diff -r 000000000000 -r a41df078684a kerneltest/e32test/nkernsa/threadbasic.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/kerneltest/e32test/nkernsa/threadbasic.cpp Mon Oct 19 15:55:17 2009 +0100 @@ -0,0 +1,1389 @@ +// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies). +// All rights reserved. +// This component and the accompanying materials are made available +// under the terms of the License "Eclipse Public License v1.0" +// which accompanies this distribution, and is available +// at the URL "http://www.eclipse.org/legal/epl-v10.html". +// +// Initial Contributors: +// Nokia Corporation - initial contribution. +// +// Contributors: +// +// Description: +// e32test\nkernsa\threadbasic.cpp +// +// + +#include + +#define SLEEP_TIME 1 + +#ifndef __SMP__ +#define iNThreadBaseSpare7 iSpare7 +#endif + +struct SThreadInfo1 + { + volatile TInt iRunCount; + volatile TInt iBlockEvery; + volatile TBool iStop; + CircBuf* iBuf; + NThread* iThread; + }; + +TInt WaitForRun(SThreadInfo1& aI, TInt aCount) + { + TUint32 initial = NKern::TickCount(); + TUint32 final = initial + 2; + FOREVER + { + if (aI.iRunCount >= aCount) + return aI.iRunCount; + TUint32 x = NKern::TickCount(); + if ((x - final) < 0x80000000u) + return KErrTimedOut; + } + } + +void BasicThread(TAny* a) + { + SThreadInfo1& info = *(SThreadInfo1*)a; + NThread* pC = NKern::CurrentThread(); + + while (!info.iStop) + { + TInt r = info.iBuf->TryPut((TUint32)pC); + TEST_RESULT(r==KErrNone, "Buffer full"); + TInt c = (TInt)__e32_atomic_add_ord32(&info.iRunCount, 1); + TInt m = (c+1)%info.iBlockEvery; + if (!m) + NKern::WaitForAnyRequest(); + } + } + +void BasicThread0(TAny*) + { + NThread* pC = NKern::CurrentThread(); + TInt my_priority = pC->i_NThread_BasePri; + TInt this_cpu = NKern::CurrentCpu(); + CircBuf* buf = CircBuf::New(KNumPriorities * KMaxCpus * 8); + TEST_OOM(buf); + SThreadInfo1* pI = (SThreadInfo1*)malloc(KNumPriorities * KMaxCpus * sizeof(SThreadInfo1)); + TEST_OOM(pI); + memclr(pI, KNumPriorities * KMaxCpus * sizeof(SThreadInfo1)); + NFastSemaphore exitSem(0); + + TInt pri; + TInt cpu; + + for_each_cpu(cpu) + { + for (pri = 1; pri < KNumPriorities; ++pri) + { + TInt ix = cpu * KNumPriorities + pri; + SThreadInfo1& info = pI[ix]; + info.iBlockEvery = 1; + info.iBuf = buf; + info.iThread = CreateUnresumedThreadSignalOnExit("Basic", &BasicThread, pri, &info, 0, -1, &exitSem, cpu); + TEST_OOM(info.iThread); + } + } + TInt c = buf->Count(); + TEST_RESULT1(c==0, "Unexpected count %d", c); // nothing resumed yet + for_each_cpu(cpu) + { + for (pri = 1; pri < KNumPriorities; ++pri) + { + TInt ix = cpu * KNumPriorities + pri; + SThreadInfo1& info = pI[ix]; + NKern::ThreadResume(info.iThread); + TInt r = WaitForRun(info, 1); + if (pri>my_priority || cpu!=this_cpu) + { + TEST_RESULT(r==1, "WaitForRun"); + c = buf->Count(); + TEST_RESULT1(c==1, "Unexpected count %d", c); // thread should have run + TUint32 x = buf->Get(); + c = buf->Count(); + TEST_RESULT1(c==0, "Unexpected count %d", c); + TEST_RESULT(x==(TUint32)info.iThread, "Wrong thread"); + } + else + { + TEST_RESULT(r==KErrTimedOut, "WaitForRun"); + c = buf->Count(); + TEST_RESULT1(c==0, "Unexpected count %d", c); // thread won't have run since current has priority + } + } + } + NKern::Sleep(10); // let lower priority threads run + c = buf->Count(); + TEST_RESULT1(c==my_priority, "Unexpected count %d", c); + for (pri = my_priority; pri >= 1; --pri) + { + TInt ix = this_cpu * KNumPriorities + pri; + SThreadInfo1& info = pI[ix]; + TEST_RESULT(info.iRunCount==1, "Bad run count"); + TUint32 x = buf->Get(); + TEST_RESULT(x==(TUint32)info.iThread, "Wrong thread"); + } + for_each_cpu(cpu) + { + for (pri = 1; pri < KNumPriorities; ++pri) + { + TInt ix = cpu * KNumPriorities + pri; + SThreadInfo1& info = pI[ix]; + info.iStop = TRUE; + NKern::ThreadRequestSignal(info.iThread); + NKern::FSWait(&exitSem); + } + } + free(pI); + delete buf; + } + +void BasicThreadTest1() + { + TEST_PRINT("Testing