// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\personality\example\main.cpp
// Test code for example RTOS personality.
//
//
#include <kernel/kern_priv.h>
#include <personality/example/personality.h>
#ifdef __cplusplus
extern "C" {
#endif
#define OC_TASK 0
#define L2_TASK 1
#define RR_TASK 2
#define NONEXISTENT_TASK 3
#define TM_TASK 4
#define TASK1 6
#define TASK2 7
#define TASK3 8
#define TASK4 9
#define L1_TASK 10
void oo_overall_control(void);
void l1_task_entry(void);
void l2_task_entry(void);
void rr_task_entry(void);
void tm_task_entry(void);
void task1_entry(void);
void task2_entry(void);
void task3_entry(void);
void task4_entry(void);
typedef void (*isr_entry)(unsigned);
extern int start_random_isr(isr_entry vector);
extern void stop_random_isr(void);
const taskinfo task_list[] =
{
/* entry_pt, priority, stack_size, task_id, auto_start */
{ &oo_overall_control, 120, 1024, OC_TASK, 1 },
{ &l2_task_entry, 236, 1024, L2_TASK, 0 },
{ &rr_task_entry, 224, 1024, RR_TASK, 0 },
{ &tm_task_entry, 240, 1024, TM_TASK, 0 },
{ &task1_entry, 112, 1024, TASK1, 0 },
{ &task2_entry, 112, 1024, TASK2, 0 },
{ &task3_entry, 112, 1024, TASK3, 0 },
{ &task4_entry, 112, 1024, TASK4, 0 },
{ &l1_task_entry, 244, 1024, L1_TASK, 0 },
/* terminator */
{ 0, 0, 0, 0, 0 }
};
const poolinfo pool_list[] =
{
/* block size, block count */
{ 32, 256 },
{ 64, 256 },
{ 128, 128 },
{ 256, 64 },
{ 512, 32 },
/* terminator */
{ 0, 0 }
};
const int timer_count = 8;
const int semaphore_count = 2;
#define TM_TIMER 0
#define TM_INIT_DELAY 1000
#define TM_PERIOD 2
volatile unsigned next_random_id = 0;
volatile unsigned random_sem_signal_interval = 0;
volatile unsigned random_sem_signal_count = 0;
volatile unsigned random_send_interval = 0;
volatile unsigned random_send_count = 0;
volatile unsigned tmcount = 0;
volatile int t1func = 0;
volatile int t2func = 0;
volatile int t3func = 0;
volatile int t4func = 0;
#define TEST_SEM 0
#define ISR_SEM 1
#define MSG_ID_INIT 1
#define MSG_ID_RUN 2
#define MSG_ID_RUN_P 3
#define MSG_ID_RND_ISR 4
#define MSG_ID_DONE 5
#define MSG_ID_DATA 6
#define MSG_ID_FLUSH 7
#define MSG_ID_SEM_RPT 8
#define MSG_ID_RCV_RPT 9
#define MSG_ID_TM_RPT 10
typedef struct _run_msg
{
msghdr header;
int task_id;
unsigned tmcount;
int parameter;
} run_msg;
typedef struct _random_isr_msg
{
msghdr header;
unsigned random_isr_number;
unsigned extra;
} random_isr_msg;
typedef struct _data_msg
{
msghdr header;
int length;
unsigned char checksum;
unsigned char data[1];
} data_msg;
typedef struct _report_msg
{
msghdr header;
int pad;
unsigned count;
unsigned ok_count;
unsigned bad_count;
} report_msg;
void busy_wait(unsigned ticks)
{
unsigned t0 = tmcount;
while ((tmcount - t0) < ticks)
{}
}
void send_run_signal()
{
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
assert(m);
m->header.msg_id = MSG_ID_RUN;
m->task_id = current_task_id();
m->tmcount = tmcount;
int r = send_msg(OC_TASK, &m->header);
assert(r == OK);
}
void send_run_signal_p(int parameter)
{
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
assert(m);
m->header.msg_id = MSG_ID_RUN_P;
m->task_id = current_task_id();
m->tmcount = tmcount;
