// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32/drivers/usbcc/chapter9.cpp
// Platform independent layer (PIL) of the USB Device controller driver:
// Processing of USB spec chapter 9 standard requests.
//
//
/**
@file chapter9.cpp
@internalTechnology
*/
#include <drivers/usbc.h>
//#define ENABLE_EXCESSIVE_DEBUG_OUTPUT
//
// The way functions are called after an request has been completed by the PSL:
//
// Ep0RequestComplete
// |
// ------------------------------------------------
// | |
// ProcessEp0ReceiveDone ProcessEp0TransmitDone
// | |
// --------------------------------------- |
// | | |
// ProcessEp0SetupReceived ProcessEp0DataReceived ProcessDataTransferDone
// | |
// --------------------- ---------------
// | | | |
// ProcessXXX ProcessDataTransferDone ProceedXXX ProcessDataTransferDone
//
// XXX = Specific_Request
//
//
// === USB Controller member function implementation - PSL API (protected) ========================
//
/** Used to synchronize the Ep0 state machine between the PSL and PIL.
Accepts a SETUP packet and returns the next Ep0 state.
@param aSetupBuf The SETUP packet just received by the PSL.
@return The next Ep0 state.
@publishedPartner @released
*/
TUsbcEp0State DUsbClientController::EnquireEp0NextState(const TUint8* aSetupBuf) const
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::EnquireEp0NextState()"));
// This function may be called by the PSL from within an ISR -- so we have
// to take care what we do here (and also in all functions that get called
// from here).
if (SWAP_BYTES_16((reinterpret_cast<const TUint16*>(aSetupBuf)[3])) == 0) // iLength
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EEp0StateStatusIn"));
return EEp0StateStatusIn; // No-data Control => Status_IN
}
else if ((aSetupBuf[0] & KUsbRequestType_DirMask) == KUsbRequestType_DirToDev)
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EEp0StateDataOut"));
return EEp0StateDataOut; // Control Write => Data_OUT
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EEp0StateDataIn"));
return EEp0StateDataIn; // Control Read => Data_IN
}
}
TInt DUsbClientController::ProcessEp0ReceiveDone(TInt aCount)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessEp0ReceiveDone()"));
TInt r;
if (iEp0DataReceiving == EFalse)
{
// It's obviously a Setup packet, so...
r = ProcessEp0SetupReceived(aCount);
}
else
{
// If it isn't a Setup, it must be data...
// (This is actually not quite true, as it could also be - in theory - a new Setup packet
// when the host has abandoned, for whatever reason, the previous one which was still
// in progress. However no such case is known to have occurred with this driver, or at
// least it didn't lead to problems.
// Some UDCs have a dedicated interrupt for Setup packets, but so far this driver hasn't
// made use of such a feature (as it would require a PSL/PIL API change).)
r = ProcessEp0DataReceived(aCount);
}
return r;
}
TInt DUsbClientController::ProcessEp0TransmitDone(TInt aCount, TInt aError)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessEp0TransmitDone()"));
// In any case: there's now no longer a write pending
iEp0WritePending = EFalse;
// If it was a client who set up this transmission, we report to that client
if (iEp0ClientDataTransmitting)
{
iEp0ClientDataTransmitting = EFalse;
TUsbcRequestCallback* const p = iRequestCallbacks[KEp0_Tx];
if (p)
{
__ASSERT_DEBUG((p->iTransferDir == EControllerWrite), Kern::Fault(KUsbPILPanicCat, __LINE__));
p->iError = aError;
p->iTxBytes = aCount;
ProcessDataTransferDone(*p);
return KErrNone;
}
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: DUsbClientController::ProcessEpTransmitDone: Stalling Ep0"));
StallEndpoint(KEp0_In); // request not found
return KErrNotFound;
}
// If _we_ sent the data, we simply do nothing here...
return KErrNone;
}
#define USB_PROCESS_REQUEST(request) \
if (Process ## request(packet) != KErrNone) \
{ \
__KTRACE_OPT(KUSB, \
Kern::Printf(" ProcessEp0SetupReceived: Stalling Ep0")); \
StallEndpoint(KEp0_In); \
}
TInt DUsbClientController::ProcessEp0SetupReceived(TInt aCount)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessEp0SetupReceived()"));
if (aCount > iEp0MaxPacketSize)
{
// Fatal error: too much data!
