// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\direct\mchunk.cpp
//
//
#include <memmodel.h>
DMemModelChunk::~DMemModelChunk()
{
__KTRACE_OPT(KTHREAD,Kern::Printf("DMemModelChunk destruct %O",this));
if (iRegionSize)
{
MM::WaitRamAlloc();
MM::FreeRegion(iRegionBase,iRegionSize);
__KTRACE_OPT(KMEMTRACE, Kern::Printf("MT:D %d %x %O",NTickCount(),this,this););
MM::SignalRamAlloc();
#ifdef BTRACE_CHUNKS
BTraceContext4(BTrace::EChunks,BTrace::EChunkDestroyed,this);
#endif
}
iRegionSize=0;
TDfc* dfc = (TDfc*)__e32_atomic_swp_ord_ptr(&iDestroyedDfc, 0);
if(dfc)
dfc->Enque();
}
TUint8* DMemModelChunk::Base(DProcess* aProcess)
{
return iBase;
}
TInt DMemModelChunk::DoCreate(SChunkCreateInfo& anInfo)
{
__ASSERT_COMPILE(!(EMMChunkAttributesMask & EChunkAttributesMask));
if(iAttributes&EMemoryNotOwned)
return KErrNotSupported;
if (anInfo.iMaxSize<=0)
return KErrArgument;
TInt r=KErrNone;
iMaxSize=MM::RoundToBlockSize(anInfo.iMaxSize);
switch (anInfo.iType)
{
case EDll:
case EUserCode:
case EUserSelfModCode:
case EUserData:
case EDllData:
case ESharedKernelSingle:
case ESharedKernelMultiple:
case ESharedIo:
case EKernelMessage:
MM::WaitRamAlloc();
r=MM::AllocRegion(iRegionBase, iMaxSize);
if (r==KErrNone)
iRegionSize=iMaxSize;
else
MM::AllocFailed=ETrue;
MM::SignalRamAlloc();
iBase=(TUint8*)iRegionBase;
iSize=iMaxSize;
if(r==KErrNone)
{
iMapAttr = EMapAttrCachedMax;
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::DoCreate clear %x+%x",iRegionBase,iRegionSize));
// Clear memory to value determined by chunk member
memset((TAny*)iRegionBase, iClearByte, MM::RoundToBlockSize(iRegionSize));
}
break;
default:
break;
}
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::DoCreate %O ret %d",this,r));
__KTRACE_OPT(KMMU,Kern::Printf("RegionBase=%08x, RegionSize=%08x",iRegionBase,iRegionSize));
__KTRACE_OPT(KMEMTRACE, {MM::WaitRamAlloc();Kern::Printf("MT:C %d %x %O",NTickCount(),this,this);MM::SignalRamAlloc();});
#ifdef BTRACE_CHUNKS
TKName nameBuf;
Name(nameBuf);
BTraceContextN(BTrace::EChunks,BTrace::EChunkCreated,this,iMaxSize,nameBuf.Ptr(),nameBuf.Size());
if(iOwningProcess)
BTrace8(BTrace::EChunks,BTrace::EChunkOwner,this,iOwningProcess);
BTraceContext12(BTrace::EChunks,BTrace::EChunkInfo,this,iChunkType,iAttributes);
#endif
return r;
}
void DMemModelChunk::SetFixedAddress(TLinAddr anAddr, TInt aSize)
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O SetFixedAddress %08X size %08X",this,anAddr,aSize));
iSize=MM::RoundToBlockSize(aSize);
if (iSize>iMaxSize)
iMaxSize=iSize;
iBase=(TUint8*)anAddr;
}
TInt DMemModelChunk::Adjust(TInt aNewSize)
//
// Adjust a standard chunk.
//
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Adjust %08x",aNewSize));
if (iAttributes & (EDoubleEnded|EDisconnected))
return KErrGeneral;
if (aNewSize<0 || aNewSize>iMaxSize)
return KErrArgument;
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O adjusted to %x",this,iSize));
__KTRACE_OPT(KMEMTRACE, {MM::WaitRamAlloc();Kern::Printf("MT:A %d %x %x %O",NTickCount(),this,iSize,this);MM::SignalRamAlloc();});
return KErrNone;
}
TInt DMemModelChunk::AdjustDoubleEnded(TInt aBottom, TInt aTop)
//
// Adjust a double-ended chunk.