m->parameter = parameter;
int r = send_msg(OC_TASK, &m->header);
assert(r == OK);
}
void tsend_run_signal_p(int task_id, int parameter)
{
run_msg* m = (run_msg*)alloc_mem_block(sizeof(run_msg));
assert(m);
m->header.msg_id = MSG_ID_RUN_P;
m->task_id = current_task_id();
m->tmcount = tmcount;
m->parameter = parameter;
int r = send_msg(task_id, &m->header);
assert(r == OK);
}
void check_no_signal()
{
msghdr* m = NULL;
int r = recv_msg(&m, NO_WAIT);
assert(r == TIMED_OUT);
}
unsigned check_for_signal(int task_id)
{
msghdr* m = NULL;
int r = recv_msg(&m, NO_WAIT);
assert(r == OK);
assert(m->msg_id == MSG_ID_RUN);
run_msg* rm = (run_msg*)m;
assert(rm->task_id == task_id);
unsigned tmc = rm->tmcount;
free_mem_block(m);
return tmc;
}
int check_for_signal_p(int task_id, int task_id2, unsigned* pt)
{
msghdr* m = NULL;
int r = recv_msg(&m, NO_WAIT);
assert(r == OK);
assert(m->msg_id == MSG_ID_RUN_P);
run_msg* rm = (run_msg*)m;
assert(rm->task_id == task_id);
assert(m->sending_task_id == task_id2);
r = rm->parameter;
if (pt)
*pt = rm->tmcount;
free_mem_block(m);
return r;
}
int wait_for_signal_p(int task_id, unsigned* pt)
{
msghdr* m = NULL;
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
assert(m->msg_id == MSG_ID_RUN_P);
run_msg* rm = (run_msg*)m;
assert(rm->task_id == task_id);
r = rm->parameter;
if (pt)
*pt = rm->tmcount;
free_mem_block(m);
return r;
}
void resume_4(int t1, int t2, int t3, int t4)
{
if (t1>=0)
assert(resume_task(t1)==OK);
if (t2>=0)
assert(resume_task(t2)==OK);
if (t3>=0)
assert(resume_task(t3)==OK);
if (t4>=0)
assert(resume_task(t4)==OK);
}
void check_signal_4(int t1, int t2, int t3, int t4)
{
if (t1>=0)
check_for_signal(t1);
else
check_no_signal();
if (t2>=0)
check_for_signal(t2);
else
check_no_signal();
if (t3>=0)
check_for_signal(t3);
else
check_no_signal();
if (t4>=0)
check_for_signal(t4);
else
check_no_signal();
}
void check_for_multiple_signals(int task_id, int count)
{
unsigned t = check_for_signal(task_id);
while (--count)
{
unsigned t2 = check_for_signal(task_id);
assert(t2 - t >= 1);
t = t2;
}
}
int flush_signals(void)
{
int c = 0;
for (;;)
{
msghdr* m = NULL;
int r = recv_msg(&m, NO_WAIT);
if (r == TIMED_OUT)
break;
assert(r == OK);
assert(m->msg_id == MSG_ID_RUN);
free_mem_block(m);
++c;
}
return c;
}
void test_mem_pool(size_t size, int count, void** chain)
{
int i, fill;
void *b, *bb, *c;
c = *chain;
for (i=0; i<count; ++i)
{
b = alloc_mem_block(size);
assert(b != NULL);
fill = (int)(size>>5);
fill += 29;
fill *= fill;
fill &= 0xff;
memset(b, fill, size);
*(void**)b = c;
((int*)b)[1] = (int)size;
c = b;
}
bb = alloc_mem_block(size);
assert(bb == NULL);
*chain = c;
}
void check_blocks(void* chain)
{
void* p = chain;
while (p)
{
unsigned char *q, *qq;
int size, fill, x;
size = ((int*)p)[1];
fill = (size>>5)+29;
fill = (fill*fill)&0xff;
q = (unsigned char*)p + sizeof(void*) + sizeof(int);
qq = (unsigned char*)p + size;
x = 0;
while (q<qq)
x |= (*q++ ^ fill);
assert(x==0);
p = *(void**)p;
}
}
int free_blocks(void* chain)
{
void* p = chain;
int c = 0;
while (p)
{
void* n = *(void**)p;
free_mem_block(p);
p = n;
++c;
}
return c;
}
void test_mem_mgr(void)
{
void* chain = NULL;
