Enhance the base/rom extension to generate the symbol file of the rom built.
The symbol file is placed in epoc32/rom/<baseport_name>, along with the rom log and final oby file.
// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// Do benchmarking comparisons in asynchronous and synchronous modes.
//
//
//! @file f32test\concur\t_cfsbench.cpp
#define __E32TEST_EXTENSION__
#include <f32file.h>
#include <e32test.h>
#include <f32dbg.h>
#include "t_server.h"
#include "t_tdebug.h"
// The following #defines are for using older (and less accurate) benchmark
// timings. They use multiple threads to get the operations simultaneous
// but this is inherrently inaccurate (it depends whether one of them starts
// and/or ends before the other how accurate the timings are). If you leave
// them both commented out then the tests will be done in a single thread
// using asynchronous file operations, thus avoiding the problem.
// Uncomment the following if you want to test asynchronous file operations
// using two threads rather than in a single thread.
// #define TEST_ASYNC_IN_THREAD
// Uncomment the following if you want to test using synchronous file
// operations, using two threads to do both at once.
// #define TEST_SYNC_IN_THREAD
struct TStats
//
// Statistics -- size and time of operations.
//
{
TInt64 iSize;
TInt64 iTime;
void Init() { iSize = 0; iTime = 0; }
};
GLDEF_D RTest test(_L("T_CFSBENCH"));
GLDEF_D RFs TheFs;
LOCAL_D TFullName gFsName;
LOCAL_D TFullName gFsName1;
LOCAL_D TFullName gFsName2;
LOCAL_D TFullName gOldFsName;
LOCAL_D TFullName gNewFsName;
LOCAL_D TBool gNoMedia = ETrue;
#if defined(TEST_SYNC_IN_THREAD) || defined(TEST_ASYNC_IN_THREAD)
LOCAL_D TInt gThreadNumber = 0;
#endif
LOCAL_D RMutex gDataLock;
LOCAL_D TStats gWrStats;
LOCAL_D TStats gRdStats;
_LIT(KFsFile, "CFAFSDLY");
_LIT(KFsName, "DelayFS");
LOCAL_D const TInt32 KSecond = 1000000;
LOCAL_D const TInt32 KTimeBM = 20;
LOCAL_D const TInt32 KNumBuf = 100;
LOCAL_D const TInt32 KBufLen = 0x100;
LOCAL_D const TInt32 KMaxThr = 10;
LOCAL_D const TInt32 KMaxLag = 4;
LOCAL_D TBuf8<KBufLen> gBufferArr[KMaxThr][KNumBuf];
LOCAL_D TRequestStatus gStatusArr[KMaxThr][KNumBuf];
LOCAL_C void AddStats(TStats& aStats, TInt64 aSize, TInt64 aTime)
/// Add values to the statistics.
{
gDataLock.Wait();
aStats.iSize += aSize;
aStats.iTime += aTime;
gDataLock.Signal();
}
LOCAL_C TInt GetSpeed(TStats& aStats)
/// Calculate and return the data throughput from the statistics, rounded.
{
gDataLock.Wait();
TInt speed = I64LOW((aStats.iSize + aStats.iTime/2) / aStats.iTime);
gDataLock.Signal();
return speed;
}
LOCAL_C TInt32 GetSpeed(TInt aOps, TInt64 aDtime)
/// Calculate and return the throughput from the umber of blocks transferred
/// and the elapsed time.
{
TInt64 dsize = MAKE_TINT64(0, aOps) * MAKE_TINT64(0, KBufLen) * MAKE_TINT64(0, KSecond);
TInt32 speed = I64LOW((dsize + aDtime/2) / aDtime);
return speed;
}
LOCAL_C TBool DriveIsOK(TChar c)
/// Test that a selected drive leter is OK to write files.