aCount = iEp0MaxPacketSize;
}
// first we split the data into meaningful units:
TUsbcSetup packet;
Buffer2Setup(iEp0_RxBuf, packet);
#if defined(_DEBUG) && defined(ENABLE_EXCESSIVE_DEBUG_OUTPUT)
// let's see what we've got:
__KTRACE_OPT(KUSB, Kern::Printf(" bmRequestType = 0x%02x", packet.iRequestType));
if ((packet.iRequestType & KUsbRequestType_TypeMask) == KUsbRequestType_TypeStd)
{
switch (packet.iRequest)
{
case KUsbRequest_GetStatus:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (GET_STATUS)",
KUsbRequest_GetStatus));
break;
case KUsbRequest_ClearFeature:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (CLEAR_FEATURE)",
KUsbRequest_ClearFeature));
break;
case KUsbRequest_SetFeature:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SET_FEATURE)",
KUsbRequest_SetFeature));
break;
case KUsbRequest_SetAddress:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SET_ADDRESS)",
KUsbRequest_SetAddress));
break;
case KUsbRequest_GetDescriptor:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (GET_DESCRIPTOR)",
KUsbRequest_GetDescriptor));
break;
case KUsbRequest_SetDescriptor:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SET_DESCRIPTOR)",
KUsbRequest_SetDescriptor));
break;
case KUsbRequest_GetConfig:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (GET_CONFIGURATION)",
KUsbRequest_GetConfig));
break;
case KUsbRequest_SetConfig:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SET_CONFIGURATION)",
KUsbRequest_SetConfig));
break;
case KUsbRequest_GetInterface:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (GET_INTERFACE)",
KUsbRequest_GetInterface));
break;
case KUsbRequest_SetInterface:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SET_INTERFACE)",
KUsbRequest_SetInterface));
break;
case KUsbRequest_SynchFrame:
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (SYNCH_FRAME)",
KUsbRequest_SynchFrame));
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: bRequest = 0x%02x (UNKNWON STANDARD REQUEST)",
packet.iRequest));
break;
}
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" bRequest = 0x%02x (NON-STANDARD REQUEST)",
packet.iRequest));
}
__KTRACE_OPT(KUSB, Kern::Printf(" wValue = 0x%04x", packet.iValue));
__KTRACE_OPT(KUSB, Kern::Printf(" wIndex = 0x%04x", packet.iIndex));
__KTRACE_OPT(KUSB, Kern::Printf(" wLength = 0x%04x", packet.iLength));
#endif // defined(_DEBUG) && defined(ENABLE_EXCESSIVE_DEBUG_OUTPUT)
// now the actual analysis
if ((packet.iRequestType & KUsbRequestType_TypeMask) == KUsbRequestType_TypeStd)
{
iEp0ReceivedNonStdRequest = EFalse;
switch (packet.iRequest)
{
case KUsbRequest_GetStatus:
switch (packet.iRequestType & KUsbRequestType_DestMask)
{ // Recipient
case KUsbRequestType_DestDevice:
USB_PROCESS_REQUEST(GetDeviceStatus);
break;
case KUsbRequestType_DestIfc:
USB_PROCESS_REQUEST(GetInterfaceStatus);
break;
case KUsbRequestType_DestEp:
USB_PROCESS_REQUEST(GetEndpointStatus);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: GET STATUS - Other or Unknown recipient"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> DUsbClientController::ProcessEp0SetupReceived: "
"Stalling Ep0"));
StallEndpoint(KEp0_In);
break;
}
break;
case KUsbRequest_ClearFeature:
case KUsbRequest_SetFeature:
switch (packet.iRequestType & KUsbRequestType_DestMask)
{ // Recipient
case KUsbRequestType_DestDevice:
USB_PROCESS_REQUEST(SetClearDevFeature);
break;
case KUsbRequestType_DestIfc:
USB_PROCESS_REQUEST(SetClearIfcFeature);
break;
case KUsbRequestType_DestEp:
USB_PROCESS_REQUEST(SetClearEpFeature);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: SET/CLEAR FEATURE - "
"Other or Unknown recipient"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> Stalling Ep0"));
StallEndpoint(KEp0_In);
break;
}
break;
case KUsbRequest_SetAddress:
USB_PROCESS_REQUEST(SetAddress);
break;
case KUsbRequest_GetDescriptor:
USB_PROCESS_REQUEST(GetDescriptor);
break;
case KUsbRequest_SetDescriptor:
USB_PROCESS_REQUEST(SetDescriptor);
break;
case KUsbRequest_GetConfig:
USB_PROCESS_REQUEST(GetConfiguration);
break;
case KUsbRequest_SetConfig:
USB_PROCESS_REQUEST(SetConfiguration);
break;
case KUsbRequest_GetInterface:
USB_PROCESS_REQUEST(GetInterface);
break;
case KUsbRequest_SetInterface:
USB_PROCESS_REQUEST(SetInterface);
break;
case KUsbRequest_SynchFrame:
USB_PROCESS_REQUEST(SynchFrame);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown/unsupported Std Setup Request"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> Stalling Ep0"));
StallEndpoint(KEp0_In);
break;
}
}
else
{
// Type mask != KUsbRequestType_TypeStd => class- or vendor-specific request
iEp0ReceivedNonStdRequest = ETrue;
const DBase* client = NULL;
switch (packet.iRequestType & KUsbRequestType_DestMask)
{ // Recipient
case KUsbRequestType_DestDevice:
client = iEp0DeviceControl;
break;
case KUsbRequestType_DestIfc:
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
}
else
{
const TUsbcInterfaceSet* const ifcset_ptr =
InterfaceNumber2InterfacePointer(packet.iIndex);
//In some rare case, ifcset_ptr is not NULL but the ifcset_ptr->iInterfaces.Count() is 0,
//so panic will happen when excute the following line. so I add the conditon
//0 != ifcset_ptr->iInterfaces.Count() here.
