diff -r 000000000000 -r 96e5fb8b040d kerneltest/e32test/mmu/t_imb.cia --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/kerneltest/e32test/mmu/t_imb.cia Thu Dec 17 09:24:54 2009 +0200 @@ -0,0 +1,479 @@ +// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies). +// All rights reserved. +// This component and the accompanying materials are made available +// under the terms of the License "Eclipse Public License v1.0" +// which accompanies this distribution, and is available +// at the URL "http://www.eclipse.org/legal/epl-v10.html". +// +// Initial Contributors: +// Nokia Corporation - initial contribution. +// +// Contributors: +// +// Description: +// e32test\mmu\t_imb.cia +// +// + +#include +#include +#include + +#ifdef __CPU_ARM +__NAKED__ TInt Sqrt(TReal& /*aDest*/, const TReal& /*aSrc*/) + { + // r0=address of aDest, r1=address of aSrc + asm("stmfd sp!, {r4-r10,lr} "); +#ifdef __DOUBLE_WORDS_SWAPPED__ + asm("ldmia r1, {r3,r4} "); // low mant into r4, sign:exp:high mant into r3 +#else + asm("ldr r3, [r1, #4] "); + asm("ldr r4, [r1, #0] "); +#endif + asm("bic r5, r3, #0xFF000000 "); + asm("bic r5, r5, #0x00F00000 "); // high word of mantissa into r5 + asm("mov r2, r3, lsr #20 "); + asm("bics r2, r2, #0x800 "); // exponent now in r2 + asm("beq fastsqrt1 "); // branch if exponent zero (zero or denormal) + asm("mov r6, #0xFF "); + asm("orr r6, r6, #0x700 "); + asm("cmp r2, r6 "); // check for infinity or NaN + asm("beq fastsqrt2 "); // branch if infinity or NaN + asm("movs r3, r3 "); // test sign + asm("bmi fastsqrtn "); // branch if negative + asm("sub r2, r2, #0xFF "); // unbias the exponent + asm("sub r2, r2, #0x300 "); // + asm("fastsqrtd1: "); + asm("mov r1, #0x40000000 "); // value for comparison + asm("mov r3, #27 "); // loop counter (number of bits/2) + asm("movs r2, r2, asr #1 "); // divide exponent by 2, LSB into CF + asm("movcs r7, r5, lsl #11 "); // mantissa into r6,r7 with MSB in MSB of r7 + asm("orrcs r7, r7, r4, lsr #21 "); + asm("movcs r6, r4, lsl #11 "); + asm("movcs r4, #0 "); // r4, r5 will hold result mantissa + asm("orrcs r7, r7, #0x80000000 "); // if exponent odd, restore MSB of mantissa + asm("movcc r7, r5, lsl #12 "); // mantissa into r6,r7 with MSB in MSB of r7 + asm("orrcc r7, r7, r4, lsr #20 "); // if exponent even, shift mantissa left an extra + asm("movcc r6, r4, lsl #12 "); // place, lose top bit, and + asm("movcc r4, #1 "); // set MSB of result, and + asm("mov r5, #0 "); // r4, r5 will hold result mantissa + asm("mov r8, #0 "); // r8, r9 will be comparison accumulator + asm("mov r9, #0 "); + asm("bcc fastsqrt4 "); // if exponent even, calculate one less bit + // as result MSB already known + + // Main mantissa square-root loop + asm("fastsqrt3: "); // START OF MAIN LOOP + asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant + asm("sbcs r12, r8, r4 "); // result into r14:r12:r10 + asm("sbcs r14, r9, r5 "); + asm("movcs r7, r10 "); // if no borrow replace accumulator with result + asm("movcs r8, r12 "); + asm("movcs r9, r14 "); + asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit + asm("adcs r5, r5, r5 "); + asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits + asm("orr r9, r9, r8, lsr #30 "); + asm("mov r8, r8, lsl #2 "); + asm("orr r8, r8, r7, lsr #30 "); + asm("mov r7, r7, lsl #2 "); + asm("orr r7, r7, r6, lsr #30 "); + asm("mov r6, r6, lsl #2 "); + asm("fastsqrt4: "); // Come in here if we need to do one less iteration + asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant + asm("sbcs r12, r8, r4 "); // result into r14:r12:r10 + asm("sbcs r14, r9, r5 "); + asm("movcs r7, r10 "); // if no borrow replace accumulator with result + asm("movcs r8, r12 "); + asm("movcs r9, r14 "); + asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit + asm("adcs r5, r5, r5 "); + asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits + asm("orr r9, r9, r8, lsr #30 "); + asm("mov r8, r8, lsl #2 "); + asm("orr r8, r8, r7, lsr #30 "); + asm("mov r7, r7, lsl #2 "); + asm("orr r7, r7, r6, lsr #30 "); + asm("mov r6, r6, lsl #2 "); + asm("subs r3, r3, #1 "); // decrement loop counter + asm("bne fastsqrt3 "); // do necessary number of iterations + + asm("movs r4, r4, lsr #1 "); // shift result mantissa right 1 place + asm("orr r4, r4, r5, lsl #31 "); // LSB (=rounding bit) into carry + asm("mov r5, r5, lsr #1 "); + asm("adcs r4, r4, #0 "); // round the mantissa to 53 bits + asm("adcs r5, r5, #0 "); + asm("cmp r5, #0x00200000 "); // check for mantissa overflow + asm("addeq r2, r2, #1 "); // if so, increment exponent - can never overflow + asm("bic r5, r5, #0x00300000 "); // remove top bit of mantissa - it is implicit + asm("add r2, r2, #0xFF "); // re-bias the exponent + asm("add r3, r2, #0x300 "); // and move into r3 + asm("orr r3, r5, r3, lsl #20 "); // r3 now contains exponent + top of mantissa + asm("fastsqrt_ok: "); +#ifdef __DOUBLE_WORDS_SWAPPED__ + asm("stmia r0, {r3,r4} "); // store the result +#else + asm("str r3, [r0, #4] "); + asm("str r4, [r0, #0] "); +#endif + asm("mov r0, #0 "); // error code KErrNone + __POPRET("r4-r10,"); + + asm("fastsqrt1: "); + asm("orrs r6, r5, r4 "); // exponent zero - test mantissa + asm("beq fastsqrt_ok "); // if zero, return 0 + + asm("movs r3, r3 "); // denormal - test sign + asm("bmi fastsqrtn "); // branch out if negative + asm("sub r2, r2, #0xFE "); // unbias the exponent + asm("sub r2, r2, #0x300 "); // + asm("fastsqrtd: "); + asm("adds r4, r4, r4 "); // shift mantissa left + asm("adcs r5, r5, r5 "); + asm("sub r2, r2, #1 "); // and decrement exponent + asm("tst r5, #0x00100000 "); // test if normalised + asm("beq fastsqrtd "); // loop until normalised + asm("b fastsqrtd1 "); // now treat as a normalised number + asm("fastsqrt2: "); // get here if infinity or NaN + asm("orrs r6, r5, r4 "); // if mantissa zero, infinity + asm("bne fastsqrtnan "); // branch if not - must be NaN + asm("movs r3, r3 "); // test sign of infinity + asm("bmi fastsqrtn "); // branch if -ve +#ifdef __DOUBLE_WORDS_SWAPPED__ + asm("stmia r0, {r3,r4} "); // store the result +#else + asm("str r3, [r0, #4] "); + asm("str r4, [r0, #0] "); +#endif + asm("mov r0, #-9 "); // return KErrOverflow + asm("b fastsqrt_end "); + + asm("fastsqrtn: "); // get here if negative or QNaN operand + asm("mov r3, #0xFF000000 "); // generate "real indefinite" QNaN + asm("orr r3, r3, #0x00F80000 "); // sign=1, exp=7FF, mantissa = 1000...0 + asm("mov r4, #0 "); + asm("fastsqrtxa: "); +#ifdef __DOUBLE_WORDS_SWAPPED__ + asm("stmia r0, {r3,r4} "); // store the result +#else + asm("str r3, [r0, #4] "); + asm("str r4, [r0, #0] "); +#endif + asm("mov r0, #-6 "); // return KErrArgument + asm("fastsqrt_end: "); + __POPRET("r4-r10,"); + + asm("fastsqrtnan: "); // operand is a NaN + asm("tst r5, #0x00080000 "); // test MSB of mantissa + asm("bne fastsqrtn "); // if set it is a QNaN - so return "real indefinite" + asm("bic r3, r3, #0x00080000 "); // else convert SNaN to QNaN + asm("b fastsqrtxa "); // and return KErrArgument + + asm("Sqrt__FRdRCd_end: "); + + } + +__NAKED__ TUint Sqrt_Length() + { + asm("adr r0, Sqrt__FRdRCd_end "); + asm("adr r1, Sqrt__FRdRCd "); + asm("sub r0, r0, r1 "); + __JUMP(,lr); + } + +__NAKED__ TInt Divide(TRealX& /*aDividend*/, const TRealX& /*aDivisor*/) + { + asm("stmfd sp!, {r0,r4-r9,lr} "); + asm("ldmia r1, {r4,r5,r6} "); + asm("ldmia r0, {r1,r2,r3} "); + asm("bl TRealXDivide "); + asm("ldmfd sp!, {r0,r4-r9,lr} "); + asm("stmia r0, {r1,r2,r3} "); + asm("mov r0, r12 "); + __JUMP(,lr); + + // TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3 + // Error code returned in r12 + // Registers r0-r9,r12 modified + // NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE. + asm("TRealXDivide: "); + asm("mov r12, #0 "); // initialise return value to KErrNone + asm("bic r3, r3, #0x300 "); // clear rounding flags + asm("tst r6, #1 "); + asm("eorne r3, r3, #1 "); // Exclusive-OR signs + asm("cmn r3, #0x10000 "); // check if dividend is NaN or infinity + asm("bcs TRealXDivide1 "); // branch if it is + asm("cmn r6, #0x10000 "); // check if divisor is NaN or infinity + asm("bcs TRealXDivide2 "); // branch if it is + asm("cmp r6, #0x10000 "); // check if divisor zero + asm("bcc TRealXDivide3 "); // branch if it is + asm("cmp r3, #0x10000 "); // check if dividend zero + __JUMP(cc,lr); // if zero, exit + asm("tst r3, #1 "); + asm("orrne lr, lr, #1 "); // save sign in bottom bit of lr + + // calculate result exponent + asm("mov r0, r3, lsr #16 "); // r0=dividend exponent + asm("sub r0, r0, r6, lsr #16 "); // r0=dividend exponent - divisor exponent + asm("add r0, r0, #0x7F00 "); + asm("add r0, r0, #0x00FF "); // r0 now contains result exponent + asm("mov r6, r1 "); // move dividend into r6,r7,r8 + asm("mov r7, r2 "); + asm("mov r8, #0 "); // use r8 to hold extra bit shifted up + // r2:r1 will hold result mantissa + asm("mov r2, #1 "); // we will make sure first bit is 1 + asm("cmp r7, r5 "); // compare dividend mantissa to divisor mantissa + asm("cmpeq r6, r4 "); + asm("bcs TRealXDivide4 "); // branch if dividend >= divisor + asm("adds r6, r6, r6 "); // else shift dividend left one + asm("adcs r7, r7, r7 "); // ignore carry here + asm("sub r0, r0, #1 "); // decrement result exponent by one + asm("TRealXDivide4: "); + asm("subs r6, r6, r4 "); // subtract divisor from dividend + asm("sbcs r7, r7, r5 "); + + // Main mantissa division code + // First calculate the top 32 bits of the result + // Top bit is 1, do 10 lots of 3 bits the one more bit + asm("mov r12, #10 "); + asm("TRealXDivide5: "); + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r2, r2, r2 "); // shift in new result bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r2, r2, r2 "); // shift in new result bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r2, r2, r2 "); // shift in new result bit + asm("subs r12, r12, #1 "); + asm("bne TRealXDivide5 "); // iterate the loop + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r2, r2, r2 "); // shift in new result bit - now have 32 bits + + // Now calculate the bottom 32 bits of the result + // Do 8 lots of 4 bits + asm("mov r12, #8 "); + asm("TRealXDivide5a: "); + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r1, r1, r1 "); // shift in new result bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r1, r1, r1 "); // shift in new result bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r1, r1, r1 "); // shift in new result bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3 + asm("sbcs r3, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("movcs r6, r9 "); // if no borrow, replace accumulator with result + asm("movcs r7, r3 "); + asm("adcs r1, r1, r1 "); // shift in new result bit + asm("subs r12, r12, #1 "); + asm("bne TRealXDivide5a "); // iterate the loop + + // r2:r1 now contains a 64-bit normalised mantissa + // need to do rounding now + asm("and r3, lr, #1 "); // result sign back into r3 + asm("orrs r9, r6, r7 "); // check if accumulator zero + asm("beq TRealXDivide6 "); // if it is, result is exact, else generate next bit + asm("adds r6, r6, r6 "); // shift accumulator left by one + asm("adcs r7, r7, r7 "); + asm("adcs r8, r8, r8 "); + asm("subs r6, r6, r4 "); // subtract divisor from accumulator + asm("sbcs r7, r7, r5 "); + asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift + asm("orrcc r3, r3, #0x100 "); // if borrow, round down and set round-down flag + asm("bcc TRealXDivide6 "); + asm("orrs r9, r6, r7 "); // if no borrow, check if exactly half-way + asm("moveqs r9, r1, lsr #1 "); // if exactly half-way, round to even + asm("orrcc r3, r3, #0x100 "); // if C=0, round result down and set round-down flag + asm("bcc TRealXDivide6 "); + asm("orr r3, r3, #0x200 "); // else set round-up flag + asm("adds r1, r1, #1 "); // and round mantissa up + asm("adcs r2, r2, #0 "); + asm("movcs r2, #0x80000000 "); // if carry, mantissa = 80000000 00000000 + asm("addcs r0, r0, #1 "); // and increment exponent + + // check for overflow or underflow and assemble final result + asm("TRealXDivide6: "); + asm("add r4, r0, #1 "); // need to add 1 to get usable threshold + asm("cmp r4, #0x10000 "); // check if exponent >= 0xFFFF + asm("bge TRealXMultiply6 "); // if so, overflow + asm("cmp r0, #0 "); // check for underflow + asm("orrgt r3, r3, r0, lsl #16 "); // if no underflow, result exponent into r3, ... + asm("movgt r12, #0 "); // ... return KErrNone ... + __JUMP(gt,lr); + + // underflow + asm("and r3, r3, #1 "); // set exponent=0, keep sign + asm("mvn r12, #9 "); // return KErrUnderflow + __JUMP(,lr); + + // come here if divisor is zero, dividend finite + asm("TRealXDivide3: "); + asm("cmp r3, #0x10000 "); // check if dividend also zero + asm("bcc TRealXRealIndefinite "); // if so, return 'real indefinite' + asm("orr r3, r3, #0xFF000000 "); // else return infinity with xor sign + asm("orr r3, r3, #0x00FF0000 "); + asm("mov r2, #0x80000000 "); + asm("mov r1, #0 "); + asm("mvn r12, #40 "); // return KErrDivideByZero + __JUMP(,lr); + + // Dividend is NaN or infinity + asm("TRealXDivide1: "); + asm("cmp r2, #0x80000000 "); // check for infinity + asm("cmpeq r1, #0 "); + asm("bne TRealXBinOpNan "); // branch if NaN + asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity + asm("mvncc r12, #8 "); // if not, return KErrOverflow + __JUMP(cc,lr); + + // Dividend=infinity, divisor=NaN or infinity + asm("cmp r5, #0x80000000 "); // check 2nd operand for infinity + asm("cmpeq r4, #0 "); + asm("bne TRealXBinOpNan "); // branch if NaN + asm("b TRealXRealIndefinite "); // else return 'real indefinite' + + // Divisor is NaN or infinity, dividend finite + asm("TRealXDivide2: "); + asm("cmp r5, #0x80000000 "); // check for infinity + asm("cmpeq r4, #0 "); + asm("bne TRealXBinOpNan "); // branch if NaN + asm("and r3, r3, #1 "); // else return zero with xor sign + __JUMP(,lr); + + asm("TRealXBinOpNan: "); // generic routine to process NaNs in binary + // operations + asm("cmn r3, #0x10000 "); // check if first operand is NaN + asm("movcc r0, r1 "); // if not, swap the operands + asm("movcc r1, r4 "); + asm("movcc r4, r0 "); + asm("movcc r0, r2 "); + asm("movcc r2, r5 "); + asm("movcc r5, r0 "); + asm("movcc r0, r3 "); + asm("movcc r3, r6 "); + asm("movcc r6, r0 "); + asm("cmn r6, #0x10000 "); // both operands NaNs? + asm("bcc TRealXBinOpNan1 "); // skip if not + asm("cmp r2, r5 "); // if so, compare the significands + asm("cmpeq r1, r4 "); + asm("movcc r1, r4 "); // r1,r2,r3 will get NaN with larger significand + asm("movcc r2, r5 "); + asm("movcc r3, r6 "); + asm("TRealXBinOpNan1: "); + asm("orr r2, r2, #0x40000000 "); // convert an SNaN to a QNaN + asm("mvn r12, #5 "); // return KErrArgument + __JUMP(,lr); + + // Return 'real indefinite' + asm("TRealXRealIndefinite: "); + asm("ldr r3, __RealIndefiniteExponent "); + asm("mov r2, #0xC0000000 "); + asm("mov r1, #0 "); + asm("mvn r12, #5 "); // return KErrArgument + __JUMP(,lr); + + // overflow + asm("TRealXMultiply6: "); + asm("bic r3, r3, #0x0000FF00 "); // clear rounding flags + asm("orr r3, r3, #0xFF000000 "); // make exponent FFFF for infinity + asm("orr r3, r3, #0x00FF0000 "); + asm("mov r2, #0x80000000 "); // mantissa = 80000000 00000000 + asm("mov r1, #0 "); + asm("mvn r12, #8 "); // return KErrOverflow + __JUMP(,lr); + + asm("__RealIndefiniteExponent: "); + asm(".word 0xFFFF0001 "); + + asm("Divide__FR6TRealXRC6TRealX_end: "); + } + +__NAKED__ TUint Divide_Length() + { + asm("adr r0, Divide__FR6TRealXRC6TRealX_end "); + asm("adr r1, Divide__FR6TRealXRC6TRealX "); + asm("sub r0, r0, r1 "); + __JUMP(,lr); + } + +__NAKED__ TInt SDummy(TInt) + { + __JUMP(,lr); + asm("SDummy__Fi_end: "); + } + +__NAKED__ TUint SDummy_Length() + { + asm("adr r0, SDummy__Fi_end "); + asm("adr r1, SDummy__Fi "); + asm("sub r0, r0, r1 "); + __JUMP(,lr); + } + +__NAKED__ TInt Increment(TInt) + { + asm("add r0, r0, #1 "); + __JUMP(,lr); + asm("Increment__Fi_end: "); + } + +__NAKED__ TUint Increment_Length() + { + asm("adr r0, Increment__Fi_end "); + asm("adr r1, Increment__Fi "); + asm("sub r0, r0, r1 "); + __JUMP(,lr); + } + +#endif