Trying to figure out how to implement my WINC like compatibility layer. Going the emulation way is probably not so smart. We should not use the kernel but rather hook native functions in the Exec calls.
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\moving\mkernel.cpp
//
//
#include "memmodel.h"
/********************************************
* Thread
********************************************/
TInt DThread::AllocateSupervisorStack()
{
__KTRACE_OPT(KTHREAD,Kern::Printf("DThread::AllocateSupervisorStack %O %x",this,iSupervisorStackSize));
iSupervisorStackSize=Mmu::RoundToPageSize(iSupervisorStackSize);
if (iThreadType!=EThreadInitial)
{
TInt offset=MM::SvStackChunk->Allocate(iSupervisorStackSize,PP::SupervisorThreadStackGuard);
if (offset<0)
{
__KTRACE_FAIL(KErrNoMemory,Kern::Printf("ASS: %d",KErrNoMemory));
return KErrNoMemory;
}
iSupervisorStack=MM::SvStackChunk->Base()+offset+PP::SupervisorThreadStackGuard;
iSupervisorStackAllocated = TRUE;
__KTRACE_OPT(KTHREAD,Kern::Printf("Supervisor stack at %x, size %x",iSupervisorStack,iSupervisorStackSize));
}
return KErrNone;
}
void DThread::FreeSupervisorStack()
{
__KTRACE_OPT(KTHREAD,Kern::Printf("DThread::FreeSupervisorStack %O",this));
if (iSupervisorStackAllocated)
{
TAny* pStack = __e32_atomic_swp_ord_ptr(&iSupervisorStack, 0);
if (pStack && iThreadType!=EThreadInitial)
{
__KTRACE_OPT(KTHREAD,Kern::Printf("Freeing supervisor stack at %08x, size %x",pStack,iSupervisorStackSize));
TInt offset=(TUint8*)pStack-MM::SvStackChunk->Base();
MM::SvStackChunk->Decommit(offset-PP::SupervisorThreadStackGuard,iSupervisorStackSize+PP::SupervisorThreadStackGuard);
}
}
iSupervisorStackAllocated = FALSE;
}
TInt DThread::AllocateUserStack(TInt aSize, TBool /*aPaged*/)
{
__KTRACE_OPT(KTHREAD,Kern::Printf("DThread::AllocateUserStack %O %x",this,aSize));
aSize=Mmu::RoundToPageSize(aSize);
if (aSize>PP::MaxUserThreadStack)
return KErrTooBig;
TInt guard=PP::UserThreadStackGuard;
DProcess* pP=iOwningProcess;
NKern::LockSystem();
DChunk* pC=pP->iDataBssStackChunk;
if (!pC || pC->Open()!=KErrNone) // so chunk doesn't disappear during Allocate()
{
NKern::UnlockSystem();
__KTRACE_FAIL(KErrDied,Kern::Printf("AUS1: %d",KErrDied));
return KErrDied;
}
NKern::UnlockSystem();
TInt r=pC->Allocate(aSize,guard);
TInt s=pC->Close(NULL); // NULL since we didn't add chunk to process again
if (s & EObjectDeleted)
{
__KTRACE_FAIL(KErrDied,Kern::Printf("AUS2: %d",KErrDied));
return KErrDied;
}
if (r<0)
{
__KTRACE_FAIL(r,Kern::Printf("AUS3: %d",r));
return r;
}
iUserStackSize=aSize;
iUserStackRunAddress=pP->iDataBssRunAddress+r+guard;
__KTRACE_OPT(KTHREAD,Kern::Printf("User stack run address at %x",iUserStackRunAddress));
return KErrNone;
}
void DThread::FreeUserStack()
{
__KTRACE_OPT(KTHREAD,Kern::Printf("DThread::FreeUserStack %O",this));
TLinAddr usr_stack = (TLinAddr)__e32_atomic_swp_ord_ptr(&iUserStackRunAddress, 0);
if (usr_stack)
{
__KTRACE_OPT(KTHREAD,Kern::Printf("Freeing user stack at %x",usr_stack));
DMemModelProcess* pP=(DMemModelProcess*)iOwningProcess;
NKern::LockSystem();
DMemModelChunk* pC=(DMemModelChunk*)pP->iDataBssStackChunk;
if (!pC || pC->Open()!=KErrNone) // so chunk doesn't disappear during Decommit()
{
NKern::UnlockSystem();
__KTRACE_FAIL(KErrDied,Kern::Printf("FUS"));
return;
}
NKern::UnlockSystem();
TInt offset=usr_stack-pP->iDataBssRunAddress;
pC->Decommit(offset-PP::UserThreadStackGuard,iUserStackSize+PP::UserThreadStackGuard);
pC->Close(NULL); // NULL since we didn't add chunk to process again
}
}
void DThread::IpcExcHandler(TExcTrap* aTrap, DThread* aThread, TAny* aContext)
{
aThread->iIpcClient = 0;
TIpcExcTrap& xt=*(TIpcExcTrap*)aTrap;
switch (xt.ExcLocation(aThread, aContext))
{
case TIpcExcTrap::EExcRemote:
// problem accessing remote address - 'leave' so an error code will be returned
xt.Exception(KErrBadDescriptor); // does not return
case TIpcExcTrap::EExcLocal:
// problem accessing local address - return and panic current thread as usual
NKern::UnlockSystem();
return;
default:
// otherwise return and fault kernel
return;
}
}