50
|
1 |
// Copyright (c) 1999-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
//
|
|
15 |
|
|
16 |
// CJpgReadCodec::GetHuffmanCodeL() is based heavily on HUFFMAN_DECODE() from jdhuff.h
|
|
17 |
// in the IJG code, Copyright (C) 1991-1997, Thomas G. Lane.
|
|
18 |
/**
|
|
19 |
@file
|
|
20 |
@internalComponent
|
|
21 |
*/
|
|
22 |
|
|
23 |
#include <fbs.h>
|
|
24 |
#include "ImageUtils.h"
|
|
25 |
#include "icl/ImageCodec.h"
|
|
26 |
#include "JpegTypes.h"
|
|
27 |
#include "rawcolorprocessor.h"
|
|
28 |
#include "jpgimageframeprocessor.h"
|
|
29 |
#include "JPEGCodec.h"
|
|
30 |
#include "ImageProcessorPriv.h"
|
|
31 |
#include "fwextconstants.h"
|
|
32 |
#include <imageprocessor/imageprocessor.h>
|
|
33 |
|
|
34 |
#ifdef JPEG_DEBUG_OUTPUT
|
|
35 |
// This can be turned off in the MMP.
|
|
36 |
#pragma message("Building Debug version of JPEG codec!")
|
|
37 |
#endif
|
|
38 |
|
|
39 |
const TInt KMaxMCUPerDraw = 100; // Maximum MCUs to draw per run
|
|
40 |
// new value should be 48
|
|
41 |
const TInt KMarkerLookAhead=32; // number of bytes which are checked ahead for presense of 0xFF
|
|
42 |
const TInt KMCUDataLeftThreshhold=192; // approximate value for MCU size, used to avoid re-decoding MCUs when it span data blocks
|
|
43 |
const TInt KMCUMaxTotalDataUnits=1024; // Maximum of data units to use on this process' heap; if we need more, we'll create a local chunk to store them.
|
|
44 |
|
|
45 |
|
|
46 |
const TInt KUShiftIdx=0; // index of U shift factor for MCU de-sampling
|
|
47 |
const TInt KVShiftIdx=1; // index of V shift factor for MCU de-sampling
|
|
48 |
|
|
49 |
#if defined(__ARMCC__)
|
|
50 |
#pragma push
|
|
51 |
#pragma thumb
|
|
52 |
#endif
|
|
53 |
|
|
54 |
// CJpgReadCodec
|
|
55 |
CJpgReadCodec::CJpgReadCodec(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo)
|
|
56 |
: iFrameInfo(aFrameInfo),
|
|
57 |
iScanInfo(aScanInfo),
|
|
58 |
iOperation(EDecodeNormal)
|
|
59 |
{
|
|
60 |
}
|
|
61 |
|
|
62 |
|
|
63 |
CJpgReadCodec::~CJpgReadCodec()
|
|
64 |
{
|
|
65 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
66 |
{
|
|
67 |
delete[] iComponent[i];
|
|
68 |
}
|
|
69 |
|
|
70 |
delete iImageFrameCodecPtr;
|
|
71 |
delete iRawColorProcessor;
|
|
72 |
User::Free(iRgbBuffer);
|
|
73 |
iRgbBuffer = NULL;
|
|
74 |
}
|
|
75 |
|
|
76 |
TFrameState CJpgReadCodec::ProcessFrameL(TBufPtr8& aSrc)
|
|
77 |
{
|
|
78 |
iDataPtr = CONST_CAST(TUint8*,aSrc.Ptr());
|
|
79 |
iDataPtrLimit = iDataPtr + aSrc.Length();
|
|
80 |
iPreviousDataLeft = iDataPtrLimit - iDataPtr;
|
|
81 |
|
|
82 |
TFrameState frameState = EFrameComplete;
|
|
83 |
TRAPD(err, frameState = DoProcessL());