const poolinfo* pi = pool_list;
int nblocks = 0;
int nfreed = 0;
for (; pi->block_size; ++pi)
{
nblocks += pi->block_count;
test_mem_pool(pi->block_size, pi->block_count, &chain);
}
check_blocks(chain);
nfreed = free_blocks(chain);
assert(nfreed == nblocks);
chain = NULL;
for (--pi; pi >= pool_list; --pi)
test_mem_pool(pi->block_size, pi->block_count, &chain);
check_blocks(chain);
nfreed = free_blocks(chain);
assert(nfreed == nblocks);
chain = NULL;
kprintf("Memory Manager Test OK");
}
void test_suspend_1(void)
{
unsigned t1, t2, t3;
int r;
t1 = tmcount;
delay(5*TM_PERIOD);
t2 = tmcount;
assert( ((int)t2)-((int)t1) >= 5 );
r = suspend_task(TM_TASK);
assert(r == OK);
t1 = tmcount;
delay(5*TM_PERIOD);
t2 = tmcount;
assert(t2==t1);
r = resume_task(TM_TASK);
assert(r == OK);
t3 = tmcount;
assert( ((int)t3)-((int)t2) >= 5 );
r = suspend_task(TM_TASK);
assert(r == OK);
r = suspend_task(TM_TASK);
assert(r == OK);
t1 = tmcount;
delay(5*TM_PERIOD);
t2 = tmcount;
assert(t2==t1);
r = resume_task(TM_TASK);
assert(r == OK);
t3 = tmcount;
assert(t3==t2);
r = resume_task(TM_TASK);
assert(r == OK);
t3 = tmcount;
assert( ((int)t3)-((int)t2) >= 5 );
r = suspend_task(-1);
assert(r == BAD_TASK_ID);
r = suspend_task(300);
assert(r == BAD_TASK_ID);
r = suspend_task(NONEXISTENT_TASK);
assert(r == BAD_TASK_ID);
r = resume_task(-1);
assert(r == BAD_TASK_ID);
r = resume_task(300);
assert(r == BAD_TASK_ID);
r = resume_task(NONEXISTENT_TASK);
assert(r == BAD_TASK_ID);
kprintf("test_suspend_1 OK");
}
void test_priority_scheduling(void)
{
int init_pri = get_task_priority(current_task_id());
resume_4(TASK1, TASK2, TASK3, TASK4);
delay(80*TM_PERIOD);
check_for_multiple_signals(TASK1, 50); // check no timeslicing
assert(flush_signals()<=31);
suspend_task(TASK1);
delay(80*TM_PERIOD);
check_for_multiple_signals(TASK2, 50); // check no timeslicing
assert(flush_signals()<=31);
suspend_task(TASK2);
delay(80*TM_PERIOD);
check_for_multiple_signals(TASK3, 50); // check no timeslicing
assert(flush_signals()<=31);
suspend_task(TASK3);
delay(1);
check_for_signal(TASK4);
assert(flush_signals()<=1);
t1func = 1;
t2func = 1;
t3func = 1;
t4func = 1;
resume_4(TASK1, TASK2, TASK3, TASK4);
delay(10);
flush_signals();
resume_4(TASK3, TASK2, TASK4, TASK1);
delay(10);
check_signal_4(TASK3, TASK2, TASK4, TASK1);
check_no_signal();
resume_4(TASK1, TASK2, TASK3, TASK4);
check_no_signal(); // all lower priority so don't run
set_task_priority(TASK2, 255); // higher than current task so run immediately
check_for_signal(TASK2);
set_task_priority(TASK4, 116);
check_no_signal(); // all lower priority so don't run
delay(10);
check_for_signal(TASK4);
check_for_signal(TASK1);
check_for_signal(TASK3);
set_task_priority(TASK1, 116);
set_task_priority(TASK2, 116);
set_task_priority(TASK3, 116);
set_task_priority(TASK4, 116);
resume_4(TASK1, TASK2, TASK3, TASK4);
set_task_priority(current_task_id(), 112); // drop current task priority
assert(get_task_priority(current_task_id())==112);
check_signal_4(TASK1, TASK2, TASK3, TASK4);
set_task_priority(current_task_id(), init_pri);
assert(get_task_priority(current_task_id())==init_pri);
kprintf("test_priority_scheduling OK");