//
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::AdjustDoubleEnded %x-%x",aBottom,aTop));
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDoubleEnded)
return KErrGeneral;
if (aTop<0 || aBottom<0 || aTop<aBottom || aTop>iMaxSize)
return KErrArgument;
TInt newSize=aTop-aBottom;
if (newSize>iMaxSize)
return KErrArgument;
iStartPos=aBottom;
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O adjusted to %x+%x",this,iStartPos,iSize));
__KTRACE_OPT(KMEMTRACE, {MM::WaitRamAlloc();Kern::Printf("MT:A %d %x %x %O",NTickCount(),this,iSize,this);MM::SignalRamAlloc();});
return KErrNone;
}
TInt DMemModelChunk::Address(TInt aOffset, TInt aSize, TLinAddr& aKernelAddress)
{
if(TUint(aOffset)>=TUint(iMaxSize))
return KErrArgument;
if(TUint(aOffset+aSize)>TUint(iMaxSize))
return KErrArgument;
if(aSize<=0)
return KErrArgument;
aKernelAddress = (TLinAddr)iBase+aOffset;
return KErrNone;
}
TInt DMemModelChunk::PhysicalAddress(TInt aOffset, TInt aSize, TLinAddr& aKernelAddress, TUint32& aPhysicalAddress, TUint32* aPhysicalPageList)
{
TInt r=Address(aOffset,aSize,aKernelAddress);
if(r!=KErrNone)
return r;
TPhysAddr physStart = Epoc::LinearToPhysical(aKernelAddress);
TInt pageShift = 12;
TUint32 page = aKernelAddress>>pageShift<<pageShift;
TUint32 lastPage = (aKernelAddress+aSize-1)>>pageShift<<pageShift;
TUint32* pageList = aPhysicalPageList;
TUint32 nextPhys = Epoc::LinearToPhysical(page);
TUint32 pageSize = 1<<pageShift;
while(page<=lastPage)
{
TPhysAddr phys = Epoc::LinearToPhysical(page);
if(pageList)
*pageList++ = phys;
if(phys!=nextPhys)
nextPhys = KPhysAddrInvalid;
else
nextPhys += pageSize;
page += pageSize;
}
if(nextPhys==KPhysAddrInvalid)
{
// Memory is discontiguous...
aPhysicalAddress = KPhysAddrInvalid;
return 1;
}
else
{
// Memory is contiguous...
aPhysicalAddress = physStart;
return KErrNone;
}
}
TInt DMemModelChunk::Commit(TInt aOffset, TInt aSize, TCommitType aCommitType, TUint32* aExtraArg)
//
// Commit to a disconnected chunk.
//
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Commit %x+%x type=%d extra=%08x",aOffset,aSize,aCommitType,aExtraArg));
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
return KErrGeneral;
if (aOffset<0 || aSize<0 || (aOffset+aSize)>iMaxSize)
return KErrArgument;
if(LOGICAL_XOR((TInt)aCommitType&DChunk::ECommitPhysicalMask, iAttributes&DChunk::EMemoryNotOwned))
return KErrNotSupported; // Commit type doesn't match 'memory owned' type
if((TInt)aCommitType&DChunk::ECommitPhysicalMask)
return KErrNotSupported;
if(aCommitType==DChunk::ECommitContiguous)
{
// We can't commit contiguous memory, we just have to take what's already there.
// So check to see if memory is contiguous, and if not, return KErrNoMemory -
// which is what other Memory Models do if they can't find enough contiguous RAM.
TLinAddr kernAddr;
if(PhysicalAddress(aOffset,aSize,kernAddr,*aExtraArg)!=KErrNone)
return KErrNoMemory;
}
else if(aCommitType!=DChunk::ECommitDiscontiguous)
return KErrArgument;
return KErrNone;
}
TInt DMemModelChunk::Allocate(TInt aSize, TInt aGuard, TInt aAlign)
//
// Allocate offset and commit to a disconnected chunk.
//
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Allocate %x %x %d",aSize,aGuard,aAlign));
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
return KErrGeneral;
if (aSize<=0 || aSize>iMaxSize)
return KErrArgument;
TInt r=KErrNotSupported;
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Allocate returns %x",r));
return r;
}
TInt DMemModelChunk::Decommit(TInt anOffset, TInt aSize)
//
// Decommit from a disconnected chunk.