{
TInt r;
TInt drv;
r=TheFs.CharToDrive(c, drv);
if (r != KErrNone)
return EFalse;
TDriveInfo info;
r=TheFs.Drive(info,drv);
test_KErrNone(r);
return (info.iDriveAtt != 0 && !(info.iDriveAtt & KDriveAttRom));
}
LOCAL_C TChar MountTestFileSystem(TInt aDrive)
//
// Mount a new CTestFileSystem on the drive under test
//
{
TInt r;
TBuf<64> b;
TChar c;
r=TheFs.DriveToChar(aDrive,c);
test_KErrNone(r);
b.Format(_L("Mount test file system on %c:"),(TUint)c);
test.Next(b);
r=TheFs.AddFileSystem(KFsFile);
test_Value(r, r == KErrNone || r==KErrAlreadyExists);
r=TheFs.FileSystemName(gOldFsName,aDrive);
test_Value(r, r == KErrNone || r==KErrNotFound);
TDriveInfo drv;
r = TheFs.Drive(drv, aDrive);
test_KErrNone(r);
gNoMedia = (drv.iType == EMediaUnknown || drv.iType == EMediaNotPresent);
if (gOldFsName.Length() > 0)
{
TTest::Printf(_L("Dismount %C: %S"), (TUint)c, &gOldFsName);
r=TheFs.DismountFileSystem(gOldFsName,aDrive);
test_KErrNone(r);
}
r=TheFs.MountFileSystem(KFsName,aDrive);
test_KErrNone(r);
r=TheFs.FileSystemName(gNewFsName,aDrive);
test_KErrNone(r);
test(gNewFsName.CompareF(KFsName)==0);
return c;
}
LOCAL_C void UnmountFileSystem(TInt aDrive)
/// Unmount a test filesystem and mount the old one.
{
TChar c;
TInt r=TheFs.DriveToChar(aDrive,c);
test_KErrNone(r);
r=TheFs.DismountFileSystem(gNewFsName,aDrive);
test_KErrNone(r);
// if there's no media present, don't try to mount it
if (gNoMedia)
{
test.Printf(_L("No media on %C: so don't remount it"), (TUint)c);
}
else if (gOldFsName.Length() > 0)
{
test.Printf(_L("Mount %C: %S"), (TUint)c, &gOldFsName);
r=TheFs.MountFileSystem(gOldFsName,aDrive);
test_KErrNone(r);
}
if (r != KErrNone)
test.Printf(_L("Error %d remounting %S on %C\n"), r, &gOldFsName, (TUint)c);
}
LOCAL_C void RemountFileSystem(TInt aDrive, TBool aSync)
/// Unmount and remount the file system on the specified drive in the
/// selected mode.
/// @param aDrive Drive number (EDriveC etc.).
/// @param aSync Mount synchronous if true, asynchronous if not.
{
TChar c;
TInt r=TheFs.DriveToChar(aDrive,c);
r=TheFs.FileSystemName(gFsName, aDrive);
test_Value(r, r == KErrNone || r==KErrNotFound);
if (gFsName.Length() > 0)
{
r=TheFs.DismountFileSystem(gFsName, aDrive);
test_KErrNone(r);
}
TBufC<16> type = _L("asynchronous");
if (aSync)
type = _L("synchronous");
test.Printf(_L("Mount filesystem %c: %-8S as %S\n"), (TUint)c, &gFsName, &type);
#ifdef __CONCURRENT_FILE_ACCESS__
r=TheFs.MountFileSystem(gFsName, aDrive, aSync);
#else
r=TheFs.MountFileSystem(gFsName, aDrive);
#endif
test_KErrNone(r);
}
enum TOper
{
ERead,
EWrite
};
// ---------------------------------------------------------------------------
#if defined(TEST_SYNC_IN_THREAD)
LOCAL_C TInt testSyncAccess(TAny* aData)
///
/// Test read file handling.