if (ifcset_ptr && 0 != ifcset_ptr->iInterfaces.Count())
{
if (ifcset_ptr->CurrentInterface()->iNoEp0Requests)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Recipient says: NoEp0RequestsPlease"));
}
else
{
client = ifcset_ptr->iClientId;
}
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Interface 0x%02x does not exist",
packet.iIndex));
}
}
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
break;
case KUsbRequestType_DestEp:
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
}
else if (EndpointExists(packet.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint 0x%02x does not exist",
packet.iIndex));
}
else
{
const TInt idx = EpAddr2Idx(packet.iIndex);
const TUsbcInterfaceSet* const ifcset_ptr =
iRealEndpoints[idx].iLEndpoint->iInterface->iInterfaceSet;
if (ifcset_ptr->CurrentInterface()->iNoEp0Requests)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Recipient says: NoEp0RequestsPlease"));
}
else
{
client = ifcset_ptr->iClientId;
}
}
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Other or Unknown recipient"));
break;
}
if (client != NULL)
{
// Try to relay packet to the appropriate recipient
TSglQueIter<TUsbcRequestCallback> iter(iEp0ReadRequestCallbacks);
TUsbcRequestCallback* p;
while ((p = iter++) != NULL)
{
if (p->Owner() == client)
{
__ASSERT_DEBUG((p->iEndpointNum == 0), Kern::Fault(KUsbPILPanicCat, __LINE__));
__ASSERT_DEBUG((p->iTransferDir == EControllerRead), Kern::Fault(KUsbPILPanicCat, __LINE__));
__KTRACE_OPT(KUSB, Kern::Printf(" Found Ep0 read request"));
if (packet.iLength != 0)
{
if ((packet.iRequestType & KUsbRequestType_DirMask) == KUsbRequestType_DirToDev)
{
// Data transfer & direction OUT => there'll be a DATA_OUT stage
__KTRACE_OPT(KUSB, Kern::Printf(" Next is DATA_OUT: setting up DataOutVars"));
SetEp0DataOutVars(packet, client);
}
else if ((packet.iRequestType & KUsbRequestType_DirMask) == KUsbRequestType_DirToHost)
{
// For possible later use (ZLP).
iEp0_TxNonStdCount = packet.iLength;
}
}
memcpy(p->iBufferStart, iEp0_RxBuf, aCount);
p->iError = KErrNone; // if it wasn't 'KErrNone' we wouldn't be here
*(p->iPacketSize) = aCount;
p->iRxPackets = 1;
*(p->iPacketIndex) = 0;
ProcessDataTransferDone(*p);
return KErrNone;
}
}
__KTRACE_OPT(KUSB, Kern::Printf(" Ep0 read request not found: setting RxExtra vars (Setup)"));
iEp0_RxExtraCount = aCount;
iEp0_RxExtraData = ETrue;
return KErrNotFound;
}
else // if (client == NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Ep0 request error: Stalling Ep0"));
StallEndpoint(KEp0_In);
return KErrGeneral;
}
}
return KErrNone;
}
#undef USB_PROCESS_REQUEST
TInt DUsbClientController::ProcessEp0DataReceived(TInt aCount)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessEp0DataReceived()"));
__KTRACE_OPT(KUSB, Kern::Printf(" : %d bytes", aCount));
if (aCount > iEp0MaxPacketSize)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Too much data"));
aCount = iEp0MaxPacketSize;
}
iEp0DataReceived += aCount;
if (iEp0ClientId == NULL)
{
// it is us (not an app), who owns this transaction
switch (iSetup.iRequest)
{
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
case KUsbRequest_SetDescriptor:
memcpy(iEp0_RxCollectionBuf + iEp0DataReceived, iEp0_RxBuf, aCount);
ProceedSetDescriptor();
break;
#endif
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: invalid request in iSetup"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> DUsbClientController::ProcessEp0DataReceived: Stalling Ep0"));
StallEndpoint(KEp0_In);
ResetEp0DataOutVars();
break;
}
}
else
{
// pass the data on to a client
TSglQueIter<TUsbcRequestCallback> iter(iEp0ReadRequestCallbacks);
TUsbcRequestCallback* p;
while ((p = iter++) != NULL)
{
if (p->Owner() == iEp0ClientId)
{
__ASSERT_DEBUG((p->iEndpointNum == 0), Kern::Fault(KUsbPILPanicCat, __LINE__));
__ASSERT_DEBUG((p->iTransferDir == EControllerRead), Kern::Fault(KUsbPILPanicCat, __LINE__));
__KTRACE_OPT(KUSB, Kern::Printf(" Found Ep0 read request"));
memcpy(p->iBufferStart, iEp0_RxBuf, aCount);
p->iError = KErrNone; // if it wasn't 'KErrNone' we wouldn't be here
*(p->iPacketSize) = aCount;
p->iRxPackets = 1;
*(p->iPacketIndex) = 0;
ProcessDataTransferDone(*p);
goto found;
}
}
__KTRACE_OPT(KUSB, Kern::Printf(" Ep0 read request not found: setting RxExtra vars (Data)"));
iEp0_RxExtraCount = aCount;
iEp0_RxExtraData = ETrue;
iEp0DataReceived -= aCount;
return KErrNotFound;
}
found:
if (iEp0DataReceived >= iSetup.iLength)