|
|
84 |
if (err != KErrNone)
|
|
85 |
{
|
|
86 |
if (err == KErrCompletion)
|
|
87 |
{
|
|
88 |
RestoreState();
|
|
89 |
frameState = EFrameIncomplete;
|
|
90 |
}
|
|
91 |
else if (err == KErrEof)
|
|
92 |
{
|
|
93 |
frameState = EFrameComplete;
|
|
94 |
}
|
|
95 |
else
|
|
96 |
{
|
|
97 |
JPEG_LEAVE(err, "ProcessFrameL");
|
|
98 |
}
|
|
99 |
}
|
|
100 |
|
|
101 |
aSrc.Shift(iDataPtr - aSrc.Ptr()); // Shift out used data
|
|
102 |
|
|
103 |
return frameState;
|
|
104 |
}
|
|
105 |
|
|
106 |
/**
|
|
107 |
used to configure U,V DCT for high-speed scaling mode
|
|
108 |
*/
|
|
109 |
void CJpgReadCodec::ConfigureUVComponentDCT(TInt aCompIdx)
|
|
110 |
{
|
|
111 |
switch (iScalingFactor)
|
|
112 |
{
|
|
113 |
case -2:
|
|
114 |
if (iHorzSampleFactor[aCompIdx]==iMaxHorzSampleFactor &&
|
|
115 |
iVertSampleFactor[aCompIdx]==iMaxVertSampleFactor)
|
|
116 |
{
|
|
117 |
iCompConf[aCompIdx].iDCT = &iFastHalfDCT;
|
|
118 |
iCompConf[aCompIdx].iDequantFunc = &TQTable::FastHalfDeQuantize;
|
|
119 |
}
|
|
120 |
break;
|
|
121 |
|
|
122 |
case -3:
|
|
123 |
if (iHorzSampleFactor[aCompIdx]==iMaxHorzSampleFactor &&
|
|
124 |
iVertSampleFactor[aCompIdx]==iMaxVertSampleFactor)
|
|
125 |
{
|
|
126 |
iCompConf[aCompIdx].iDCT = &iFastQuarterDCT;
|
|
127 |
iCompConf[aCompIdx].iDequantFunc = &TQTable::FastQuarterDeQuantize;
|
|
128 |
}
|
|
129 |
else if (iHorzSampleFactor[aCompIdx]*2 == iMaxHorzSampleFactor &&
|
|
130 |
iVertSampleFactor[aCompIdx]*2 == iMaxVertSampleFactor)
|
|
131 |
{
|
|
132 |
iCompConf[aCompIdx].iDCT = &iFastHalfDCT;
|
|
133 |
iCompConf[aCompIdx].iDequantFunc = &TQTable::FastHalfDeQuantize;
|
|
134 |
}
|
|
135 |
break;
|
|
136 |
default:
|
|
137 |
{
|
|
138 |
ASSERT(EFalse);
|
|
139 |
}
|
|
140 |
}
|
|
141 |
}
|
|
142 |
//
|
|
143 |
//
|
|
144 |
//
|
|
145 |
void CJpgReadCodec::InitComponentsL()
|
|
146 |
{
|
|
147 |
JPEG_ASSERT(iMaxHorzSampleFactor > 0);
|
|
148 |
JPEG_ASSERT(iMaxVertSampleFactor > 0);
|
|
149 |
|
|
150 |
for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++)
|
|
151 |
{
|
|
152 |
iHorzSampleFactor[i] = iFrameInfo.iComponent[i].iHorzSampleFactor;
|
|
153 |
iVertSampleFactor[i] = iFrameInfo.iComponent[i].iVertSampleFactor;
|
|
154 |
iHorzSampleRatio[i] = iMaxHorzSampleFactor / iHorzSampleFactor[i];
|
|
155 |
iVertSampleRatio[i] = iMaxVertSampleFactor / iVertSampleFactor[i];
|
|
156 |
|
|
157 |
TInt dataUnits = iHorzSampleFactor[i] * iVertSampleFactor[i];
|
|
158 |
iMCUDataUnitCount[i] = dataUnits;
|
|
159 |
if ((i == 0) || !iMonochrome)
|
|
160 |
{
|
|
161 |
JPEG_ASSERT(dataUnits > 0);
|
|
162 |
delete[] iComponent[i];
|
|
163 |
iComponent[i] = NULL;
|
|
164 |
