Trying to figure out how to implement my WINC like compatibility layer. Going the emulation way is probably not so smart. We should not use the kernel but rather hook native functions in the Exec calls.
// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\nvram.cpp
//
//
#include "plat_priv.h"
_LIT(KLitMachineConfigMutex,"MCConfMutex");
_LIT(KLitRamDriveMutex,"RamDriveMutex");
_LIT(KLitTheRamDriveChunk,"TheRamDriveChunk");
void K::InitNvRam()
{
__KTRACE_OPT(KBOOT,Kern::Printf("InitNvRam"));
TInt r=K::MutexCreate(K::MachineConfigMutex, KLitMachineConfigMutex, NULL, EFalse, KMutexOrdMachineConfig);
if (r!=KErrNone)
K::Fault(K::EMachineConfigMutexCreateFailed);
if (K::ColdStart)
{
TheSuperPage().iRamDriveSize=0;
TheMachineConfig().iLogSize=0;
TheMachineConfig().iLogMaxSize=0;
}
#ifdef __MEMMODEL_FLEXIBLE__
TheSuperPage().iRamDriveSize=0;
#endif
SChunkCreateInfo c;
TInt ramDriveSize=TheSuperPage().iRamDriveSize;
c.iGlobal=EFalse;
c.iAtt=TChunkCreate::ENormal;
c.iForceFixed=EFalse;
#ifndef __MEMMODEL_FLEXIBLE__
c.iOperations=SChunkCreateInfo::EAdjust|SChunkCreateInfo::EAdd;
#else
c.iOperations=SChunkCreateInfo::EAdjust;
#endif
c.iRunAddress=PP::RamDriveStartAddress;
c.iPreallocated=ramDriveSize;
c.iType=ERamDrive;
c.iMaxSize=PP::RamDriveMaxSize;
c.iInitialBottom=0;
c.iInitialTop=0;
c.iName.Set(KLitTheRamDriveChunk);
c.iOwner=K::TheKernelProcess;
TLinAddr runAddr;
r=K::TheKernelProcess->NewChunk((DChunk*&)PP::TheRamDriveChunk,c,runAddr);
if (r!=KErrNone)
K::Fault(K::ERamDriveChunkCreateFailed);
__KTRACE_OPT(KBOOT,Kern::Printf("Ram Drive size = %08x", ramDriveSize));
r=TInternalRamDrive::Create();
if (r!=KErrNone)
K::Fault(K::ERamDriveInitFailed);
__KTRACE_OPT(KBOOT,Kern::Printf("K::InitNvRam() completed"));
}
TInt TInternalRamDrive::Create()
{
__KTRACE_OPT(KBOOT,Kern::Printf("TInternalRamDrive::Create()"));
// create the RAM drive mutex
TInt r=K::MutexCreate((DMutex*&)Mutex, KLitRamDriveMutex, NULL, EFalse, KMutexOrdRamDrive);
if (r!=KErrNone)
return r;
__KTRACE_OPT(KBOOT,Kern::Printf("RAM drive mutex created at %08x",Mutex));
return KErrNone;
}
#ifndef __MEMMODEL_FLEXIBLE__
EXPORT_C TLinAddr TInternalRamDrive::Base()
//
// Return the Internal Ram Drive base address
//
{
return (TLinAddr)PP::TheRamDriveChunk->Base(&Kern::CurrentProcess());
}
#endif
EXPORT_C TInt TInternalRamDrive::Size()
//
// Return the Internal Ram Drive size
//
{
return TheSuperPage().iRamDriveSize;
}
EXPORT_C TInt TInternalRamDrive::Adjust(TInt aNewSize)
//
// Adjust the size of the internal ram drive
//
{
// If we are shrinking the drive, change the size now in case the
// machine is reset half way through the chunk adjust
if (aNewSize<0)
return KErrArgument;
if (aNewSize<TheSuperPage().iRamDriveSize)
{
TheSuperPage().iRamDriveSize=aNewSize;
return PP::TheRamDriveChunk->Adjust(aNewSize);
}
// If we are growing the drive, change the size after the adjustment is complete
// If a reset occurs in the middle of the adjust, the ram drive will be
// restored to its original state before the adjustment.
else if (aNewSize>TheSuperPage().iRamDriveSize)
{
if (aNewSize>PP::RamDriveMaxSize)
return KErrDiskFull;
TInt r=PP::TheRamDriveChunk->Adjust(aNewSize);
if (r==KErrNoMemory)
return(KErrDiskFull);
else if(r==KErrNone)
TheSuperPage().iRamDriveSize=aNewSize;
return(r);
}
return KErrNone;
}
EXPORT_C void TInternalRamDrive::Wait()
{
Kern::MutexWait(*Mutex);
}
EXPORT_C void TInternalRamDrive::Signal()
{
Kern::MutexSignal(*Mutex);
}