///
/// @param aData pointer to the thread data area
{
TThreadData& data = *(TThreadData*)aData;
TFileName fileName = data.iFile;
TBool dowrite = (data.iData != NULL);
RFs myFs;
TInt r = myFs.Connect();
TEST(r==KErrNone);
r = myFs.SetSessionPath(gSessionPath);
if (r != KErrNone)
TTest::Fail(HERE, _L("SetSessionPath returned %d"), r);
TVolumeInfo vol;
TInt drv;
r = myFs.CharToDrive(fileName[0], drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("CharToDrive(%c) returned %d"), fileName[0], r);
r = myFs.Volume(vol, drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("Volume() returned %d"), r);
TInt maxwrite = TInt(vol.iFree / 2 - KBufLen);
if (maxwrite < KBufLen*2)
TTest::Fail(HERE, _L("Not enough space to do test, only %d KB available"),
TInt(vol.iFree/1024));
RFile f;
RTimer timer;
TTime startTime;
TTime endTime;
TTimeIntervalMicroSeconds timeTaken;
TBuf8<KBufLen> buff;
TRequestStatus tstat;
TInt wrnum = 0;
TInt rdnum = 0;
timer.CreateLocal();
if (dowrite)
{
// write tests
r = f.Replace(myFs, fileName, EFileStreamText | EFileWrite);
TEST(r==KErrNone);
// wait for both tasks to have a chance to complete opening the files
User::After(1000);
buff.Fill('_', KBufLen);
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
TInt pos = (wrnum * KBufLen) % maxwrite;
r = f.Write(pos, buff);
TEST(r==KErrNone);
++wrnum;
}
endTime.HomeTime();
timeTaken=endTime.MicroSecondsFrom(startTime);
TInt64 dtime = timeTaken.Int64();
TInt64 dsize = wrnum * KBufLen * TInt64(KSecond);
TInt32 speed = TInt32((dsize + dtime/2) / dtime);
AddStats(gWrStats, dsize, dtime);
TTest::Printf(_L("%8d writes in %6d mS = %8d bytes per second\n"),
wrnum, TInt32(dtime)/1000, speed);
timer.Cancel();
f.Close();
}
else
{
// read tests
r = f.Open(myFs, fileName, EFileStreamText);
TEST(r==KErrNone);
// wait for both tasks to have a chance to complete opening the files
User::After(1000);
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
TInt pos = (rdnum * KBufLen) % maxwrite;
r = f.Read(pos, buff, KBufLen);
TEST(r==KErrNone);
++rdnum;
}
endTime.HomeTime();
timeTaken=endTime.MicroSecondsFrom(startTime);
TInt64 dtime = timeTaken.Int64();
TInt64 dsize = rdnum * KBufLen * TInt64(KSecond);
TInt32 speed = TInt32((dsize + dtime/2) / dtime);
AddStats(gRdStats, dsize, dtime);
// wait to allow the dust to settle
User::After(KSecond);
TTest::Printf(_L("%8d reads in %6d mS = %8d bytes per second\n"),
rdnum, TInt32(dtime)/1000, speed);
timer.Cancel();
timer.Close();
f.Close();
// delete file after reading it
myFs.Delete(fileName);
}
myFs.Close();
return r;
}
#endif
// ---------------------------------------------------------------------------
#if defined(TEST_ASYNC_IN_THREAD)
LOCAL_C TInt testAsyncAccess(TAny* aData)
//
/// Test read file handling.