all thread priorities without timeslice"); + + TInt pri; + TInt cpu; + + for_each_cpu(cpu) + { + for (pri = 1; pri < KNumPriorities; ++pri) + { + TEST_PRINT2("Basic0 pri %d cpu %d", pri, cpu); + CreateThreadAndWaitForExit("Basic0", &BasicThread0, pri, 0, 0, -1, cpu); + } + } + } + +void Spinner(TAny*) + { + FOREVER + { + } + } + +void BasicThreadTest2() + { + TEST_PRINT("Kill an unresumed thread"); + NFastSemaphore exitSem(0); + + TInt cpu; + for_each_cpu(cpu) + { + TEST_PRINT1("Thread on CPU %d", cpu); + NThread* t = CreateUnresumedThreadSignalOnExit("Spinner", &Spinner, 33, 0, 0, -1, &exitSem, cpu); + TEST_OOM(t); + NKern::ThreadKill(t); + NKern::FSWait(&exitSem); + TEST_PRINT("OK"); + } + + } + +void TimesliceTestThread(TAny* a) + { + NThread* pC = NKern::CurrentThread(); + TUint id = pC->iNThreadBaseSpare7; + CircBuf* buf = (CircBuf*)a; + TUint32 thresh = norm_fast_counter_freq(); + TUint32 thresh2 = thresh; + thresh /= 3000; + if (thresh < 10) + thresh = 10; + TUint32 last_interval_begin = norm_fast_counter(); + TUint32 last_seen_time = norm_fast_counter(); + FOREVER + { + TUint32 nfc = norm_fast_counter(); + TUint32 delta = nfc - last_seen_time; + TUint32 interval_length = last_seen_time - last_interval_begin; + if (delta > thresh || interval_length > thresh2) + { + last_interval_begin = nfc; + TUint32 x = (id<<24) | interval_length; + TInt r = buf->TryPut(x); + if (r != KErrNone) + break; + } + last_seen_time = nfc; + } + } + +void TimesliceTest() + { +// NThread* pC = NKern::CurrentThread(); +// TInt my_priority = pC->i_NThread_BasePri; +// TInt this_cpu = NKern::CurrentCpu(); + CircBuf* buf = CircBuf::New(1024); + TEST_OOM(buf); + NFastSemaphore exitSem(0); + + TInt cpu; + TInt i; + TInt id = 0; + NThread* t[KMaxCpus*3]; + TInt timeslice[3] = + { + __microseconds_to_timeslice_ticks(20000), + __microseconds_to_timeslice_ticks(23000), + __microseconds_to_timeslice_ticks(19000) + }; + TInt expected[3] = + { + __microseconds_to_norm_fast_counter(20000), + __microseconds_to_norm_fast_counter(23000), + __microseconds_to_norm_fast_counter(19000) + }; + for_each_cpu(cpu) + { + for (i=0; i<3; ++i) + { + t[id] = CreateThreadSignalOnExit("Timeslice", &TimesliceTestThread, 10, buf, 0, timeslice[i], &exitSem, cpu); + TEST_OOM(t[id]); + t[id]->iNThreadBaseSpare7 = id; + ++id; + } + nfcfspin(__microseconds_to_norm_fast_counter(1000)); + } + for (i=0; i1) ? 1 : 0; + while (buf->TryGet(x)==KErrNone) + { + TUint32 id = x>>24; + TUint32 time = x&0xffffff; + TEST_PRINT2("Id %d Time %d", id, time); + TUint32 xid = xcpu*3 + xtype; + if (xcpu==0 && ++xtype==3) + xtype=0; + if (++xcpu == ncpus) + xcpu=0; + TEST_RESULT2(id==xid, "Expected id %d got id %d", xid, id); + TUint32 exp = expected[id%3]; + TUint32 tol = exp/100; + if (tol < 2) + tol = 2; + TUint32 diff = (time > exp) ? time - exp : exp - time; + TEST_RESULT2(diff < tol, "Out of Tolerance: exp %d got %d", exp, time); + } + delete buf; + } + +struct SThreadInfo2 + { + enum {ENumTimes=8}; + TInt Add(TUint32 aTime, TUint32 aId); + + NFastMutex* iMutex; + TInt iSpin1; + TInt iSpin2; + TInt iSpin3; + NThread* iThread2; + volatile TInt iCount; + volatile TUint32 iId[ENumTimes]; + volatile TUint32 iTime[ENumTimes]; + }; + +TInt SThreadInfo2::Add(TUint32 aTime, TUint32 aId) + { + TInt c = __e32_atomic_tas_ord32(&iCount, ENumTimes, 0, 1); + if (c>=ENumTimes) + return KErrOverflow; + iTime[c] = aTime; + iId[c] = aId; + return KErrNone; + } + +/* +If Thread1 and Thread2 on different CPUs: + Point0 + PointA just after Point0 + PointB PointA + spin1 + PointE PointA + spin1 + PointC PointB + spin2 + PointD PointB + spin2 + PointF PointE + spin3 + +If Thread1 and Thread2 on same CPU, no mutex: + Point0 + PointA just after Point0 + PointB PointA + spin1 or PointA + spin1 + timeslice if spin1>=timeslice + PointE PointA + spin1 or PointA + timeslice whichever is later + +If Thread1 and Thread2 on same CPU, mutex: + Point0 + PointA just after Point0 + PointB PointA + spin1 + PointC PointB + spin2 + PointE PointA + spin1 +spin2 or PointA + timeslice whichever is later + PointD PointA + spin1 + spin2 if (spin1+spin2)0) + { + TUint32 id = info.iId[i]; + TUint32 x = info.iTime[i] - info.iTime[0]; + TEST_PRINT2("%d: %d", id, x); + if (id==1) + { + switch(++n1) + { + case 1: pointA = x; break; + case 2: pointB = x; break; + case 3: pointC = x; break; + case 4: pointD = x; break; + } + } + else + { + switch(++n2) + { + case 1: pointE = x; break; + case 2: pointF = x; break; + } + } + } + } + TEST_RESULT(RANGE_CHECK(0, pointA, delta), "pointA"); + if (aCpu != this_cpu) + { + TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointB, TUint32(aSpin1)+delta), "pointB"); + TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointE, TUint32(aSpin1)+delta), "pointE"); + TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointC, pointB+aSpin2+delta), "pointC"); + TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointD, pointB+aSpin2+delta), "pointD"); + TEST_RESULT(RANGE_CHECK(pointE+aSpin3, pointF, pointE+aSpin3+delta), "pointF"); + } + else if (aUseMutex) + { + TEST_RESULT(RANGE_CHECK(TUint32(aSpin1), pointB, aSpin1+delta), "pointB"); + TEST_RESULT(RANGE_CHECK(pointB+aSpin2, pointC, pointB+aSpin2+delta), "pointC"); + + TUint32 xpe = aSpin1 + aSpin2; + TUint32 xpd = xpe; + if (xpe < ts) + xpe = ts; + else + xpd += ts; + + TEST_RESULT(RANGE_CHECK(xpe, pointE, xpe+delta), "pointE"); + TEST_RESULT(RANGE_CHECK(xpd, pointD, xpd+delta), "pointD"); + } + else + { + TUint32 xpb = aSpin1; + TUint32 xpe = aSpin1; + if (xpb >= ts) + xpb += ts; + else + xpe = ts; + TEST_RESULT(RANGE_CHECK(xpb, pointB, xpb+delta), "pointB"); + TEST_RESULT(RANGE_CHECK(xpe, pointE, xpe+delta), "pointE"); + } + } + +void TimesliceTest2() + { + TInt cpu; + TInt ms = __microseconds_to_norm_fast_counter(1000); + for_each_cpu(cpu) + { + DoTimesliceTest2(cpu, 1*ms, 10*ms, 10*ms, FALSE); + DoTimesliceTest2(cpu, 2*ms, 10*ms, 10*ms, FALSE); + DoTimesliceTest2(cpu, 7*ms, 20*ms, 20*ms, FALSE); + DoTimesliceTest2(cpu, 1*ms, 1*ms, 10*ms, TRUE); + DoTimesliceTest2(cpu, 1*ms, 2*ms, 10*ms, TRUE); + DoTimesliceTest2(cpu, 2*ms, 2*ms, 10*ms, TRUE); + DoTimesliceTest2(cpu, 7*ms, 7*ms, 10*ms, TRUE); + DoTimesliceTest2(cpu, 7*ms, 7*ms, 50*ms, TRUE); + } + } + +struct SThreadInfo3 + { + enum TTestType + { + ESpin, + ECount, + EWaitFS, + EWaitFM, + EExit, + EHoldFM, + }; + + TTestType iType; + TAny* iObj; + TInt iPri; + TInt iCpu; + volatile TInt iCount; + volatile TInt iCurrCpu; + volatile TBool iStop; + NFastSemaphore* iExitSem; + TInt iExitCpu; + + void Set(TTestType aType, TAny* aObj, TInt aPri, TInt aCpu) + {iType=aType; iObj=aObj; iPri=aPri; iCpu=aCpu; iCount=0; iCurrCpu=-1; iStop=FALSE; iExitSem=0; iExitCpu=-1;} + NThread* CreateThread(const char* aName, NFastSemaphore* aExitSem); + static void ExitHandler(TAny* aP, NThread* aT, TInt aC); + }; + +void BasicThread3(TAny* a) + { + SThreadInfo3& info = *(SThreadInfo3*)a; + + switch (info.iType) + { + case SThreadInfo3::ESpin: + FOREVER + { + info.iCurrCpu = NKern::CurrentCpu(); + } + + case SThreadInfo3::ECount: + FOREVER + { + info.iCurrCpu = NKern::CurrentCpu(); + __e32_atomic_add_ord32(&info.iCount, 1); + } + + case SThreadInfo3::EWaitFS: + NKern::FSSetOwner((NFastSemaphore*)info.iObj, 0); + NKern::FSWait((NFastSemaphore*)info.iObj); + break; + + case SThreadInfo3::EWaitFM: + NKern::FMWait((NFastMutex*)info.iObj); + NKern::FMSignal((NFastMutex*)info.iObj); + break; + + case SThreadInfo3::EExit: + break; + + case SThreadInfo3::EHoldFM: + NKern::FMWait((NFastMutex*)info.iObj); + while (!info.iStop) + { + info.iCurrCpu = NKern::CurrentCpu(); + __e32_atomic_add_ord32(&info.iCount, 1); + } + NKern::FMSignal((NFastMutex*)info.iObj); + break; + } + } + +void SThreadInfo3::ExitHandler(TAny* aP, NThread* aT, TInt aC) + { + SThreadInfo3& info = *(SThreadInfo3*)aP; + switch (aC) + { + case EInContext: + info.iExitCpu = NKern::CurrentCpu(); + break; + case