// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// template\template_variant\specific\power.cpp
// Template Power Management
// (see also variant.cpp for a discussion on Sleep modes and xyin.cpp for example
// of usage of Resource Manager and Peripheral self power down and interaction
// with Power Controller for Wakeup Events)
//
//
#include "template_power.h"
static TemplateResourceManager TheResourceManager;
DTemplatePowerController* TTemplatePowerController::iPowerController;
//-/-/-/-/-/-/-/-/-/ class DTemplatePowerController /-/-/-/-/-/-/-/-/-/
DTemplatePowerController::DTemplatePowerController()
{
Register(); // register Power Controller with Power Manager
TTemplatePowerController::RegisterPowerController(this);
}
void DTemplatePowerController::CpuIdle()
{
Arch::TheAsic()->Idle();
}
void DTemplatePowerController::EnableWakeupEvents()
{
//
// TO DO: (mandatory)
//
// Enable tracking of wake-up events directly in hardware. If the hardware is controlled by a Driver
// or Extension, may need to disable interrupts and preemption around the code that accesses the hardware
// and set up a flag which the Driver/Extension code need to read before modifying the state of that piece
// of hardware. Note in that case the Driver/Extension may need to link to this Library.
//
//
// EXAMPLE ONLY
// In this example we simply assume that the driver will call the Power Controller every time a
// wakeup event occurr. It is up to the Power Controller to know if it is tracking them or not.
// We also assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
// bring it back from that state.
iWakeupEventsOn = ETrue; // start tracking wakeup events
}
void DTemplatePowerController::DisableWakeupEvents()
{
//
// TO DO: (mandatory)
//
// Disable tracking of wake-up events directly in hardware or if the hardware is controlled by a Driver or
// Extension need to set up a flag which the Driver/Extension reads whenever the event occurs, in order to
// find out if it needs to deliver notification to the Power Controller
//
iWakeupEventsOn = EFalse; // stop tracking wakeup events
}
void DTemplatePowerController::AbsoluteTimerExpired()
{
if (iTargetState == EPwStandby && iWakeupEventsOn)
{
iWakeupEventsOn = EFalse; // one occurred, no longer track wakeup events
WakeupEvent();
}
}
void DTemplatePowerController::PowerDown(TTimeK aWakeupST)
{
if (iTargetState == EPwStandby)
{
//
// TO DO: (mandatory)
//
// Converts between the Wakeup time in System Time units as passed in to this function and a Wakeup
// time in RTC units. The following code is given as an example how to convert between System time units
// RTC time units on a system with a 32 bit RTC timer and which is incremented on a second interval:
//
TUint32 wakeupRTC;
if (aWakeupST)
{
TUint32 nowRTC = TTemplate::RtcData();
TTimeK nowST = Kern::SystemTime();
__KTRACE_OPT(KPOWER,Kern::Printf("system time: now = 0x%lx(us) wakeup = 0x%lx(us)", nowST, aWakeupST));
if (aWakeupST < nowST)
return;
Int64 deltaSecs = (aWakeupST - nowST) / 1000000;
if (deltaSecs <= 0)
return;
if (deltaSecs + (Int64)nowRTC > (Int64)(KMaxTInt - 2))
wakeupRTC = (KMaxTInt - 2); // RTC can't wrap around during standby
else
wakeupRTC = nowRTC + deltaSecs;
__KTRACE_OPT(KPOWER,Kern::Printf("RTC: now = %d(s) wakeup = %d(s)", nowRTC, wakeupRTC));
}
else
wakeupRTC = 0;
//
// TO DO: (optional)
//
// It then uses the calculated value to program the RTC to wakeup the System at the Wakeup
// time ans sets the CPU and remaining hardware to go to the correponding low power mode. When the
// state of the Core and Core Peripherals is not preserved in this mode the following is usually
// required:
// - save current Core state (current Mode, banked registers for each Mode and Stack Pointer for
// both current and User Modes
// - save MMU state: Control Register, TTB and Domain Access Control
// - Flush Dta Cache and drain Write Buffer
// - save Core Peripherals state: Interrupt Controller, Pin Function, Bus State and Clock settings
// SDRAM should be put in self refresh mode. Peripheral devices involved in detection of Wakeup events
// should be left powered.
// The Tick timer should be disabled and the current count of this and other System timers shall be
// saved.
// On wakeing up the state should be restored from the save state as above. SDRAM shall be brought back
// under CPU control, The Tick count shall be restored and timers re-enabled.
// We assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
// bring it back from that state. Therefore we stop tracking wakeup events as the Power Manager will
// complete any pending notifications anyway. When the driver delivers its notification, we just ignore
// it.