///
/// @param aData pointer to the thread data area
{
TThreadData& data = *(TThreadData*)aData;
TFileName fileName = data.iFile;
TBool dowrite = (data.iData != NULL);
TBuf8<KBufLen>* buffer = gBufferArr[data.iNum];
TRequestStatus* status = gStatusArr[data.iNum];
RFs myFs;
TInt r = myFs.Connect();
TEST(r==KErrNone);
r = myFs.SetSessionPath(gSessionPath);
if (r != KErrNone)
TTest::Fail(HERE, _L("SetSessionPath returned %d"), r);
TVolumeInfo vol;
TInt drv;
r = myFs.CharToDrive(fileName[0], drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("CharToDrive(%c) returned %d"), fileName[0], r);
r = myFs.Volume(vol, drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("Volume() returned %d"), r);
TInt64 maxwrite = vol.iFree / 2 - KBufLen;
if (maxwrite < KBufLen*2)
TTest::Fail(HERE, _L("Not enough space to do test, only %d KB available"),
TInt(vol.iFree/1024));
RFile f;
RTimer timer;
TRequestStatus tstat;
TTime startTime;
TTime endTime;
TTimeIntervalMicroSeconds timeTaken;
TInt wrnum = 0;
TInt rdnum = 0;
TInt opnum = 0;
TInt opfin = 0;
TInt i;
timer.CreateLocal();
if (dowrite)
{
r = f.Replace(myFs, fileName, EFileStreamText | EFileWrite);
TEST(r==KErrNone);
// wait for both tasks to have a chance to complete opening the files
User::After(1000);
for (i = 0; i < KNumBuf; i++)
buffer[i].Fill('_', KBufLen);
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
TInt pos = TInt((wrnum * KBufLen) % maxwrite);
TInt bnum = opnum++ % KNumBuf;
f.Write(pos, buffer[bnum], status[bnum]);
if (opnum - opfin > KMaxLag)
{
while (status[opfin % KNumBuf] == KRequestPending)
User::WaitForRequest(status[opfin % KNumBuf]);
opfin++;
}
++wrnum;
}
while (opfin < opnum)
{
while (status[opfin % KNumBuf] == KRequestPending)
User::WaitForRequest(status[opfin % KNumBuf]);
opfin++;
}
endTime.HomeTime();
TTimeIntervalMicroSeconds timeTaken=endTime.MicroSecondsFrom(startTime);
TInt64 dtime = timeTaken.Int64();
TInt64 dsize = wrnum * KBufLen * TInt64(KSecond);
TInt32 speed = TInt32((dsize + dtime/2) / dtime);
AddStats(gWrStats, dsize, dtime);
TTest::Printf(_L("%8d writes in %6d mS = %8d bytes per second\n"),
wrnum, TInt32(dtime)/1000, speed);
}
else
{
r = f.Open(myFs, fileName, EFileStreamText);
TEST(r==KErrNone);
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
TInt pos = TInt((rdnum * KBufLen) % maxwrite);
TInt bnum = opnum++ % KNumBuf;
f.Read(pos, buffer[bnum], status[bnum]);
if (opnum - opfin > KMaxLag)
{
User::WaitForRequest(status[opfin++ % KNumBuf]);
}
++rdnum;
}
while (opfin < opnum)
{
if (status[opfin % KNumBuf] == KRequestPending)
User::WaitForRequest(status[opfin % KNumBuf]);
opfin++;
}
endTime.HomeTime();
timeTaken=endTime.MicroSecondsFrom(startTime);
TInt64 dtime = timeTaken.Int64();
TInt64 dsize = rdnum * KBufLen * TInt64(KSecond);
TInt32 speed = TInt32((dsize + dtime/2) / dtime);
AddStats(gRdStats, dsize, dtime);
// wait to allow the dust to settle
User::After(KSecond);
TTest::Printf(_L("%8d reads in %6d mS = %8d bytes per second\n"),
rdnum, TInt32(dtime)/1000, speed);
myFs.Delete(fileName);
}
timer.Cancel();
timer.Close();
f.Close();
myFs.Close();
return r;
}
#endif
// ---------------------------------------------------------------------------
class TFileOps
/// Do operations on a file.
{
public:
TFileOps();
TInt Open(TChar dr, TInt n);
TInt Close();
TInt Reset();
TInt Erase();
TInt Write();
TInt Read();
TInt End();
public:
TFileName iName;
RFile iF;
TBuf8<KBufLen> iBuffer[KMaxLag];
TRequestStatus iStatus[KMaxLag];
TInt iPtr;
TInt iNum;
TInt iOps;
TInt iMax;
TBool iOpen;
};
TFileOps::TFileOps() : iPtr(0), iNum(0), iOps(0), iMax(0), iOpen(EFalse)
{
for (TInt i = 0; i < KMaxLag; i++)
{
iStatus[i] = KErrNone;
iBuffer[i].Fill(TChar('_'), KBufLen);
}
}
TInt TFileOps::Open(TChar aDrvCh, TInt aNum)
/// Open the file for testing, give error if there is not enough space for it.