{
// all data seems now to be here
ResetEp0DataOutVars();
}
return KErrNone;
}
// --- The USB Spec Chapter 9 Standard Endpoint Zero Device Requests ---
TInt DUsbClientController::ProcessGetDeviceStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetDeviceStatus()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
const TUint16 status = ((DeviceSelfPowered() ? KUsbDevStat_SelfPowered : 0) |
(iRmWakeupStatus_Enabled ? KUsbDevStat_RemoteWakeup : 0));
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting device status: 0x%02x", status));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (SetupEndpointZeroWrite(iEp0_TxBuf, sizeof(status)) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
TInt DUsbClientController::ProcessGetInterfaceStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetInterfaceStatus()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (InterfaceExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Interface does not exist"));
return KErrGeneral;
}
const TUint16 status = 0x0000; // as of USB Spec 2.0
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting interface status: 0x%02x", status));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (SetupEndpointZeroWrite(iEp0_TxBuf, sizeof(status)) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
TInt DUsbClientController::ProcessGetEndpointStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetEndpointStatus()"));
if (iTrackDeviceState &&
((iDeviceState < EUsbcDeviceStateAddress) ||
(iDeviceState == EUsbcDeviceStateAddress && (aPacket.iIndex & KUsbEpAddress_Portmask) != 0)))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (EndpointExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
return KErrGeneral;
}
const TInt ep = EpAddr2Idx(aPacket.iIndex);
const TUint16 status = (iRealEndpoints[ep].iHalt) ? KUsbEpStat_Halt : 0;
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting endpoint status 0x%02x for real endpoint %d",
status, ep));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (SetupEndpointZeroWrite(iEp0_TxBuf, 2) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
TInt DUsbClientController::ProcessSetClearDevFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearDevFeature()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateDefault)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
TUint test_sel = 0;
if (aPacket.iRequest == KUsbRequest_SetFeature)
{
switch (aPacket.iValue)
{
case KUsbFeature_RemoteWakeup:
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
iRmWakeupStatus_Enabled = ETrue;
break;
case KUsbFeature_TestMode:
if (!iHighSpeed)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported in High-Speed mode"));
return KErrGeneral;
}
if (LowByte(aPacket.iIndex) != 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Lower byte of wIndex must be zero"));
return KErrGeneral;
}
test_sel = HighByte(aPacket.iIndex);
if ((test_sel < KUsbTestSelector_Test_J) || (test_sel > KUsbTestSelector_Test_Force_Enable))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid test selector: %d", test_sel));
return KErrGeneral;
}
break;
case KUsbFeature_B_HnpEnable:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
return KErrGeneral;
}
if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
return KErrGeneral;
}
iOtgFuncMap |= KUsbOtgAttr_B_HnpEnable;
OtgFeaturesNotify();
break;
case KUsbFeature_A_HnpSupport:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
return KErrGeneral;
}
if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
return KErrGeneral;
}
iOtgFuncMap |= KUsbOtgAttr_A_HnpSupport;
OtgFeaturesNotify();
break;
case KUsbFeature_A_AltHnpSupport:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
return KErrGeneral;
}
if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
return KErrGeneral;
}
iOtgFuncMap |= KUsbOtgAttr_A_AltHnpSupport;
OtgFeaturesNotify();
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
return KErrGeneral;
}
}
else // KUsbRequest_ClearFeature
{
switch (aPacket.iValue)
{
case KUsbFeature_RemoteWakeup:
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
iRmWakeupStatus_Enabled = EFalse;
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
return KErrGeneral;
}
}
SendEp0ZeroByteStatusPacket(); // success: zero bytes data during status stage
// 9.4.9: "The transition to test mode of an upstream facing port must not happen until
// after the status stage of the request."