EBeforeFree: + { + NKern::ThreadSuspend(aT, 1); + NKern::ThreadResume(aT); + NKern::ThreadResume(aT); + NKern::ThreadSuspend(aT, 1); + NKern::ThreadSuspend(aT, 1); + NKern::ThreadSuspend(aT, 1); + NKern::ThreadResume(aT); + NKern::ThreadForceResume(aT); + NKern::ThreadKill(aT); + NKern::ThreadSetPriority(aT, 63); + TEST_RESULT(aT->iPriority == 63, "Priority change when dead"); + TUint32 aff = NKern::ThreadSetCpuAffinity(aT, 0xffffffffu); + TEST_RESULT(aff==TUint32(info.iExitCpu), "CPU affinity when dead"); + aff = NKern::ThreadSetCpuAffinity(aT, info.iExitCpu); + TEST_RESULT(aff==0xffffffffu, "CPU affinity when dead"); + break; + } + case EAfterFree: + NKern::FSSignal(info.iExitSem); + break; + } + } + +NThread* SThreadInfo3::CreateThread(const char* aName, NFastSemaphore* aExitSem) + { + iExitSem = aExitSem; + iExitCpu = -1; + NThread* t = ::CreateThread(aName, &BasicThread3, iPri, this, 0, FALSE, -1, &SThreadInfo3::ExitHandler, this, iCpu); + TEST_OOM(t); + return t; + } + +#define CHECK_RUNNING(info, cpu) \ + do {TInt c1 = (info).iCount; NKern::Sleep(SLEEP_TIME); TEST_RESULT((info).iCount!=c1, "Not running"); TEST_RESULT((info).iCurrCpu==(cpu), "Wrong CPU"); } while(0) + +#define CHECK_NOT_RUNNING(info, same_cpu) \ +do {if (!same_cpu) NKern::Sleep(SLEEP_TIME); TInt c1 = (info).iCount; NKern::Sleep(SLEEP_TIME); TEST_RESULT((info).iCount==c1, "Running"); } while(0) + +void DoBasicThreadTest3SemMutex(TInt aCpu, TInt aCpu2, TBool aMutex) + { + SThreadInfo3 info; + NThread* t; + NFastSemaphore xs(0); + NFastSemaphore s; + NFastMutex m; + + if (aMutex) + { + TEST_PRINT("Operations while blocked on mutex"); + } + else + { + TEST_PRINT("Operations while blocked on semaphore"); + } + + SThreadInfo3::TTestType type = aMutex ? SThreadInfo3::EWaitFM : SThreadInfo3::EWaitFS; + TAny* obj = aMutex ? (TAny*)&m : (TAny*)&s; + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single2", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + + aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - thread should exit + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single3", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - still suspended + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadResume(t); // resume - should now exit + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single4", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + if (aMutex) + NKern::FMSignal(&m); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single5", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex and suspended + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + if (aMutex) + NKern::FMSignal(&m); + + if (aCpu2>=0) + { + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single6", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked thread + aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - thread should exit + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU"); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single3", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked and suspended thread + aMutex ? NKern::FMSignal(&m) : NKern::FSSignal(&s); // signal semaphore/mutex - still suspended + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadResume(t); // resume - should now exit + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU"); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single4", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked thread + NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU"); + if (aMutex) + NKern::FMSignal(&m); + + info.Set(type, obj, 63, aCpu); + t = info.CreateThread("Single5", &xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + if (aMutex) + NKern::FMWait(&m); + NKern::ThreadResume(t); // resume thread - should wait on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSuspend(t, 1); // suspend thread while waiting on semaphore/mutex + NKern::Sleep(SLEEP_TIME); + if (!aMutex) + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSetCpuAffinity(t, aCpu2); // move