}
unsigned sem_test(int task_id)
{
int r = semaphore_signal(TEST_SEM);
assert(r==OK);
return check_for_signal(task_id);
}
unsigned sem_test_p(int task_id, int parameter)
{
unsigned t;
int r = semaphore_signal(TEST_SEM);
assert(r==OK);
r = check_for_signal_p(task_id, task_id, &t);
assert(r == parameter);
return t;
}
unsigned sem_test_pt(int task_id, int parameter)
{
unsigned t;
int r = semaphore_signal(TEST_SEM);
assert(r==OK);
r = check_for_signal_p(task_id, task_id, &t);
assert(r == parameter);
return t;
}
void test_semaphore(void)
{
unsigned t1, t2, t3;
int r;
int init_pri = get_task_priority(current_task_id());
set_task_priority(TASK1, 128);
set_task_priority(TASK2, 128);
set_task_priority(TASK3, 128);
set_task_priority(TASK4, 128);
t1func = 2;
t2func = 2;
t3func = 2;
t4func = 2;
resume_4(TASK1, TASK2, TASK3, TASK4);
delay(10); // let tasks wait on semaphore
check_no_signal();
sem_test(TASK1); // test they are released in same order
sem_test(TASK2);
sem_test(TASK3);
sem_test(TASK4);
check_no_signal();
set_task_priority(TASK3, 132); // test highest priority is released first
sem_test(TASK3);
sem_test(TASK3);
suspend_task(TASK3); // test suspended task doesn't contend for semaphore
sem_test(TASK1);
sem_test(TASK2);
sem_test(TASK4);
sem_test(TASK1);
suspend_task(TASK2);
sem_test(TASK4);
sem_test(TASK1);
sem_test(TASK4);
set_task_priority(TASK2, 136); // change priority while suspended
sem_test(TASK1);
sem_test(TASK4);
sem_test(TASK1);
resume_task(TASK2);
sem_test(TASK2);
sem_test(TASK2); // test new highest priority task acquires semaphore first
delay(100*TM_PERIOD);
check_no_signal(); // check waits don't time out
t2func = 3; // switch over to timed waits for task 2
t1 = sem_test(TASK2); // get one last message of previous type
delay(5*TM_PERIOD);
t2 = sem_test_p(TASK2, OK); // signal after half the timeout and check OK
delay(11*TM_PERIOD); // wait for > timeout
r = check_for_signal_p(TASK2, TASK2, &t3);
assert(r == TIMED_OUT);
kprintf("t2-t1=%d t3-t2=%d", t2-t1, t3-t2);
assert(t2-t1 >= 5);
assert(t3-t2 >= 10);
sem_test_p(TASK2, OK);
resume_task(TASK3);
set_task_priority(current_task_id(), 176); // raise current task priority
semaphore_signal(TEST_SEM); // signal semaphore 4 times - should release all 4 waiting threads
semaphore_signal(TEST_SEM);
semaphore_signal(TEST_SEM);
semaphore_signal(TEST_SEM);
set_task_priority(current_task_id(), init_pri); // let tasks run
r = check_for_signal_p(TASK2, TASK2, NULL);
assert(r == OK);
check_for_signal(TASK3);
check_for_signal(TASK4);
check_for_signal(TASK1);
set_task_priority(current_task_id(), 176); // raise current task priority
busy_wait(11); // let semaphore wait time out
t1func = 4; // switch all threads over
t2func = 4; //
t3func = 4; //
t4func = 4; //
semaphore_signal(TEST_SEM); // signal semaphore 3 times - should release other 3 waiting threads
semaphore_signal(TEST_SEM);
semaphore_signal(TEST_SEM);
set_task_priority(current_task_id(), init_pri); // let tasks run
r = check_for_signal_p(TASK2, TASK2, NULL);
assert(r == TIMED_OUT);
check_for_signal(TASK3);
check_for_signal(TASK4);
check_for_signal(TASK1);
kprintf("test_semaphore OK");
}
