author | mikek |
Sun, 27 Jun 2010 21:43:55 +0100 | |
branch | GCC_SURGE |
changeset 181 | bd8f1e65581b |
parent 0 | a41df078684a |
permissions | -rw-r--r-- |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies). // All rights reserved. // This component and the accompanying materials are made available // under the terms of the License "Eclipse Public License v1.0" // which accompanies this distribution, and is available // at the URL "http://www.eclipse.org/legal/epl-v10.html". // // Initial Contributors: // Nokia Corporation - initial contribution. // // Contributors: // // Description: // e32\euser\maths\um_ln.cpp // Natural log. // // #include "um_std.h" #if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP) #error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh #endif #ifndef __USE_VFP_MATH LOCAL_D const TUint32 ArtanhCoeffs[] = { 0x5C17F0BC,0xB8AA3B29,0x80010000, // polynomial approximation to (4/ln2)artanh(x) 0xD02489EE,0xF6384EE1,0x7FFF0000, // for |x| <= (sqr2-1)/(sqr2+1) 0x7008CA5F,0x93BB6287,0x7FFF0000, 0xE32D1D6B,0xD30BB16D,0x7FFE0000, 0x461D071E,0xA4257CE2,0x7FFE0000, 0xC3B0EC87,0x8650D459,0x7FFE0000, 0x53BEC0CD,0xE23137E3,0x7FFD0000, 0xC523F21B,0xDAF79221,0x7FFD0000 }; LOCAL_D const TUint32 Ln2By2data[] = {0xD1CF79AC,0xB17217F7,0x7FFD0000}; // (ln2)/2 LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000}; // sqr2 LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000}; // 1/sqr2 LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0 EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc) /** Calculates the natural logarithm of a number. @param aTrg A reference containing the result. @param aSrc The number whose natural logarithm is required. @return KErrNone if successful, otherwise another of the system-wide error codes. */ { // Calculate ln(aSrc) and write to aTrg // Algorithm: // Calculate log2(aSrc) and multiply by ln2 // log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2 // log2(aSrc)=e+log2(m) // If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc) // If x>Sqr2, replace x with x/Sqr2 // If x<Sqr2/2, replace x with x*Sqr2 // Replace x with (x-1)/(x+1) // Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1) // ( use identity ln(x) = 2artanh((x-1)/(x+1)) ) TRealX x; const TRealX& Ln2By2=*(const TRealX*)Ln2By2data; const TRealX& Sqr2=*(const TRealX*)Sqr2data; const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata; const TRealX& One=*(const TRealX*)Onedata; TInt r=x.Set(aSrc); if (r==KErrNone) { if (x.iExp==0) { SetInfinite(aTrg,1); return KErrOverflow; } if (x.iSign&1) { SetNaN(aTrg); return KErrArgument; } TInt n=(x.iExp-0x7FFF)<<1; x.iExp=0x7FFF; if (n!=-2) { if (x>Sqr2) { x*=Sqr2Inv; n++; } } else { n=0; x.iExp=0x7FFE; if (x<Sqr2Inv) { x*=Sqr2; n--; } } x=(x-One)/(x+One); // ln(x)=2artanh((x-1)/(x+1)) TRealX y; PolyX(y,x*x,7,(const TRealX*)ArtanhCoeffs); y*=x; y+=TRealX(n); y*=Ln2By2; return y.GetTReal(aTrg); } if (r==KErrArgument || (r==KErrOverflow && (x.iSign&1))) { SetNaN(aTrg); return KErrArgument; } SetInfinite(aTrg,0); return KErrOverflow; } #else // __USE_VFP_MATH // definitions come from RVCT math library extern "C" TReal log(TReal); EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc) { aTrg = log(aSrc); if (Math::IsFinite(aTrg)) return KErrNone; if (Math::IsInfinite(aTrg)) return KErrOverflow; SetNaN(aTrg); return KErrArgument; } #endif