blocked and suspended thread + NKern::ThreadKill(t); // kill thread while blocked on semaphore/mutex and suspended + NKern::FSWait(&xs); + if (!aMutex) + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu2, "Exit CPU"); + if (aMutex) + NKern::FMSignal(&m); + } + } + +void DoBasicThreadTest3SemPri(TInt aCpu, TInt aCpu2) + { + (void)aCpu2; + TEST_PRINT("Change priority + semaphore"); + TInt this_cpu = NKern::CurrentCpu(); + TBool same_cpu = (aCpu == this_cpu); + SThreadInfo3 info; + NThread* t; + SThreadInfo3 info2; + NThread* t2; + NFastSemaphore xs(0); + NFastSemaphore s; + + info.Set(SThreadInfo3::EWaitFS, &s, 10, aCpu); + t = info.CreateThread("SemPri1A", &xs); + NKern::ThreadResume(t); // resume thread - should wait on semaphore + NKern::Sleep(SLEEP_TIME); + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + + info2.Set(SThreadInfo3::ECount, 0, 11, aCpu); + t2 = info2.CreateThread("SemPri1B", &xs); + NKern::ThreadResume(t2); // resume thread - should run in preference to first thread + CHECK_RUNNING(info2, aCpu); + + NKern::ThreadSetPriority(t, 63); // change priority while blocked + NKern::FSSignal(&s); // signal semaphore - should run and exit immediately + NKern::FSWait(&xs); + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + CHECK_RUNNING(info2, aCpu); + + info.Set(SThreadInfo3::EWaitFS, &s, 63, aCpu); + t = info.CreateThread("SemPri1C", &xs); + NKern::ThreadResume(t); // resume thread - should wait on semaphore + NKern::Sleep(SLEEP_TIME); + TEST_RESULT(s.iCount<0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + NKern::ThreadSetPriority(t, 1); // change priority while blocked + NKern::FSSignal(&s); // signal semaphore - shouldn't run because priority lower than 1B + NKern::Sleep(SLEEP_TIME); + TEST_RESULT(s.iCount==0, "Sem count"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); + CHECK_RUNNING(info2, aCpu); + + NKern::ThreadKill(t2); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::FSWait(&xs); + NKern::FSWait(&xs); + TEST_RESULT(info2.iExitCpu==aCpu, "Exit CPU"); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + } + +void DoBasicThreadTest3MutexPri(TInt aCpu, TInt aCpu2, TBool aKill) + { + TEST_PRINT1("Change priority + mutex ... kill=%d", aKill); + TInt this_cpu = NKern::CurrentCpu(); + TBool same_cpu = (aCpu == this_cpu); +// TBool same_cpu2 = (aCpu2 == this_cpu); + SThreadInfo3 info; + NThread* t; + SThreadInfo3 info2; + NThread* t2; + SThreadInfo3 info3; + NThread* t3; + NFastSemaphore xs(0); + NFastMutex m; + + info.Set(SThreadInfo3::EHoldFM, &m, 10, aCpu); + t = info.CreateThread("MutexPri1A", &xs); + NKern::ThreadResume(t); // start first thread - it should grab mutex then spin + CHECK_RUNNING(info, aCpu); + TEST_RESULT(t->iPriority==10, "Priority"); + info2.Set(SThreadInfo3::EWaitFM, &m, 12, aCpu); + t2 = info2.CreateThread("MutexPri1B", &xs); + info3.Set(SThreadInfo3::ECount, 0, 11, aCpu); + t3 = info3.CreateThread("MutexPri1C", &xs); + NKern::ThreadResume(t3); // start t3 - should preempt t1 + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t2); // start t2 - should wait on mutex, increasing t1's priority in the process + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(info2.iExitCpu==-1, "Exit CPU"); + TEST_RESULT(t->iPriority==12, "Priority"); + NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should lower t1's as well so t1 stops running + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadResume(t2); // resume t2 - t1 should now regain inherited priority + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + TEST_RESULT(info2.iExitCpu==-1, "Exit CPU"); + + NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should have no effect on t1 + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 15); // raise t2's priority - should have no effect on t1 + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should have no effect on t1 + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadResume(t2); // resume