void test_message_queue(void)
{
unsigned t1, t2, t3, t4;
int tid, p, r;
int init_pri = get_task_priority(current_task_id());
p = 0;
t1 = 0;
for (tid = TASK1; tid <= TASK4; ++tid)
{
for (p = 1; p; p<<=1)
{
tsend_run_signal_p(tid, p);
r = check_for_signal_p(OC_TASK, tid, NULL);
assert(r == p);
}
}
check_no_signal();
set_task_priority(current_task_id(), 176); // raise current task priority
set_task_priority(TASK4, 144); // change task priorities while they are waiting
set_task_priority(TASK3, 140);
set_task_priority(TASK2, 136);
set_task_priority(TASK1, 132);
t1func = 5; // switch task 1 to timed waits
for (tid = TASK1; tid <= TASK4; ++tid)
{
for (p = 0; p<0x40000000; p+=(0x413b9cb+tid))
{
tsend_run_signal_p(tid, p); // let multiple messages accumulate on the queues
}
}
check_no_signal();
set_task_priority(current_task_id(), init_pri); // let tasks run
kprintf("init_pri=%d",init_pri);
for (tid = TASK4; tid >= TASK1; --tid)
{
for (p = 0; p<0x40000000; p+=(0x413b9cb+tid))
{
r = check_for_signal_p(OC_TASK, tid, &t1);
assert(r == p);
}
}
delay(5*TM_PERIOD);
tsend_run_signal_p(TASK1, p); // send after half timeout
r = check_for_signal_p(OC_TASK, TASK1, &t2);
assert(r == p);
delay(11*TM_PERIOD); // wait for > timeout
tsend_run_signal_p(TASK1, ~p); // send after timeout
r = check_for_signal_p(TASK1, TASK1, &t3);
assert(r == TIMED_OUT);
kprintf("t2-t1=%d t3-t2=%d", t2-t1, t3-t2);
assert(t2-t1 >= 5);
assert(t3-t2 >= 10);
r = check_for_signal_p(OC_TASK, TASK1, &t4);
assert(r == ~p);
assert(t4-t3 <= 1);
t1func = 6; // switch task 1 to timed semaphore wait
t2func = 7; // switch task 2 to timed queue wait
t3func = 8; //
t4func = 8; //
for (tid = TASK1; tid <= TASK4; ++tid)
{
tsend_run_signal_p(tid, 0);
r = check_for_signal_p(OC_TASK, tid, NULL);
assert(r == 0);
}
check_no_signal();
kprintf("test_message_queue OK");
}
void random_isr(unsigned n)
{
random_isr_msg* m;
unsigned extra = 1;
unsigned count = 1;
if (!(n%11))
++count;
if (!(n%13))
++count;
while (count--)
{
m = (random_isr_msg*)alloc_mem_block(sizeof(random_isr_msg));
m->header.msg_id = MSG_ID_RND_ISR;
m->random_isr_number = n;
extra *= n;
m->extra = extra;
send_msg(L1_TASK, &m->header);
}
if (random_sem_signal_count && !--random_sem_signal_count)
{
random_sem_signal_count = random_sem_signal_interval;
semaphore_signal(ISR_SEM);
}
}
void flush_queue(msghdr** f, msghdr** l, msghdr* tm)
{
msghdr* m = *f;
*f = NULL;
*l = NULL;
send_to_epoc(tm);
while (m)
{
msghdr* n = m->next;
send_to_epoc(m);
m = n;
}
}
void l1_task_entry(void)
{
msghdr* first = NULL;
msghdr* last = NULL;
unsigned state = 0;
unsigned extra_count = 0;
unsigned extra_value = 0;
assert(current_task_id() == L1_TASK);
kprintf("L1_TASK running");
for (;;)
{
msghdr* m = NULL;
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
switch (m->msg_id)
{
case MSG_ID_RND_ISR:
{
random_isr_msg* rm = (random_isr_msg*)m;
assert(m->sending_task_id == TASK_ID_ISR);
assert(rm->random_isr_number == next_random_id);
if (state == 0)
{
extra_count = 0;
if (!(next_random_id % 11))
++extra_count;
if (!(next_random_id % 13))
++extra_count;
extra_value = next_random_id;
}
else if (state > 0)
{
extra_value *= next_random_id;