if (test_sel)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Entering HS Test Mode %d", test_sel));
EnterTestMode(test_sel);
}
return KErrNone;
}
TInt DUsbClientController::ProcessSetClearIfcFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearIfcFeature()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
// No interface features defined in USB spec, thus
return KErrGeneral;
}
TInt DUsbClientController::ProcessSetClearEpFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearEpFeature()"));
if (iTrackDeviceState &&
((iDeviceState < EUsbcDeviceStateAddress) ||
(iDeviceState == EUsbcDeviceStateAddress && (aPacket.iIndex & KUsbEpAddress_Portmask) != 0)))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (aPacket.iValue != KUsbFeature_EndpointHalt)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
return KErrGeneral;
}
if (EndpointExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
return KErrGeneral;
}
const TInt ep = EpAddr2Idx(aPacket.iIndex);
if (iRealEndpoints[ep].iLEndpoint->iInfo.iType == KUsbEpTypeControl ||
iRealEndpoints[ep].iLEndpoint->iInfo.iType == KUsbEpTypeIsochronous)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint is Control or Isochronous"));
return KErrGeneral;
}
SetClearHaltFeature(ep, aPacket.iRequest);
SendEp0ZeroByteStatusPacket(); // success: zero bytes data during status stage
return KErrNone;
}
TInt DUsbClientController::ProcessSetAddress(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetAddress()"));
if (iTrackDeviceState && iDeviceState > EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
const TUint16 addr = aPacket.iValue;
if (addr > 127)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad address value: %d (>127)", addr));
return KErrGeneral;
}
if (addr == 0)
{
// Enter Default state (from Default or Address)
NextDeviceState(EUsbcDeviceStateDefault);
}
__KTRACE_OPT(KUSB, Kern::Printf(" USB address: %d", addr));
// The spec says, under section 9.4.6:
// "Stages after the initial Setup packet assume the same device address as the Setup packet. The USB
// device does not change its device address until after the Status stage of this request is completed
// successfully. Note that this is a difference between this request and all other requests. For all other
// requests, the operation indicated must be completed before the Status stage."
// Therefore, here we first send the status packet and only then actually execute the request.
SendEp0ZeroByteStatusPacket();
SetDeviceAddress(addr);
return KErrNone;
}
TInt DUsbClientController::ProcessGetDescriptor(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetDescriptor()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateDefault)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
// Make sure we assume the correct speed
__ASSERT_DEBUG((iHighSpeed == CurrentlyUsingHighSpeed()), Kern::Fault(KUsbPILPanicCat, __LINE__));
TInt size = 0;
const TInt result = iDescriptors.FindDescriptor(HighByte(aPacket.iValue), // Type
LowByte(aPacket.iValue), // Index
aPacket.iIndex, // Language ID
size);
if ((result != KErrNone) || (size == 0))
{
// This doesn't have to be an error - protocol-wise it's OK.
__KTRACE_OPT(KUSB, Kern::Printf(" Couldn't retrieve descriptor"));
return KErrGeneral;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Descriptor found, size: %d (requested: %d)",
size, aPacket.iLength));
if (size > KUsbcBufSz_Ep0Tx)
{
// This should actually not be possible (i.e. we should never get here).
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Ep0_Tx buffer too small"));
}
if (size > aPacket.iLength)
{
// Send only as much data as requested by the host
size = aPacket.iLength;
}
#ifdef ENABLE_EXCESSIVE_DEBUG_OUTPUT
__KTRACE_OPT(KUSB,
Kern::Printf(" Data: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x ...",
iEp0_TxBuf[0], iEp0_TxBuf[1], iEp0_TxBuf[2], iEp0_TxBuf[3],
iEp0_TxBuf[4], iEp0_TxBuf[5], iEp0_TxBuf[6], iEp0_TxBuf[7]));
#endif
// If we're about to send less bytes than expected by the host AND our number is a
// multiple of the packet size, in order to indicate the end of the control transfer,
// we must finally send a zero length data packet (ZLP):
const TBool zlp = ((size < aPacket.iLength) && (size % iEp0MaxPacketSize == 0));
if (SetupEndpointZeroWrite(iEp0_TxBuf, size, zlp) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
TInt DUsbClientController::ProcessSetDescriptor(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetDescriptor()"));
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
return KErrGeneral;
#else
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
// Error: Invalid device state!
