busIdI2c, tracn);
gTest.Printf(_L("Synchronous QueueTransaction returned = %d\n"),r);
gTest(r==KErrInUse);
gTest.Printf(_L("\nStarting asynchronous QueueTransaction \n"));
TRequestStatus status;
chanMasterSlaveI2c.QueueTransaction(status, busIdI2c, tracn);
User::WaitForRequest(status);
if(status != KErrInUse)
{
gTest.Printf(_L("TRequestStatus value after queue = %d\n"),status.Int());
gTest(r==KErrInUse);
}
//
// // If it is stand-alone channel, the client is responsible for channel creation.
// // So the RegisterChan and DeRegisterChan are not needed.
if(aStandAloneChan == 0)
{
gTest.Printf(_L("\nStarting deregistration of captured channel\n"));
r = chanMasterSlaveI2c.DeRegisterChan(busIdI2c);
gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
gTest(r==KErrInUse);
}
gTest.Printf(_L("\nInvoke ReleaseChannel for chanId=0x%x \n"),chanId);
r = chanMasterSlaveI2c.ReleaseChannel( chanId );
gTest.Printf(_L("ReleaseChannel returned = %d\n"),r);
gTest(r==KErrNone);
//
// Use ControlIO/StaticExtension to block transactions on the Master Channel
// Queue an asynchronous transaction on the channel
// Attempt to capture the channel for Slave operation - expect KErrInUse as a response
// Attempt to de-register the channel - expect KErrInUse as a response
// Unblock the channel
// Check for (timed out) completion of the transaction
//
gTest.Printf(_L("Invoking BlockReqCompletion\n"));
r = chanMasterSlaveI2c.BlockReqCompletion(busIdI2c);
gTest.Printf(_L("BlockReqCompletion returned = %d\n"),r);
//
gTest.Printf(_L("Queueing first transaction \n"));
chanMasterSlaveI2c.QueueTransaction(status, busIdI2c, tracn);
//
User::After(50000);
//
gTest.Printf(_L("\nStarting synchronous CaptureChannel \n"));
r = chanMasterSlaveI2c.CaptureChannel(busIdI2c, i2cBuf, chanId );
gTest.Printf(_L("Synchronous CaptureChannel returned = %d, chanId=0x%x\n"),r,chanId);
gTest(r==KErrInUse);
// If it is stand-alone channel, the client is responsible for channel creation.
// So the RegisterChan and DeRegisterChan are not needed.
if(aStandAloneChan == 0)
{
gTest.Printf(_L("\nStarting deregistration of channel\n"));
r = chanMasterSlaveI2c.DeRegisterChan(busIdI2c);
gTest.Printf(_L("DeRegisterChan returned = %d\n"),r);
gTest(r==KErrInUse);
}
gTest.Printf(_L("Invoking UnlockReqCompletion\n"));
r = chanMasterSlaveI2c.UnblockReqCompletion(busIdI2c);
gTest.Printf(_L("UnblockReqCompletion returned = %d\n"),r);
//
User::After(50000);
//
User::WaitForRequest(status);
r=status.Int();
if(r != KErrTimedOut)
{
gTest.Printf(_L("TRequestStatus value after queue = %d\n"),r);
gTest(r==KErrTimedOut);
}
r=KErrNone; // Ensure error code is not propagated
delete i2cBuf;
delete tfer;
delete tracn;
chanMasterSlaveI2c.Close();
#else
gTest.Printf(_L("\nMasterSlaveAcquisitionTests only supported when both MASTER_MODE and SLAVE_MODE are defined\n"));
#endif
return r;
}
//----------------------------------------------------------------------------------------------
//! @SYMTestCaseID KBASE-T_IIC-2404
//! @SYMTestType UT
//! @SYMDEF DEF141732
//! @SYMTestCaseDesc This test case tests the inline functions of DIicBusChannel interface.
//! @SYMTestActions Call Kernel-side proxy client function to perform interface tests.
//! @SYMTestExpectedResults Kernel-side proxy client should return with KErrNone.