}
assert(rm->extra == extra_value);
if (++state > extra_count)
state = 0;
if (state == 0)
++next_random_id;
if (rm->random_isr_number == 0)
send_msg(OC_TASK, m), m=NULL;
if (state == 1 && extra_count == 2 && m)
{
flush_queue(&first, &last, m);
m = NULL;
}
if (random_send_count && !--random_send_count)
{
random_send_count = random_send_interval;
if (m)
send_msg(TASK2, m), m=NULL;
}
break;
}
case MSG_ID_DATA:
m->next = NULL;
if (last)
last->next = m;
else
first = m;
last = m;
m = NULL;
break;
case MSG_ID_FLUSH:
flush_queue(&first, &last, m);
m = NULL;
break;
default:
kprintf("L1<-%08x",m->msg_id);
break;
}
if (m)
free_mem_block(m);
}
}
void l2_task_entry(void)
{
assert(current_task_id() == L2_TASK);
kprintf("L2_TASK running");
for (;;)
{
msghdr* m = NULL;
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
switch (m->msg_id)
{
case MSG_ID_DATA:
{
data_msg* dm = (data_msg*)m;
int i;
unsigned char cs = 0;
for (i=0; i<dm->length; ++i)
cs = (unsigned char)(cs + dm->data[i]);
dm->checksum = cs;
send_msg(L1_TASK, m);
m=NULL;
break;
}
default:
kprintf("L2<-%08x",m->msg_id);
break;
}
if (m)
free_mem_block(m);
}
}
void rr_task_entry(void)
{
assert(current_task_id() == RR_TASK);
kprintf("RR_TASK running");
for (;;)
{
msghdr* m = NULL;
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
switch (m->msg_id)
{
case MSG_ID_DATA:
send_msg(L2_TASK, m);
m=NULL;
break;
default:
kprintf("RR<-%08x",m->msg_id);
break;
}
if (m)
free_mem_block(m);
}
}
void tm_task_entry(void)
{
assert(current_task_id() == TM_TASK);
kprintf("TM_TASK running");
for (;;)
{
msghdr* m = NULL;
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
switch (m->msg_id)
{
case MSG_ID_TIMEOUT:
tmcount = ((timer_msg*)m)->count;
assert(m->sending_task_id == TASK_ID_ISR);
if (!(tmcount & 255))
{
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
rpt->header.msg_id = MSG_ID_TM_RPT;
rpt->count = tmcount;
rpt->ok_count = 0;
rpt->bad_count = 0;
send_to_epoc(&rpt->header);
}
break;
default:
kprintf("TM<-%08x",m->msg_id);
break;
}
free_mem_block(m);
}
}
void generic_task(volatile int* f)
{
int r;
msghdr* m;
unsigned t1, t2;
unsigned count = 0;
unsigned ok_count = 0;
unsigned bad_count = 0;
while (*f==0)
{
send_run_signal();
busy_wait(1);
}
while (*f==1)
{
send_run_signal();
suspend_task(current_task_id());
}
while (*f==2)
{
r = semaphore_wait(TEST_SEM, WAIT_FOREVER);
assert(r == OK);
send_run_signal();
}
while (*f==3)
{
r = semaphore_wait(TEST_SEM, 10*TM_PERIOD);
assert(r==OK || r==TIMED_OUT);
send_run_signal_p(r);
}
while (*f==4)
{
r = recv_msg(&m, WAIT_FOREVER);
assert(r==OK);
assert(m->sending_task_id == OC_TASK);
r = send_msg(OC_TASK, m);
assert(r == OK);
}
while (*f==5)
{
r = recv_msg(&m, 10*TM_PERIOD);
assert(r==OK || r==TIMED_OUT);
if (r == OK)
{
assert(m->sending_task_id == OC_TASK);
r = send_msg(OC_TASK, m);
assert(r == OK);
}
else
send_run_signal_p(r);
}
while (*f==6)
{
t1 = tick_count();
r = semaphore_wait(ISR_SEM, 5);
t2 = tick_count() - t1;
if (r == TIMED_OUT && t2<5)
{
kprintf("SEM timed out too soon: %d", t2);
++bad_count;
}
if (r == OK)
++ok_count;
++count;
if (!(count & 0xff))
{
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