return KErrGeneral;
}
if (aPacket.iLength > KUsbcBufSz_Ep0Rx)
{
// Error: Our Rx buffer is too small! (Raise a defect to make it larger)
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Ep0_Rx buffer too small"));
return KErrGeneral;
}
SetEp0DataOutVars(aPacket);
SetupEndpointZeroRead();
return KErrNone;
#endif
}
TInt DUsbClientController::ProcessGetConfiguration(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetConfiguration()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (iTrackDeviceState && iDeviceState == EUsbcDeviceStateAddress && iCurrentConfig != 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: DeviceState Address && Config != 0"));
return KErrGeneral;
}
if (iTrackDeviceState && iDeviceState == EUsbcDeviceStateConfigured && iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: DeviceState Configured && Config == 0"));
return KErrGeneral;
}
if (aPacket.iLength != 1) // "unspecified behavior"
{
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: wLength != 1 (= %d)", aPacket.iLength));
}
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting configuration value %d", iCurrentConfig));
if (SetupEndpointZeroWrite(&iCurrentConfig, sizeof(iCurrentConfig)) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
/** Changes the device's configuration value, including interface setup and/or
teardown and state change notification of higher-layer clients.
May also be called by the PSL in special cases - therefore publishedPartner.
@param aPacket The received Ep0 SET_CONFIGURATION setup request packet.
@return KErrGeneral in case of a protocol error, KErrNone otherwise.
@publishedPartner @released
*/
TInt DUsbClientController::ProcessSetConfiguration(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetConfiguration()"));
// This function may be called by the PSL from within an ISR -- so we have
// to take care what we do here (and also in all functions that get called
// from here).
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
const TUint16 value = aPacket.iValue;
if (value > 1) // we support only one configuration
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Configuration value too large: %d", value));
return KErrGeneral;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration value: %d", value));
ChangeConfiguration(value);
// In 9.4.5 under GET_STATUS we read, that after SET_CONFIGURATION the HALT feature
// for all endpoints is reset to zero.
TInt num = 0;
(TAny) DoForEveryEndpointInUse(&DUsbClientController::ClearHaltFeature, num);
__KTRACE_OPT(KUSB, Kern::Printf(" Called ClearHaltFeature() for %d endpoints", num));
SendEp0ZeroByteStatusPacket(); // success: zero bytes data during status stage
return KErrNone;
}
TInt DUsbClientController::ProcessGetInterface(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetInterface()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Device not configured"));
return KErrGeneral;
}
const TInt number = aPacket.iIndex;
if (!InterfaceExists(number))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad interface index: %d", number));
return KErrGeneral;
}
// Send alternate setting code of iCurrentInterface of Interface(set) <number> of the current
// config (iCurrentConfig).
const TUint8 setting = InterfaceNumber2InterfacePointer(number)->iCurrentInterface;
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting interface setting %d", setting));
if (SetupEndpointZeroWrite(&setting, 1) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
TInt DUsbClientController::ProcessSetInterface(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetInterface()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
if (iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Device not configured"));
return KErrGeneral;
}
const TInt number = aPacket.iIndex;
if (!InterfaceExists(number))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad interface index: %d", number));
return KErrGeneral;
}
const TInt setting = aPacket.iValue;
TUsbcInterfaceSet* const ifcset_ptr = InterfaceNumber2InterfacePointer(number);
RPointerArray<TUsbcInterface>& ifcs = ifcset_ptr->iInterfaces;
if (setting >= ifcs.Count())
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Alt Setting >= bNumAltSettings: %d", setting));
return KErrGeneral;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Interface setting:: %d", setting));
// Set iCurrentInterface of Interface(set) <number> of the current config
// (iCurrentConfig) to alternate setting <setting>.
ChangeInterface(ifcs[setting]);
// In 9.4.5 under GET_STATUS we read, that after SET_INTERFACE the HALT feature
// for all endpoints (of the now current interface setting) is reset to zero.