if(wakeupRTC)
{
//Handle this if needed
}
iWakeupEventsOn = EFalse; // tracking of wakeup events is now done in hardware
}
else
{
Kern::Restart(0x80000000);
}
}
//-/-/-/-/-/-/-/-/-/ class TTemplatePowerController /-/-/-/-/-/-/-/-/-/
EXPORT_C TemplateResourceManager* TTemplatePowerController::ResourceManager()
{
return &TheResourceManager;
}
EXPORT_C void TTemplatePowerController::WakeupEvent()
{
if(!iPowerController)
__PM_PANIC("Power Controller not present");
else if(iPowerController->iWakeupEventsOn)
{
iPowerController->iWakeupEventsOn=EFalse; // one occurred, no longer track wakeup events
iPowerController->WakeupEvent();
}
}
//-/-/-/-/-/-/-/-/-/ class TemplateResourceManager /-/-/-/-/-/-/-/-/-/
void TemplateResourceManager::InitResources()
{
//
// TO DO: (optional)
//
// Initialise any power resources required by the platform and not initialised in the Bootstrap
//
}
//-/-/-/-/-/-/-/-/-/ interface for shared resources /-/-/-/-/-/-/-/-/-/
void SharedBinaryResource1::Use()
{
NKern::Lock(); // lock Kernel as shared resource is likely to be modified from different threads
if (iCount++ == 0)
{
//
// TO DO: (optional)
//
// Modify hardware register bit or bits to switch the resource On. If the resource
// can be accessed from an ISR need to disable/enable interrupts around it.
//
NKern::Unlock();
//
// TO DO: (optional)
//
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
//
}
else
NKern::Unlock();
}
void SharedBinaryResource1::Release()
{
NKern::Lock();
__PM_ASSERT(iCount);
if (--iCount == 0)
{
//
// TO DO: (optional)
//
// Modify hardware register bit or bits to switch the resource Off. If the resource
// can be accessed from an ISR need to disable/enable interrupts around it.
//
NKern::Unlock();
//
// TO DO: (optional)
//
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
//
}
else
NKern::Unlock();
}
TUint SharedBinaryResource1::GetCount()
{
return iCount;
}
SharedMultilevelResource1::SharedMultilevelResource1()
//
// TO DO: (optional)
//
// May need to initialise current level and the Id of its owner if these have been initialised in the Bootstrap
//
// : iCurrentLevel(/* a level for this resource as initialised in the Bootstrap */),
// iCurrentLevelOwnerId(/* the Id of the requester of this resource that requires the initial value */)
{
}
void SharedMultilevelResource1::IncreaseToLevel(TUint aLevel, TInt aRequester)
{
//
// Drivers should use this API if they wish to request a level higher than the previous level they required
// Drivers should keep track of the level they require and be disciplined
//
NKern::Lock();
__PM_ASSERT(aLevel<Levels[aRequester]);
Levels[aRequester]=aLevel;
if(aLevel > iCurrentLevel) // need to increase the level
{
// if(aLevel <= MAXLEVEL)
// aLevel = MAXLEVEL;
iCurrentLevel = aLevel;
iCurrentLevelOwnerId = aRequester;
//
// TO DO: (optional)
//
// Modify hardware register bits to set the level of the resource to aLevel
NKern::Unlock();
//
// TO DO: (optional)
//
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
//
}
else
NKern::Unlock();
}
void SharedMultilevelResource1::ReduceToLevel(TUint aLevel, TInt aRequester)
{
//
// Drivers should use this API if they wish to request a level higher than the previous level they required
//
NKern::Lock();
__PM_ASSERT(aLevel>Levels[aRequester]);
Levels[aRequester]=aLevel;
if(aLevel < iCurrentLevel && aRequester == iCurrentLevelOwnerId) // the holder of the current level as lowered its request
{
FindMaxLevel(&iCurrentLevel, &iCurrentLevelOwnerId); // find max level required and the ID of its holder
//
// TO DO: (optional)
//
// Modify hardware register bits to set the level of the resource to iCurrentLevel
NKern::Unlock();
//
// TO DO: (optional)
//
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
//
}
else
NKern::Unlock();
}
TUint SharedMultilevelResource1::GetResourceLevel()
{
return iCurrentLevel;
}
void SharedMultilevelResource1::FindMaxLevel(TUint* aLevel, TInt* aId)
{
//
// TO DO: (optional)
//
// Place your clever array search algorithm here...
// return max level and id of owner
}
TInt BinaryPowerInit(); // the Symbian example Battery Monitor and Power HAL handling
GLDEF_C TInt KernelModuleEntry(TInt aReason)
{
if(aReason==KModuleEntryReasonVariantInit0)
{
//
// TO DO: (optional)
//
// Start the Resource Manager earlier so that Variant and other extension could make use of Power Resources
//
__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template Resource controller"));
new(&TheResourceManager)TemplateResourceManager;
TheResourceManager.InitResources();
return KErrNone;
}
else if(aReason==KModuleEntryReasonExtensionInit0)
{
__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template power controller"));
//
// TO DO: (optional)
//
// Start the Kernel-side Battery Monitor and hook a Power HAL handling function.
// Symbian provides example code for both of the above in \e32\include\driver\binpower.h
// You may want to write your own versions.
// The call below starts the example Battery Monitor and hooks the example Power HAL handling function
// At the end we return an error to make sure that the entry point is not called again with
// KModuleEntryReasonExtensionInit1 (which would call the constructor of TheResourceManager again)
//
TInt r = BinaryPowerInit();
if (r!= KErrNone)
__PM_PANIC("Can't initialise Binary Power model");
DTemplatePowerController* c = new DTemplatePowerController();
if(c)
return KErrGeneral;
else
__PM_PANIC("Can't create Power Controller");
}
else if(aReason==KModuleEntryReasonExtensionInit1)
{
// does not get called...
}
return KErrArgument;
}