t2 - should have no effect on t1 + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + TEST_RESULT(info2.iExitCpu==-1, "Exit CPU"); + + if (aCpu2>=0) + { + NKern::ThreadSetCpuAffinity(t2, aCpu2); // move t2 - should have no effect on t1 + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + NKern::ThreadSuspend(t2, 1); // suspend t2 - t1 should now lose inherited priority + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadResume(t2); // resume t2 - t1 should now regain inherited priority + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + NKern::ThreadSetPriority(t2, 9); // lower t2's priority - should lower t1's as well so t1 stops running + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + NKern::ThreadSetPriority(t2, 15); // increase t2's priority - should increase t1's as well + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(t->iPriority==15, "Priority"); + TEST_RESULT(info2.iExitCpu==-1, "Exit CPU"); + } + + TInt xcpu = (aCpu2>=0) ? aCpu2: aCpu; + if (aKill) + { + NKern::ThreadKill(t2); // kill t2 - t1 should lose inherited priority + NKern::FSWait(&xs); + CHECK_RUNNING(info3, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(t->iPriority==10, "Priority"); + TEST_RESULT(info2.iExitCpu==xcpu, "Exit CPU"); + info.iStop = TRUE; + NKern::ThreadKill(t3); + NKern::FSWait(&xs); + NKern::FSWait(&xs); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + } + else + { + info.iStop = TRUE; // tell t1 to release mutex and exit + NKern::FSWait(&xs); // t2 should also exit + TEST_RESULT(info2.iExitCpu==xcpu, "Exit CPU"); + TEST_RESULT(info.iExitCpu==-1, "Exit CPU"); // t1 won't exit until we kill t3 + NKern::ThreadKill(t3); + NKern::FSWait(&xs); + NKern::FSWait(&xs); + CHECK_NOT_RUNNING(info, same_cpu); + TEST_RESULT(info.iExitCpu==aCpu, "Exit CPU"); + } + CHECK_NOT_RUNNING(info3, same_cpu); + TEST_RESULT(info3.iExitCpu==aCpu, "Exit CPU"); + } + +void DoBasicThreadTest3(TInt aCpu, TInt aCpu2) + { + TEST_PRINT2("aCpu=%d aCpu2=%d", aCpu, aCpu2); + + TInt this_cpu = NKern::CurrentCpu(); + TBool same_cpu = (aCpu == this_cpu); + TBool same_cpu2 = (aCpu2 == this_cpu); + TBool same_cpux = (aCpu2>=0) ? same_cpu2 : same_cpu; + + SThreadInfo3 info; + NThread* t; + NFastSemaphore xs(0); + + info.Set(SThreadInfo3::ECount, 0, 11, aCpu); + t = info.CreateThread("Single1", &xs); + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSuspend(t, 1); // suspend newly created thread before it has been resumed + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - should still be suspended + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - now running + CHECK_RUNNING(info, aCpu); + NKern::ThreadResume(t); // resume while running - should be no-op + CHECK_RUNNING(info, aCpu); + NKern::ThreadSuspend(t, 1); // suspend running thread + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume + CHECK_RUNNING(info, aCpu); + NKern::ThreadSuspend(t, 3); // suspend running thread multiple times + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - still suspended twice + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - still suspended once + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - now running + CHECK_RUNNING(info, aCpu); + NKern::ThreadSuspend(t, 3); // suspend multiple times + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadForceResume(t); // force resume - cancel all suspensions at once + CHECK_RUNNING(info, aCpu); + NKern::ThreadSuspend(t, 1); // suspend running thread + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSuspend(t, 3); // suspend multiple times when already suspended + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - still suspended three times + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - still suspended twice + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - still suspended once + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume - now running + CHECK_RUNNING(info, aCpu); + + if (aCpu2>=0) + { + NKern::ThreadSetCpuAffinity(t, aCpu2); // move running thread to another CPU + CHECK_RUNNING(info, aCpu2); + NKern::ThreadSetCpuAffinity(t, aCpu); // move it back + CHECK_RUNNING(info, aCpu); + NKern::ThreadSuspend(t, 2); // suspend + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSetCpuAffinity(t, aCpu2); // move suspended thread to another CPU + CHECK_NOT_RUNNING(info, same_cpu2); + NKern::ThreadResume(t); // resume - still suspended + CHECK_NOT_RUNNING(info, same_cpu2); + NKern::ThreadResume(t); // resume - now running on other CPU + CHECK_RUNNING(info, aCpu2); + } + NKern::ThreadKill(t); + CHECK_NOT_RUNNING(info, same_cpux); + NKern::FSWait(&xs); + TEST_RESULT(info.iExitCpu == ((aCpu2>=0)?aCpu2:aCpu), "Exit CPU"); + + SThreadInfo3 info2; + NThread* t2; + + info.Set(SThreadInfo3::ECount, 0, 10, aCpu); + t = info.CreateThread("Pair1A", &xs); + CHECK_NOT_RUNNING(info, same_cpu); + + info2.Set(SThreadInfo3::ECount, 0, 11, aCpu); + t2 = info2.CreateThread("Pair1B", &xs); + CHECK_NOT_RUNNING(info2, same_cpu); + + NKern::ThreadResume(t); // resume new thread + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadResume(t2); // resume higher priority thread - should preempt + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + + NKern::ThreadSetPriority(t, 12); // increase priority of ready but not running thread - should preempt + CHECK_RUNNING(info, aCpu); + NKern::ThreadSetPriority(t, 10); // lower priority of running thread - should yield + CHECK_NOT_RUNNING(info, same_cpu); + + NKern::ThreadSetPriority(t2, 9); // lower priority of running thread - should yield + CHECK_RUNNING(info, aCpu); + NKern::ThreadSetPriority(t2, 11); // increase priority of ready but not running thread - should preempt + CHECK_NOT_RUNNING(info, same_cpu); + + NKern::ThreadSetPriority(t2, 14); // increase priority of running thread - stays running + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSetPriority(t, 13); // check priority increase has occurred + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSetPriority(t2, 11); // + CHECK_RUNNING(info, aCpu); + NKern::ThreadSetPriority(t, 10); // + CHECK_NOT_RUNNING(info, same_cpu); + + if (aCpu2>=0) + { + NKern::ThreadSetCpuAffinity(t, aCpu2); // move ready but not running thread to other CPU + CHECK_RUNNING(info, aCpu2); + CHECK_RUNNING(info2, aCpu); + NKern::ThreadSetCpuAffinity(t, aCpu); // move it back + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSetCpuAffinity(t2, aCpu2); // move running thread to other CPU - let other thread run on this one + CHECK_RUNNING(info, aCpu); + CHECK_RUNNING(info2, aCpu2); + NKern::ThreadSetCpuAffinity(t2, aCpu); // move it back + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + } + + NKern::ThreadSuspend(t2, 1); // suspend running thread + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadSetPriority(t2, 9); // lower priority while suspended + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadResume(t2); // resume - can't now start running again + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadSuspend(t2, 1); // suspend again + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadSetPriority(t2, 11); // increase priority while suspended + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadResume(t2); // resume - starts running again + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + + NKern::ThreadSuspend(t, 1); // suspend ready but not running thread + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadSetPriority(t2, 1); // lower running thread priority - stays running + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + NKern::ThreadResume(t); // resume other thread - now preempts + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadSetPriority(t2, 11); // increase other thread priority - should preempt + CHECK_RUNNING(info2, aCpu); + CHECK_NOT_RUNNING(info, same_cpu); + + if (aCpu2>=0) + { + NKern::ThreadSuspend(t2, 1); // suspend running thread + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu); + NKern::ThreadSetCpuAffinity(t2, aCpu2); // move suspended thread to other CPU + CHECK_RUNNING(info, aCpu); + CHECK_NOT_RUNNING(info2, same_cpu2); + NKern::ThreadResume(t2); // resume - should start running on other CPU + CHECK_RUNNING(info, aCpu); + CHECK_RUNNING(info2, aCpu2); + } + + NKern::ThreadKill(t2); + CHECK_NOT_RUNNING(info2, same_cpux); + CHECK_RUNNING(info, aCpu); + NKern::ThreadKill(t); + NKern::FSWait(&xs); + NKern::FSWait(&xs); + TEST_RESULT(info2.iExitCpu == ((aCpu2>=0)?aCpu2:aCpu), "Exit CPU"); + TEST_RESULT(info.iExitCpu == aCpu, "Exit CPU"); + + DoBasicThreadTest3SemMutex(aCpu, aCpu2, FALSE); + DoBasicThreadTest3SemMutex(aCpu, aCpu2, TRUE); + DoBasicThreadTest3SemPri(aCpu, aCpu2); + DoBasicThreadTest3MutexPri(aCpu, aCpu2, FALSE); + DoBasicThreadTest3MutexPri(aCpu, aCpu2, TRUE); + } + +void BasicThreadTest3() + { + TEST_PRINT("Testing miscellaneous thread operations"); + + DoBasicThreadTest3(0,1); + DoBasicThreadTest3(1,0); + } + +#ifdef __SMP__ +struct SThreadGroupTest1Info + { + volatile TUint32* iSharedCount; + volatile TUint32 iThreadCount; + volatile TBool iDone; + TUint32 iLimit; + }; + +TUint32 Inc(TUint32 a) + { + return a+1; + } + +NThreadGroup TG1; + +////////////////////////////////////////////////////////////////////////////// +// This thread function increments its iThreadCount until it reaches iLimit +// Each time around the loop it increments iSharedCount with interrupts +// disabled, but without otherwise taking any precautions to be atomic. +// +// If the thread is in the group, then this should behave the same as on a +// uniprocessor system: the increment is atomic. Otherwise, some updates will +// be lost. + +void ThreadGroupTest1Thread(TAny* aPtr) + { + SThreadGroupTest1Info& a = *(SThreadGroupTest1Info*)aPtr; + a.iThreadCount = 0; + NKern::ThreadSetPriority(NKern::CurrentThread(), 12); + FOREVER + { + TUint32 x = ++a.iThreadCount; + TInt irq = NKern::DisableAllInterrupts(); + TUint32 y = *a.iSharedCount; + y = Inc(y); + *a.iSharedCount = y; + NKern::RestoreInterrupts(irq); + if (x>=a.iLimit) + break; + } + a.iDone = TRUE; + NKern::WaitForAnyRequest(); + } + +////////////////////////////////////////////////////////////////////////////// +// ThreadGroupTest1 +// +// Attempt to prove various properties of thread group scheduling by creating +// a number of copies of a thread that manipulate a shared counter. +// +// 1) Priority scheduling is strictly observed within a group - lower priority +// threads do not run if any higher priority threads are runnable, no matter +// the number of available CPUs. +// 2) Only one thread in a group is ever running at one time, regardless of +// priorities or the number of available CPUs. +// +// Parameters: +// aCount: how many threads to create +// aJoin: whether to have threads join the group + + +void ThreadGroupTest1(TInt aCount, TBool aJoin, TBool aMigrate, TBool aReJoin) + { + TEST_PRINT4("ThreadGroupTest1 aCount=%d aJoin=%d aMigrate=%d aReJoin=%d", aCount, aJoin, aMigrate, aReJoin); + NFastSemaphore exitSem(0); + NThread* t[16]; + SThreadGroupTest1Info info[16]; + volatile TUint32 shared=0; + memclr(t,sizeof(t)); + memclr(&info,sizeof(info)); + TInt i; + NThreadGroup* group = aJoin ? &TG1 : 0; + SNThreadGroupCreateInfo ginfo; + ginfo.iCpuAffinity = 0xffffffff; + TInt r = KErrNone; + if (group) + r = NKern::GroupCreate(group, ginfo); + TEST_RESULT(r==KErrNone, ""); + NThreadGroup* g; + g = NKern::LeaveGroup(); + TEST_RESULT(!g, ""); + char name[8]={0x54, 0x47, 0x54, 0x31, 0, 0, 0, 0}; + for (i=0; iiThreadCount, shared); + TEST_RESULT(group->iThreadCount == aCount+1, ""); + g = NKern::LeaveGroup(); + TEST_RESULT(g==group, ""); + g = NKern::LeaveGroup(); + TEST_RESULT(!g, ""); + } + else + { + TEST_PRINT1("SharedCount=%d", shared); + } + if (aMigrate) + { + TInt cpu = 0; + TInt ncpus = NKern::NumberOfCpus(); + TUint32 s0 = shared - 1; + FOREVER + { + TInt dead = 0; + for (i=0; i