//
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Decommit %x+%x",anOffset,aSize));
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
return KErrGeneral;
if (anOffset<0 || aSize<0 || (anOffset+aSize)>iMaxSize)
return KErrArgument;
return KErrNone;
}
void DMemModelChunk::Substitute(TInt /*aOffset*/, TPhysAddr /*aOldAddr*/, TPhysAddr /*aNewAddr*/)
{
MM::Panic(MM::EUnsupportedOperation);
}
TInt DMemModelChunk::Unlock(TInt anOffset, TInt aSize)
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Decommit %x+%x",anOffset,aSize));
if (!(iAttributes&ECache))
return KErrGeneral;
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
return KErrGeneral;
if (anOffset<0 || aSize<0 || (anOffset+aSize)>iMaxSize)
return KErrArgument;
return KErrNone;
}
TInt DMemModelChunk::Lock(TInt anOffset, TInt aSize)
{
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Decommit %x+%x",anOffset,aSize));
if (!(iAttributes&ECache))
return KErrGeneral;
if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
return KErrGeneral;
if (anOffset<0 || aSize<0 || (anOffset+aSize)>iMaxSize)
return KErrArgument;
return KErrNone;
}
TInt DMemModelChunk::CheckAccess()
{
DProcess* pP=TheCurrentThread->iOwningProcess;
if (iAttributes&EPrivate)
{
if (iOwningProcess && iOwningProcess!=pP && pP!=K::TheKernelProcess)
return KErrAccessDenied;
}
return KErrNone;
}
TUint32 MM::RoundToBlockSize(TUint32 aSize)
{
TUint32 m=MM::RamBlockSize-1;
return (aSize+m)&~m;
}
void MM::FreeRegion(TLinAddr aBase, TInt aSize)
{
__KTRACE_OPT(KMMU,Kern::Printf("MM::FreeRegion base %08x size %08x",aBase,aSize));
aSize=MM::RoundToBlockSize(aSize);
__ASSERT_ALWAYS(aBase>=MM::UserDataSectionBase && aBase+aSize<=MM::UserDataSectionEnd, MM::Panic(MM::EFreeInvalidRegion));
TInt block=(aBase-MM::UserDataSectionBase)>>MM::RamBlockShift;
TInt nBlocks=aSize>>MM::RamBlockShift;
MM::RamAllocator->Free(block, nBlocks);
}
TInt MM::AllocRegion(TLinAddr& aBase, TInt aSize, TInt aAlign)
{
__KTRACE_OPT(KMMU,Kern::Printf("MM::AllocRegion size 0x%x align %d",aSize,aAlign));
TInt align=Max(aAlign-MM::RamBlockShift, 0);
TInt nBlocks=MM::RoundToBlockSize(aSize)>>MM::RamBlockShift;
TInt base=(TInt)(MM::UserDataSectionBase>>MM::RamBlockShift);
TInt block=MM::RamAllocator->AllocAligned(nBlocks, align, base, ETrue); // returns first block number or -1
if (block<0)
return KErrNoMemory;
MM::RamAllocator->Alloc(block,nBlocks);
aBase=MM::UserDataSectionBase+(block<<MM::RamBlockShift);
__KTRACE_OPT(KMMU,Kern::Printf("MM::AllocRegion address %08x",aBase));
return KErrNone;
}
TInt MM::ClaimRegion(TLinAddr aBase, TInt aSize)
{
__KTRACE_OPT(KMMU,Kern::Printf("MM::ClaimRegion base %08x size %08x",aBase,aSize));
TUint32 m=MM::RamBlockSize-1;
aSize=MM::RoundToBlockSize(aSize+(aBase&m));
aBase&=~m;
if (aBase<MM::UserDataSectionBase || TUint32(aSize)>MM::UserDataSectionEnd-aBase)
return KErrArgument;
TInt block=(aBase-MM::UserDataSectionBase)>>MM::RamBlockShift;
TInt nBlocks=aSize>>MM::RamBlockShift;
if (MM::RamAllocator->NotFree(block, nBlocks))
return KErrInUse;