rpt->header.msg_id = MSG_ID_SEM_RPT;
rpt->count = count;
rpt->ok_count = ok_count;
rpt->bad_count = bad_count;
send_to_epoc(&rpt->header);
}
}
while (*f==7)
{
t1 = tick_count();
r = recv_msg(&m, 5);
t2 = tick_count() - t1;
if (r == TIMED_OUT && t2<5)
{
kprintf("RECV timed out too soon: %d", t2);
++bad_count;
}
if (r==OK)
++ok_count, free_mem_block(m);
++count;
if (!(count & 0xff))
{
report_msg* rpt = (report_msg*)alloc_mem_block(sizeof(report_msg));
rpt->header.msg_id = MSG_ID_RCV_RPT;
rpt->count = count;
rpt->ok_count = ok_count;
rpt->bad_count = bad_count;
send_to_epoc(&rpt->header);
}
}
kprintf("Task %d finished", current_task_id());
for(;;)
suspend_task(current_task_id());
}
void task1_entry(void)
{
assert(current_task_id() == TASK1);
generic_task(&t1func);
}
void task2_entry(void)
{
assert(current_task_id() == TASK2);
generic_task(&t2func);
}
void task3_entry(void)
{
assert(current_task_id() == TASK3);
generic_task(&t3func);
}
void task4_entry(void)
{
assert(current_task_id() == TASK4);
generic_task(&t4func);
}
void oo_overall_control(void)
{
int r;
msghdr* m;
random_isr_msg* rm;
unsigned t1, t2, rss_interval;
kprintf("OC_TASK running");
assert(current_task_id() == OC_TASK);
resume_task(L2_TASK);
resume_task(RR_TASK);
resume_task(TM_TASK);
test_mem_mgr();
kprintf("Wait for init msg");
r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
assert(m->msg_id == MSG_ID_INIT);
assert(m->sending_task_id == TASK_ID_UNKNOWN);
free_mem_block(m);
kprintf("Received init msg");
r = start_periodic_timer(TM_TIMER, TM_TASK, TM_INIT_DELAY, TM_PERIOD, NULL);
assert(r == OK);
delay(TM_INIT_DELAY-10);
assert(tmcount == 0);
delay(10*TM_PERIOD+20);
assert(tmcount > 0);
test_suspend_1();
test_priority_scheduling();
test_semaphore();
test_message_queue();
resume_task(L1_TASK);
r = start_random_isr(&random_isr);
if (r != OK)
goto no_random_isr;
r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
assert(m->msg_id == MSG_ID_RND_ISR);
assert(m->sending_task_id == L1_TASK);
rm = (random_isr_msg*)m;
assert(rm->random_isr_number == 0);
free_mem_block(m);
t1 = next_random_id;
delay(1024);
t2 = next_random_id;
kprintf("%d random ISRs in 1024 ticks", t2-t1);
rss_interval = (5*(t2-t1)+512)/1024;
set_task_priority(TASK1, 196); // needs to be higher than DfcThread1
set_task_priority(TASK2, 196);
random_sem_signal_interval = rss_interval;
random_sem_signal_count = rss_interval;
random_send_interval = rss_interval;
random_send_count = rss_interval;
no_random_isr:
m = (msghdr*)alloc_mem_block(sizeof(msghdr));
m->msg_id = MSG_ID_DONE;
send_to_epoc(m);
kprintf("All tests completed OK");
for (;;)
{
int r = recv_msg(&m, WAIT_FOREVER);
assert(r == OK);
switch (m->msg_id)
{
case MSG_ID_DATA:
send_msg(RR_TASK, m);
m=NULL;
break;
case MSG_ID_FLUSH:
send_msg(L1_TASK, m);
m=NULL;
break;
case MSG_ID_DONE:
stop_random_isr();
stop_timer(TM_TIMER);
suspend_task(L1_TASK);
suspend_task(L2_TASK);
suspend_task(RR_TASK);
suspend_task(TM_TASK);
suspend_task(TASK1);
suspend_task(TASK2);
suspend_task(TASK3);
suspend_task(TASK4);
break;
default:
kprintf("OC<-%08x",m->msg_id);
break;
}
if (m)
free_mem_block(m);
}
}
#ifdef __cplusplus
}
#endif