//! @SYMTestPriority Medium
//! @SYMTestStatus Implemented
//----------------------------------------------------------------------------------------------
LOCAL_C TInt IicInterfaceInlineTests()
{
if(aStandAloneChan == 1)
{
gTest.Printf(_L("\n\nStarting IicInterfaceInlineTests\n"));
TInt r=KErrNone;
r = gChanMasterSpi.TestIiicChannelInlineFunc();
return r;
}
else
{
gTest.Printf(_L("\nIicInterfaceInlineTests can only be run in Standalone mode\n"));
return KErrNone;
}
}
LOCAL_C TInt RunTests()
//
// Utility method to invoke the separate tests
//
{
TInt r =KErrNone;
r = IicInterfaceInlineTests();
if(r!=KErrNone)
return r;
r = MasterBasicTests();
if(r!=KErrNone)
return r;
r = SlaveRxTxNotificationTests();
if(r!=KErrNone)
return r;
r = SlaveChannelCaptureReleaseTests();
if(r!=KErrNone)
return r;
r = MasterExtTests(KTransactionWithPreamble);
if(r!=KErrNone)
return r;
r = MasterExtTests(KTransactionWithMultiTransc);
if(r!=KErrNone)
return r;
r = MasterExtTests(KTransactionWithMultiTransc|KTransactionWithPreamble);
if(r!=KErrNone)
return r;
r = MasterTransactionTests();
if(r!=KErrNone)
return r;
r = MasterSlaveAcquisitionTests();
if(r!=KErrNone)
return r;
return KErrNone;
}
GLDEF_C TInt E32Main()
//
// Main
//
{
gTest.Title();
gTest.Start(_L("Test IIC API\n"));
TInt r = KErrNone;
// Turn off lazy dll unloading
RLoader l;
gTest(l.Connect()==KErrNone);
gTest(l.CancelLazyDllUnload()==KErrNone);
l.Close();
#ifdef IIC_SIMULATED_PSL
gTest.Next(_L("Start the IIC with controller test\n"));
aStandAloneChan = 0;
gTest.Next(_L("Load Simulated IIC PSL bus driver"));
r = User::LoadPhysicalDevice(KIicPslFileName);
gTest.Printf(_L("return value r=%d"),r);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load Simulated PSL SPI bus driver"));
r = User::LoadPhysicalDevice(KSpiFileName);
gTest.Printf(_L("return value r=%d"),r);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load Simulated PSL I2C bus driver"));
r = User::LoadPhysicalDevice(KI2cFileName);
gTest.Printf(_L("return value r=%d"),r);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load kernel-side proxy IIC client"));
r = User::LoadLogicalDevice(KIicProxyFileName);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load kernel-side proxy IIC slave client"));
r = User::LoadLogicalDevice(KIicProxySlaveFileName);
gTest(r==KErrNone || r==KErrAlreadyExists);
__KHEAP_MARK;
// First ascertain what bus options are available.
// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
// Open a Master SPI channel to the kernel side proxy
TBufC<30> proxyName(KIicProxyFileNameRoot);
r = gChanMasterSpi.Open(proxyName);
gTest(r==KErrNone);
// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
// I2C has Master channel number 10 and Slave channel numer 11 if built with both MASTER_MODE and SLAVE_MODE
// Open a Master I2C channel to the kernel side proxy
r = gChanMasterI2c.Open(proxyName);
gTest(r==KErrNone);
TBufC<15> proxySlaveName(KIicProxySlaveFileNameRoot);
r = gChanSlaveI2c.Open(proxySlaveName);
gTest(r==KErrNone);
r = gChanSlaveI2c.InitSlaveClient();
gTest(r==KErrNone);
// Instigate tests
r = RunTests();
gTest(r==KErrNone);
gTest.Printf(_L("Tests completed OK, about to close channel\n"));
gChanMasterSpi.Close();
gChanMasterI2c.Close();
gChanSlaveI2c.Close();
UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, 0, 0);
// Not safe to assume that heap clean-up has completed for the channels just closed, so insert a delay.(DEF145202)
User::After(20 * 1000);