RPointerArray<TUsbcLogicalEndpoint>& eps = ifcset_ptr->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt i = 0; i < num_eps; i++)
{
const TInt ep_num = EpAddr2Idx(eps[i]->iPEndpoint->iEndpointAddr);
(TAny) ClearHaltFeature(ep_num);
}
SendEp0ZeroByteStatusPacket(); // success: zero bytes data during status stage
return KErrNone;
}
TInt DUsbClientController::ProcessSynchFrame(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSynchFrame()"));
if (iTrackDeviceState && iDeviceState < EUsbcDeviceStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
return KErrGeneral;
}
const TInt ep = aPacket.iIndex;
if (EndpointExists(ep) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
return KErrGeneral;
}
if (iRealEndpoints[EpAddr2Idx(ep)].iLEndpoint->iInfo.iType != KUsbEpTypeIsochronous)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint is not isochronous"));
return KErrGeneral;
}
// We always send 0:
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = 0x00;
if (SetupEndpointZeroWrite(iEp0_TxBuf, 2) == KErrNone)
{
iEp0WritePending = ETrue;
}
return KErrNone;
}
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
void DUsbClientController::ProceedSetDescriptor()
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProceedSetDescriptor()"));
// iEp0DataReceived already reflects the current buffer state
if (iEp0DataReceived < iSetup.iLength)
{
// Not yet all data received => proceed
return;
}
if (iEp0DataReceived > iSetup.iLength)
{
// Error: more data received than expected
// but we don't care...
}
// at this point: iEp0DataReceived == iSetup.iLength
const TUint8 type = HighByte(iSetup.iValue);
if (type == KUsbDescType_String)
{
// set/add new string descriptor
}
else
{
// set/add new ordinary descriptor
}
TUint8 index = LowByte(iSetup.iValue);
TUint16 langid = iSetup.iIndex;
TUint16 length_total = iSetup.iLength;
}
#endif
// --- Secondary (Helper) Functions
void DUsbClientController::SetClearHaltFeature(TInt aRealEndpoint, TUint8 aRequest)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::SetClearHaltFeature()"));
if (aRequest == KUsbRequest_SetFeature)
{
if (iRealEndpoints[aRealEndpoint].iHalt)
{
// (This condition is not really an error)
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: HALT feature already set"));
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" setting HALT feature for real endpoint %d",
aRealEndpoint));
StallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = ETrue;
}
else // KUsbRequest_ClearFeature
{
if (iRealEndpoints[aRealEndpoint].iHalt == EFalse)
{
// In this case, before we return, the data toggles are reset to DATA0.
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: HALT feature already cleared"));
ResetDataToggle(aRealEndpoint);
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" clearing HALT feature for real endpoint %d",
aRealEndpoint));
ResetDataToggle(aRealEndpoint);
ClearStallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = EFalse;
}
EpStatusNotify(aRealEndpoint); // only called if actually something changed
}
TInt DUsbClientController::ClearHaltFeature(TInt aRealEndpoint)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ClearHaltFeature()"));
if (iRealEndpoints[aRealEndpoint].iHalt != EFalse)
{
ClearStallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = EFalse;
}
return KErrNone;
}
void DUsbClientController::ChangeConfiguration(TUint16 aValue)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ChangeConfiguration()"));
// New configuration is the same as the old one: 0
if (iCurrentConfig == 0 && aValue == 0)
{
// no-op
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration: New == Old == 0 --> exiting"));
return;
}
// New configuration is the same as the old one (but not 0)
if (iCurrentConfig == aValue)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration: New == Old == %d --> exiting", aValue));
// From the spec 9.1.1.5, Data toggle is reset to zero here when
// setconfiguration(x->x)(x!=0) received, although we only support
// single configuration currently.
TInt num = 0;
TInt ret = DoForEveryEndpointInUse(&DUsbClientController::ResetDataToggle, num);
if(ret != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint data toggle reset failed"));
}
__KTRACE_OPT(KUSB, Kern::Printf(" Called ResetDataToggle()for %d endpoints", num));
return;
}
// Device is already configured
if (iCurrentConfig != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device was configured: %d", iCurrentConfig));
// Tear down all interface(set)s of the old configuration
RPointerArray<TUsbcInterfaceSet>& ifcsets = CurrentConfig()->iInterfaceSets;
for (TInt i = 0; i < ifcsets.Count(); ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Tearing down InterfaceSet %d", i));
InterfaceSetTeardown(ifcsets[i]);
}
iCurrentConfig = 0;
// Enter Address state (from Configured)
if (iDeviceState == EUsbcDeviceStateConfigured)
NextDeviceState(EUsbcDeviceStateAddress);
}
// Device gets a new configuration
if (aValue != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device gets new configuration..."));
// Setup all alternate settings 0 of all interfaces
// (Don't separate the next two lines of code.)