/// @param aDrvCh Drive letter.
/// @param aNum File number suffix.
{
TVolumeInfo vol;
TInt drv;
TInt r = TheFs.CharToDrive(aDrvCh, drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("CharToDrive(%c) returned %d"), (TUint)aDrvCh, r);
r = TheFs.Volume(vol, drv);
if (r != KErrNone)
TTest::Fail(HERE, _L("Volume(%c:) returned %d"), (TUint)aDrvCh, r);
iMax = I64LOW(vol.iFree / MAKE_TINT64(0,KBufLen)) / 2 - 1;
if (iMax < 10)
TTest::Fail(HERE, _L("Not enough space to do test, only %d KB available"),
I64LOW(vol.iFree/1024));
Reset();
iName.Format(_L("%c:\\TEST_%d"), (TUint)aDrvCh, aNum);
r = iF.Replace(TheFs, iName, EFileStreamText | EFileWrite);
if (r == KErrNone)
iOpen = ETrue;
return r;
}
TInt TFileOps::Close()
/// Close and delete the file, returning the number of operations done.
{
if (!iOpen)
return 0;
iF.Close();
TheFs.Delete(iName);
iOpen = EFalse;
return iNum;
}
TInt TFileOps::Reset()
/// Reset all of the counts.
{
iPtr = 0;
iNum = 0;
iOps = 0;
return 0;
}
TInt TFileOps::Write()
/// If there is a free buffer available, start a write.
{
if (!iOpen)
return 0;
while (iNum < iOps && iStatus[iNum%KMaxLag] != KRequestPending)
iNum++;
if (iOps < KMaxLag || iStatus[iPtr] != KRequestPending)
{
TInt pos = iNum%iMax * KBufLen;
iF.Write(pos, iBuffer[iPtr], iStatus[iPtr]);
iOps++;
iPtr++;
iPtr %= KMaxLag;
return 1;
}
return 0;
}
TInt TFileOps::Read()
/// If there is a free buffer available, start a read.
{
if (!iOpen)
return 0;
while (iNum < iOps && iStatus[iNum%KMaxLag] != KRequestPending)
iNum++;
if (iOps < KMaxLag || iStatus[iPtr] != KRequestPending)
{
TInt pos = iNum%iMax * KBufLen;
iF.Read(pos, iBuffer[iPtr], iStatus[iPtr]);
iOps++;
iPtr++;
iPtr %= KMaxLag;
return 1;
}
return 0;
}
TInt TFileOps::End()
/// Wait until all outstanding operations have ended, then return the number.
{
if (!iOpen)
return 0;
while (iNum < iOps)
{
if (iStatus[iNum%KMaxLag] == KRequestPending)
User::WaitForRequest(iStatus[iNum%KMaxLag]);
else
iNum++;
}
if (iOps < iMax)
iMax = iOps;
return iNum;
}
LOCAL_C TInt testAsyncAccess(TChar dc1, TChar dc2)
//
// Test one drive against the other.
//
{
TFileOps f1;
TFileOps f2;
f1.Open(dc1, 1);
if (dc1 != dc2)
f2.Open(dc2, 2);
TInt op1 = 0;
TInt op2 = 0;
RTimer timer;
TRequestStatus tstat;
TTime startTime;
TTime endTime;
TTimeIntervalMicroSeconds timeTaken;
timer.CreateLocal();
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
TInt num = f1.Write();
num += f2.Write();
if (num == 0)
User::WaitForAnyRequest();
}
op1 = f1.End();
op2 = f2.End();
endTime.HomeTime();
timeTaken=endTime.MicroSecondsFrom(startTime);
TInt64 dtime = timeTaken.Int64();
TTest::Printf(_L("%c: %8d writes in %6d mS = %8d bytes per second\n"),
(TUint)dc1, op1, I64LOW(dtime)/1000, GetSpeed(op1, dtime));
if (dc1 != dc2)
TTest::Printf(_L("%c: %8d writes in %6d mS = %8d bytes per second\n"),
(TUint)dc2, op2, I64LOW(dtime)/1000, GetSpeed(op2, dtime));
AddStats(gWrStats, MAKE_TINT64(0, op1 + op2) * MAKE_TINT64(0, KBufLen) * MAKE_TINT64(0, KSecond), dtime);
// now the reads!