__KHEAP_MARKEND;
gTest.Next(_L("Free kernel-side proxy IIC client"));
TInt err = User::FreeLogicalDevice(KIicProxyFileNameRoot);
gTest(err==KErrNone || err==KErrAlreadyExists);
gTest.Next(_L("Free kernel-side proxy IIC slave client"));
err = User::FreeLogicalDevice(KIicProxySlaveFileNameRoot);
gTest(err==KErrNone || err==KErrAlreadyExists);
gTest.Next(_L("Free Simulated PSL I2C bus driver"));
err = User::FreePhysicalDevice(KI2cFileName);
gTest(err==KErrNone);
gTest.Next(_L("Free Simulated PSL SPI bus driver"));
err = User::FreePhysicalDevice(KSpiFileName);
gTest(err==KErrNone);
gTest.Next(_L("Free Simulated IIC PSL bus driver"));
err = User::FreePhysicalDevice(KIicPslFileNameRoot);
gTest(err==KErrNone);
gTest.Next(_L("Start the controller-less IIC test\n"));
aStandAloneChan = 1;
gTest.Next(_L("Load Simulated PSL SPI bus driver"));
r = User::LoadPhysicalDevice(KSpiFileNameCtrlLess);
gTest.Printf(_L("return value r=%d"),r);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load Simulated PSL I2C bus driver"));
r = User::LoadPhysicalDevice(KI2cFileNameCtrlLess);
gTest.Printf(_L("return value r=%d"),r);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load kernel-side proxy IIC client"));
r = User::LoadLogicalDevice(KIicProxyFileNameCtrlLess);
gTest(r==KErrNone || r==KErrAlreadyExists);
gTest.Next(_L("Load kernel-side proxy IIC slave client"));
r = User::LoadLogicalDevice(KIicProxySlaveFileNameCtrlLess);
gTest(r==KErrNone || r==KErrAlreadyExists);
// First ascertain what bus options are available.
__KHEAP_MARK;
// SPI has Master channel numbers 1,2 and 4, Slave channel number 3
// Open a Master SPI channel to the kernel side proxy
TBufC<30> proxyNameCtrlLess(KIicProxyFileNameRootCtrlLess);
r = gChanMasterSpi.Open(proxyNameCtrlLess);
gTest(r==KErrNone);
// I2C has Master channel numbers 10 and 11, if built with MASTER_MODE, only
// I2C has Slave channel numbers 12 and 13, if built with SLAVE_MODE, only
// I2C has Master channel number 10 and Slave channel numer 11 if built with both MASTER_MODE and SLAVE_MODE
// Open a Master I2C channel to the kernel side proxy
r = gChanMasterI2c.Open(proxyNameCtrlLess);
gTest(r==KErrNone);
TBufC<35> proxySlaveNameCtrlLess(KIicProxySlaveFileNameRootCtrlLess);
r = gChanSlaveI2c.Open(proxySlaveNameCtrlLess);
gTest(r==KErrNone);
r = gChanSlaveI2c.InitSlaveClient();
gTest(r==KErrNone);
// Instigate tests
r = RunTests();
gTest(r==KErrNone);
gTest.Printf(_L("Tests completed OK, about to close channel\n"));
gChanMasterSpi.Close();
gChanMasterI2c.Close();
gChanSlaveI2c.Close();
UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, 0, 0);
// Not safe to assume that heap clean-up has completed for the channels just closed, so insert a delay.(DEF145202)
User::After(20 * 1000);
__KHEAP_MARKEND;
gTest.Next(_L("Free kernel-side proxy IIC client"));
err = User::FreeLogicalDevice(KIicProxyFileNameRootCtrlLess);
gTest(err==KErrNone || err==KErrAlreadyExists);
gTest.Next(_L("Free kernel-side proxy IIC slave client"));
err = User::FreeLogicalDevice(KIicProxySlaveFileNameRootCtrlLess);
gTest(err==KErrNone || err==KErrAlreadyExists);
gTest.Next(_L("Free Simulated PSL I2C bus driver"));
err = User::FreePhysicalDevice(KI2cFileNameCtrlLess);
gTest(err==KErrNone);
gTest.Next(_L("Free Simulated PSL SPI bus driver"));
err = User::FreePhysicalDevice(KSpiFileNameCtrlLess);
gTest(err==KErrNone);
#else
gTest.Printf(_L("Don't do the test if it is not IIC_SIMULATED_PSL"));
#endif
gTest.End();
return r;
}