iCurrentConfig = aValue;
RPointerArray<TUsbcInterfaceSet>& ifcsets = CurrentConfig()->iInterfaceSets;
const TInt n = ifcsets.Count();
for (TInt i = 0; i < n; ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting up InterfaceSet %d", i));
InterfaceSetup(ifcsets[i]->iInterfaces[0]);
}
// Enter Configured state (from Address or Configured)
NextDeviceState(EUsbcDeviceStateConfigured);
}
__KTRACE_OPT(KUSB, Kern::Printf(" New configuration: %d", iCurrentConfig));
return;
}
void DUsbClientController::InterfaceSetup(TUsbcInterface* aIfc)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::InterfaceSetup()"));
const TInt num_eps = aIfc->iEndpoints.Count();
for (TInt i = 0; i < num_eps; i++)
{
// Prepare this endpoint for I/O
TUsbcLogicalEndpoint* const ep = aIfc->iEndpoints[i];
// (TUsbcLogicalEndpoint's FS/HS endpoint sizes and interval values got
// adjusted in its constructor.)
if (iHighSpeed)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting Ep info size to %d (HS)", ep->iEpSize_Hs));
ep->iInfo.iSize = ep->iEpSize_Hs;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting Ep info size to %d (FS)", ep->iEpSize_Fs));
ep->iInfo.iSize = ep->iEpSize_Fs;
}
const TInt idx = EpAddr2Idx(ep->iPEndpoint->iEndpointAddr);
if (ConfigureEndpoint(idx, ep->iInfo) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d configuration failed", idx));
continue;
}
// Should there be a problem with it then we could try resetting the ep
// data toggle at this point (or before the Configure) as well.
__KTRACE_OPT(KUSB, Kern::Printf(" Connecting real ep addr 0x%02x & logical ep #%d",
ep->iPEndpoint->iEndpointAddr, ep->iLEndpointNum));
ep->iPEndpoint->iLEndpoint = ep;
}
aIfc->iInterfaceSet->iCurrentInterface = aIfc->iSettingCode;
return;
}
void DUsbClientController::InterfaceSetTeardown(TUsbcInterfaceSet* aIfcSet)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::InterfaceSetTeardown()"));
if (aIfcSet->iInterfaces.Count() == 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" No interfaces exist - returning"));
return;
}
RPointerArray<TUsbcLogicalEndpoint>& eps = aIfcSet->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt i = 0; i < num_eps; i++)
{
TUsbcLogicalEndpoint* const ep = eps[i];
const TInt idx = EpAddr2Idx(ep->iPEndpoint->iEndpointAddr);
CancelTransferRequests(idx);
if (!ep->iPEndpoint->iLEndpoint)
{
__KTRACE_OPT(KUSB, Kern::Printf(" real ep %d not configured: skipping", idx));
continue;
}
if (ResetDataToggle(idx) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d data toggle reset failed", idx));
}
if (DeConfigureEndpoint(idx) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d de-configuration failed", idx));
}
__KTRACE_OPT(KUSB, Kern::Printf(" disconnecting real ep & logical ep"));
ep->iPEndpoint->iLEndpoint = NULL;
}
if (aIfcSet->CurrentInterface() != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Resetting alternate interface setting to 0"));
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
aIfcSet->iCurrentInterface = 0;
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
}
return;
}
void DUsbClientController::ChangeInterface(TUsbcInterface* aIfc)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ChangeInterface()"));
TUsbcInterfaceSet* ifcset = aIfc->iInterfaceSet;
const TUint8 setting = aIfc->iSettingCode;
if (ifcset->iCurrentInterface == setting)
{
__KTRACE_OPT(KUSB, Kern::Printf(" New Ifc == old Ifc: nothing to do"));
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Setting new interface setting #%d", setting));
InterfaceSetTeardown(ifcset);
InterfaceSetup(aIfc);
StatusNotify(static_cast<TUsbcDeviceState>(KUsbAlternateSetting | setting), ifcset->iClientId);
}
// aFunction gets called, successively, with the endpoint index of every ep in-use as its argument.
// (BTW: The declaration "type (class::*name)(params)" makes <name> a "pointer to element function".)
//
TInt DUsbClientController::DoForEveryEndpointInUse(TInt (DUsbClientController::*aFunction)(TInt), TInt& aCount)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::DoForEveryEndpointInUse()"));
aCount = 0;
TUsbcConfiguration* const config = CurrentConfig();
if (!config)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device is not configured - returning"));
return KErrNone;
}
RPointerArray<TUsbcInterfaceSet>& ifcsets = config->iInterfaceSets;
const TInt num_ifcsets = ifcsets.Count();
for (TInt i = 0; i < num_ifcsets; i++)
{
RPointerArray<TUsbcLogicalEndpoint>& eps = ifcsets[i]->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt j = 0; j < num_eps; j++)
{
const TInt ep_num = EpAddr2Idx(eps[j]->iPEndpoint->iEndpointAddr);
const TInt result = (this->*aFunction)(ep_num);
++aCount;
if (result != KErrNone)
{
return result;
}
}
}
return KErrNone;
}
// -eof-