f1.Reset();
f2.Reset();
timer.After(tstat, KTimeBM * KSecond);
startTime.HomeTime();
while (tstat == KRequestPending)
{
f1.Read();
f2.Read();
User::WaitForAnyRequest();
}
op1 = f1.End();
op2 = f2.End();
endTime.HomeTime();
timeTaken=endTime.MicroSecondsFrom(startTime);
dtime = timeTaken.Int64();
TTest::Printf(_L("%c: %8d reads in %6d mS = %8d bytes per second\n"),
(TUint)dc1, op1, I64LOW(dtime)/1000, GetSpeed(op1, dtime));
if (dc1 != dc2)
TTest::Printf(_L("%c: %8d reads in %6d mS = %8d bytes per second\n"),
(TUint)dc2, op2, I64LOW(dtime)/1000, GetSpeed(op2, dtime));
AddStats(gRdStats, MAKE_TINT64(0, op1 + op2) * MAKE_TINT64(0, KBufLen) * MAKE_TINT64(0, KSecond), dtime);
test.Printf(_L("\n"));
test.Printf(_L("average write throughput = %d bytes/sec\n"), GetSpeed(gWrStats));
test.Printf(_L("average read throughput = %d bytes/sec\n"), GetSpeed(gRdStats));
test.Printf(_L("\n"));
gWrStats.Init();
gRdStats.Init();
timer.Cancel();
timer.Close();
f1.Close();
f2.Close();
// delay for a second to allow the close to complete before dismounting.
User::After(1000000);
return KErrNone;
}
#if defined(TEST_SYNC_IN_THREAD) || defined(TEST_ASYNC_IN_THREAD)
LOCAL_C TInt CreateThread(TThreadFunction aFunc, TChar c, TOper aOper)
/// Create a thread to do the appropriate operation on a drive.
{
TBuf<2> drive(_L("?"));
TBuf<64> name;
drive[0] = TText(c);
drive.UpperCase();
TThreadData& d = TTest::Data(gThreadNumber);
d.iFile.Format(_L("%S:\\TEST%d.FILE"), &drive, gThreadNumber);
d.iData = (aOper == EWrite ? &aOper : NULL);
name.Format(_L("Test_%S_%d"), &drive, gThreadNumber);
TInt r = TTest::Create(gThreadNumber, aFunc, name);
++gThreadNumber;
return r;
}
LOCAL_C TInt RunThreads(TThreadFunction aFunc, TChar aDrive1, TChar aDrive2, TOper aOper)
/// Run threads to test one drive against the other at the same time.
/// The thread will report any error and return it as a value, the program will
/// exit at a higher level after cleaning up.
{
TInt r;
gThreadNumber = 0;
if ((r = CreateThread(aFunc, aDrive1, aOper)) != KErrNone) return r;
if ((r = CreateThread(aFunc, aDrive2, aOper)) != KErrNone) return r;
TTest::Printf();
r = TTest::Run();
TTest::Printf();
return r;
}
LOCAL_C TInt testThreads(TThreadFunction aFunc, TChar c, TChar d)
/// Run threads testing read and write of the drives both ways round.
/// The thread will report any error and return it as a value, the program will
/// exit at a higher level after cleaning up.
