// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_exp.cpp
// Floating point exponentiation
//
//
#include "um_std.h"
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
#endif
#ifndef __USE_VFP_MATH
LOCAL_D const TUint32 ExpCoeffs[] =
{
0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to 2^(x/8)
0xD1CF79AC,0xB17217F7,0x7FFB0000, // for 0<=x<=1
0x1591EF2B,0xF5FDEFFC,0x7FF60000,
0x23B940A9,0xE35846B9,0x7FF10000,
0xDD73C23F,0x9D955ADE,0x7FEC0000,
0x8728EBE7,0xAEC4616C,0x7FE60000,
0xAF177130,0xA1646F7D,0x7FE00000,
0xC44EAC22,0x8542C46E,0x7FDA0000
};
LOCAL_D const TUint32 TwoToNover8[] =
{
0xEA8BD6E7,0x8B95C1E3,0x7FFF0000, // 2^0.125
0x8DB8A96F,0x9837F051,0x7FFF0000, // 2^0.250
0xB15138EA,0xA5FED6A9,0x7FFF0000, // 2^0.375
0xF9DE6484,0xB504F333,0x7FFF0000, // 2^0.500
0x5506DADD,0xC5672A11,0x7FFF0000, // 2^0.625
0xD69D6AF4,0xD744FCCA,0x7FFF0000, // 2^0.750
0xDD24392F,0xEAC0C6E7,0x7FFF0000 // 2^0.875
};
LOCAL_D const TUint32 EightLog2edata[] = {0x5C17F0BC,0xB8AA3B29,0x80020000}; // 8/ln2
EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
/**
Calculates the value of e to the power of x.
@param aTrg A reference containing the result.
@param aSrc The power to which e is to be raised.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
// Calculate exp(aSrc) and write result to aTrg
// Algorithm:
// Let x=aSrc/ln2 and calculate 2^x
// 2^x = 2^int(x).2^frac(x)
// 2^int(x) just adds int(x) to the final result exponent
// Reduce frac(x) to the range [0,0.125] (modulo 0.125)
// Use polynomial to calculate 2^x for 0<=x<=0.125
// Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
const TRealX& EightLog2e=*(const TRealX*)EightLog2edata;
TRealX x;
TRealX y;
TInt r=x.Set(aSrc);
if (r==KErrNone)
{
x*=EightLog2e;
TInt n=(TInt)x;
if (n<16384 && n>-16384)
{
if (x.iSign&1)
n--;
x-=TRealX(n);
PolyX(y,x,7,(const TRealX*)ExpCoeffs);
y.iExp=TUint16(TInt(y.iExp)+(n>>3));
n&=7;
if (n)
y*= (*(const TRealX*)(TwoToNover8+3*n-3));
return y.GetTReal(aTrg);
}
else
{
if (n<0)
{
SetZero(aTrg);
r=KErrUnderflow;
}
else
{
SetInfinite(aTrg,0);
r=KErrOverflow;
}
return r;
}
}
else
{
if (r==KErrArgument)
SetNaN(aTrg);
if (r==KErrOverflow)
{
if (x.iSign&1)
{
SetZero(aTrg);
r=KErrUnderflow;
}
else
{
SetInfinite(aTrg,0);
}
}
return r;
}
}
#else // __USE_VFP_MATH
// definitions come from RVCT math library
extern "C" TReal exp(TReal);
EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
{
aTrg = exp(aSrc);
if (Math::IsZero(aTrg))
return KErrUnderflow;
if (Math::IsFinite(aTrg))
return KErrNone;
if (Math::IsInfinite(aTrg))
return KErrOverflow;
SetNaN(aTrg);
return KErrArgument;
}
#endif