MM::RamAllocator->Alloc(block, nBlocks);
return KErrNone;
}
// Allocate a physically contiguous region
TInt MM::AllocContiguousRegion(TLinAddr& aBase, TInt aSize, TInt aAlign)
{
#ifndef __CPU_HAS_MMU
return MM::AllocRegion(aBase, aSize, aAlign);
#else
__KTRACE_OPT(KMMU,Kern::Printf("MM::AllocContiguousRegion size 0x%x align %d",aSize,aAlign));
TBitMapAllocator* sa = MM::SecondaryAllocator;
if (!sa)
return MM::AllocRegion(aBase, aSize, aAlign); // only one physical bank
TBitMapAllocator* ra = MM::RamAllocator;
TInt align=Max(aAlign-MM::RamBlockShift, 0);
TUint32 alignmask = (1u<<align)-1;
TInt nBlocks=MM::RoundToBlockSize(aSize)>>MM::RamBlockShift;
TInt base=(TInt)(MM::UserDataSectionBase>>MM::RamBlockShift);
const SRamBank* banks = (const SRamBank*)TheSuperPage().iRamBootData;
const SRamBank* pB = banks;
TInt bnum = 0;
TInt block = -1;
for (; pB->iSize; ++pB)
{
TInt nb = pB->iSize >> MM::RamBlockShift;
sa->CopyAlignedRange(ra, bnum, nb);
TInt basealign = (base + bnum) & alignmask;
block = sa->AllocAligned(nBlocks, align, basealign, ETrue); // returns first block number or -1
if (block>=0)
break;
bnum += nb;
}
if (pB->iSize == 0)
return KErrNoMemory;
MM::RamAllocator->Alloc(block + bnum, nBlocks);
aBase = MM::UserDataSectionBase + ((block + bnum)<<MM::RamBlockShift);
__KTRACE_OPT(KMMU,Kern::Printf("MM::AllocContiguousRegion address %08x",aBase));
return KErrNone;
#endif
}
TInt MM::BlockNumber(TPhysAddr aAddr)
{
__KTRACE_OPT(KMMU,Kern::Printf("MM::BlockNumber %08x",aAddr));
const SRamBank* banks = (const SRamBank*)TheSuperPage().iRamBootData;
const SRamBank* pB = banks;
TInt bnum = 0;
for (; pB->iSize; ++pB)
{
if (aAddr >= pB->iBase)
{
TUint32 offset = aAddr - pB->iBase;
if (offset < pB->iSize)
{
TInt bn = bnum + TInt(offset>>MM::RamBlockShift);
__KTRACE_OPT(KMMU,Kern::Printf("MM::BlockNumber %08x->%x",aAddr,bn));
return bn;
}
}
TInt nb = pB->iSize >> MM::RamBlockShift;
bnum += nb;
}
return KErrNotFound;
}
/********************************************
* Hardware chunk abstraction
********************************************/
/**
@pre Call in a thread context.
@pre Interrupts must be enabled.
@pre Kernel must be unlocked.
@pre No fast mutex can be held.
@pre Calling thread must be in a critical section.
*/
EXPORT_C TInt DPlatChunkHw::New(DPlatChunkHw*& aChunk, TPhysAddr aAddr, TInt aSize, TUint aAttribs)
{
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"DPlatChunkHw::New");
__KTRACE_OPT(KMMU,Kern::Printf("DPlatChunkHw::New phys=%08x, size=%x, attribs=%x",aAddr,aSize,aAttribs));
aChunk=NULL;
if (aSize<=0)
return KErrArgument;
DPlatChunkHw* pC=new DPlatChunkHw;
if (!pC)
return KErrNoMemory;
__KTRACE_OPT(KMMU,Kern::Printf("DPlatChunkHw created at %08x",pC));
pC->iPhysAddr=aAddr;
pC->iLinAddr=aAddr;
pC->iSize=aSize;
aChunk=pC;
return KErrNone;
}
void DMemModelChunk::BTracePrime(TInt aCategory)
{
DChunk::BTracePrime(aCategory);
#ifdef BTRACE_CHUNKS
if (aCategory == BTrace::EChunks || aCategory == -1)
{
BTrace12(BTrace::EChunks, BTrace::EChunkMemoryAllocated,this,0,this->iSize);
}
#endif
}