{
TInt r;
if ((r = RunThreads(aFunc, c, d, EWrite)) != KErrNone) return r;
if ((r = RunThreads(aFunc, c, d, ERead)) != KErrNone) return r;
if ((r = RunThreads(aFunc, d, c, EWrite)) != KErrNone) return r;
if ((r = RunThreads(aFunc, d, c, ERead)) != KErrNone) return r;
// display totals;
test.Printf(_L("average write throughput = %d bytes/sec\n"), GetSpeed(gWrStats));
test.Printf(_L("average read throughput = %d bytes/sec\n"), GetSpeed(gRdStats));
test.Printf(_L("\n"));
gWrStats.Init();
gRdStats.Init();
return r;
}
#endif
LOCAL_C TInt parseCmd(TChar& aDrvCh1, TChar& aDrvCh2)
/// Get parameters from the comand line; if there aren't enough then
/// prompt the user for them and return KErrAbort if ^C is pressed.
{
while (aDrvCh1 < 'A' || aDrvCh1 > 'Z')
{
test.Printf(_L("Enter drive letter: "));
while (aDrvCh1 < 'A' || aDrvCh1 > 'Z')
{
if (aDrvCh1 == 0x03)
return KErrAbort;
aDrvCh1 = User::UpperCase(test.Getch());
}
if (!DriveIsOK(aDrvCh1))
{
test.Printf(_L("%c: is not a valid drive\n"), (TUint)aDrvCh1);
aDrvCh1 = 0;
}
else
{
TInt drv;
TheFs.CharToDrive(aDrvCh1, drv);
TheFs.FileSystemName(gFsName1, drv);
test.Printf(_L("%c: (%S)\n"), (TUint)aDrvCh1, &gFsName1);
}
}
while (aDrvCh2 < 'A' || aDrvCh2 > 'Z')
{
test.Printf(_L("Enter drive letter: "));
while (aDrvCh2 < 'A' || aDrvCh2 > 'Z')
{
if (aDrvCh2 == 0x03)
return KErrAbort;
aDrvCh2 = User::UpperCase(test.Getch());
}
if (!DriveIsOK(aDrvCh2))
{
test.Printf(_L("%c: is not a valid drive\n"), (TUint)aDrvCh2);
aDrvCh2 = 0;
}
else
{
TInt drv;
TheFs.CharToDrive(aDrvCh2, drv);
TheFs.FileSystemName(gFsName2, drv);
test.Printf(_L("%c: (%S)\n"), (TUint)aDrvCh2, &gFsName2);
}
}
return KErrNone;
}
GLDEF_C void CallTestsL()
//
// Do all tests
//
{
TInt r = TTest::Init();
test_KErrNone(r);
TChar drvch0 = TTest::DefaultDriveChar();
TChar drvch1 = 0;
TChar drvch2 = 0;
TInt drive0;
TInt drive1;
TInt drive2;
const TInt KMaxArgs = 4;
TPtrC argv[KMaxArgs];
TInt argc = TTest::ParseCommandArguments(argv, KMaxArgs);
if (argc > 1)
drvch0 = User::UpperCase(argv[1][0]);
if (argc > 2)
drvch1 = User::UpperCase(argv[2][0]);
if (argc > 3)
drvch2 = User::UpperCase(argv[3][0]);
r = TheFs.CharToDrive(drvch0, drive0);
test_KErrNone(r);
if (TheFs.IsValidDrive(drive0))
MountTestFileSystem(drive0);
else
test.Printf(_L("Unable to mount test file system\n"));
r = parseCmd(drvch1, drvch2);
if (r != KErrNone)
{
UnmountFileSystem(drive0);
User::Panic(_L("USER ABORT"), 0);
}
r = TheFs.CharToDrive(drvch1, drive1);
test_KErrNone(r);
r = TheFs.CharToDrive(drvch2, drive2);
test_KErrNone(r);
r = TheFs.FileSystemName(gFsName1, drive1);
test_Value(r, r == KErrNone || r == KErrNotFound);
r = TheFs.FileSystemName(gFsName2, drive2);
test_Value(r, r == KErrNone || r == KErrNotFound);
gDataLock.CreateLocal();
if (drive1 == drive2)
{
// !!! Disable platform security tests until we get the new APIs
// if (User::Capability() & KCapabilityRoot)
// CheckMountLFFS(TheFs, drvch1);
test.Printf(_L("Using drive %c: (%S)\n"),
(TUint)drvch1, &gFsName1);
if (r == KErrNone)
{
test.Next(_L("Test with drive asynchronous"));
RemountFileSystem(drive1, EFalse);
testAsyncAccess(drvch1, drvch1);
}
if (r == KErrNone)
{
test.Next(_L("Test with drive synchronous"));
RemountFileSystem(drive1, ETrue);
testAsyncAccess(drvch1, drvch1);
}
}
else
{
// !!! Disable platform security tests until we get the new APIs
/* if (User::Capability() & KCapabilityRoot)
{
CheckMountLFFS(TheFs, drvch1);
CheckMountLFFS(TheFs, drvch2);
}
*/
test.Printf(_L("Using drives %c: (%S) and %c: (%S)\n"),
(TUint)drvch1, &gFsName1, (TUint)drvch2, &gFsName2);
#if !defined(TEST_ASYNC_IN_THREAD)
if (r == KErrNone)
{
test.Next(_L("Test async r/w with both drives async"));
RemountFileSystem(drive1, EFalse);
RemountFileSystem(drive2, EFalse);
testAsyncAccess(drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test async r/w with 1st drive sync and 2nd async"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, EFalse);
testAsyncAccess(drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test async r/w with 1st drive async and 2nd sync"));
RemountFileSystem(drive1, EFalse);
RemountFileSystem(drive2, ETrue);
testAsyncAccess(drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test async r/w with both drives sync"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, ETrue);
testAsyncAccess(drvch1, drvch2);
}
#else
if (r == KErrNone)
{
test.Next(_L("Test async r/w with both drives asynchronous"));
RemountFileSystem(drive1, EFalse);
RemountFileSystem(drive2, EFalse);
r = testThreads(testAsyncAccess, drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test async r/w with one drive sync and one async"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, EFalse);
r = testThreads(testAsyncAccess, drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test async r/w with both drives synchronous"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, ETrue);
r = testThreads(testAsyncAccess, drvch1, drvch2);
}
#endif
#if defined(TEST_SYNC_IN_THREAD)
if (r == KErrNone)
{
test.Next(_L("Test sync r/w with both drives asynchronous"));
RemountFileSystem(drive1, EFalse);
RemountFileSystem(drive2, EFalse);
r = testThreads(testSyncAccess, drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test sync r/w with one drive sync and one async"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, EFalse);
r = testThreads(testSyncAccess, drvch1, drvch2);
}
if (r == KErrNone)
{
test.Next(_L("Test sync r/w with both drives synchronous"));
RemountFileSystem(drive1, ETrue);
RemountFileSystem(drive2, ETrue);
r = testThreads(testSyncAccess, drvch1, drvch2);
}
#endif
}
gDataLock.Close();
UnmountFileSystem(drive0);
test_Value(r, r == 0);
}
GLDEF_C TInt E32Main()
//
// Main entry point
//
{
TInt r;
CTrapCleanup* cleanup;
cleanup=CTrapCleanup::New();
__UHEAP_MARK;
test.Title();
test.Start(_L("Starting tests..."));
r=TheFs.Connect();
test_KErrNone(r);
// TheFs.SetAllocFailure(gAllocFailOn);
TTime timerC;
timerC.HomeTime();
// Do the tests
TRAP(r,CallTestsL());
// reset the debug register
TheFs.SetDebugRegister(0);
TTime endTimeC;
endTimeC.HomeTime();
TTimeIntervalSeconds timeTakenC;
r=endTimeC.SecondsFrom(timerC,timeTakenC);
test_KErrNone(r);
test.Printf(_L("Time taken for test = %d seconds\n"),timeTakenC.Int());
// TheFs.SetAllocFailure(gAllocFailOff);
TheFs.Close();
test.End();
test.Close();
__UHEAP_MARKEND;
delete cleanup;
return(KErrNone);
}