iComponent[i] = new(ELeave) TDataUnit[dataUnits];
|
|
165 |
}
|
|
166 |
}
|
|
167 |
}
|
|
168 |
|
|
169 |
//
|
|
170 |
//
|
|
171 |
//
|
|
172 |
void CJpgReadCodec::InitFrameL(TFrameInfo& /*aFrameInfo*/, CFrameImageData& /*aFrameImageData*/, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* /*aFrameMask*/)
|
|
173 |
{
|
|
174 |
JPEG_DEBUG1("InitFrameL(TFrameInfo)");
|
|
175 |
JPEG_DEBUG3(" - iFrameInfo dimensions: %d x %d",
|
|
176 |
iFrameInfo.iSizeInPixels.iWidth,
|
|
177 |
iFrameInfo.iSizeInPixels.iHeight);
|
|
178 |
|
|
179 |
JPEG_DEBUG3(" - aFrame dimensions: %d x %d",
|
|
180 |
aFrame.SizeInPixels().iWidth,
|
|
181 |
aFrame.SizeInPixels().iHeight);
|
|
182 |
|
|
183 |
PreInitFrameL();
|
|
184 |
|
|
185 |
iMonochrome |= (aFrame.DisplayMode() <= EGray256);
|
|
186 |
|
|
187 |
if ((iMaxHorzSampleFactor != iFrameInfo.iComponent[KYComp].iHorzSampleFactor) ||
|
|
188 |
(iMaxVertSampleFactor != iFrameInfo.iComponent[KYComp].iVertSampleFactor))
|
|
189 |
{
|
|
190 |
// Current implementation doesn't support images with Y sampling frequency
|
|
191 |
// lower than U or V components
|
|
192 |
JPEG_LEAVE(KErrNotSupported, "Unsupported sampling frequency");
|
|
193 |
}
|
|
194 |
|
|
195 |
InitComponentsL();
|
|
196 |
for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++)
|
|
197 |
{
|
|
198 |
if ((iFrameInfo.iComponent[i].iVertSampleFactor == 3) ||
|
|
199 |
(iFrameInfo.iComponent[i].iHorzSampleFactor == 3))
|
|
200 |
{
|
|
201 |
JPEG_LEAVE(KErrCorrupt, "Bad sample factor");
|
|
202 |
}
|
|
203 |
|
|
204 |
if ((i == 1) || (i == 2))
|
|
205 |
{
|
|
206 |
iHorzSampleRatioSh[i - 1] = iHorzSampleRatio[i] / 2;
|
|
207 |
iVertSampleRatioSh[i - 1] = iVertSampleRatio[i] / 2;
|
|
208 |
}
|
|
209 |
}
|
|
210 |
|
|
211 |
TSize requiredSize = iFrameInfo.iSizeInPixels;
|
|
212 |
TInt err = iExtensionManager->GetDestinationSize(requiredSize);
|
|
213 |
JPEG_LEAVE_IF_ERROR(err, "GetDestinationSize failed");
|
|
214 |
|
|
215 |
if (iExtensionManager->ScalerExtensionRequested())
|
|
216 |
{
|
|
217 |
// Explicit scaling
|
|
218 |
// Mandatory check that the destination size matches the calculated size
|
|
219 |
if (requiredSize != aFrame.SizeInPixels())
|
|
220 |
{
|
|
221 |
JPEG_LEAVE(KErrArgument, "Destination bitmap size != GetDestinationSize");
|
|
222 |
}
|
|
223 |
|
|
224 |
TSize sizeToScale = iExtensionManager->ClippingRectExtensionRequested() ?
|
|
225 |
iExtensionManager->ClippingRect().Size() : iFrameInfo.iSizeInPixels;
|
|
226 |
|
|
227 |
if (iExtensionManager->DimensionsSwapped())
|
|
228 |
{
|
|
229 |
sizeToScale.SetSize(sizeToScale.iHeight, sizeToScale.iWidth);
|
|
230 |
}
|
|
231 |
|
|
232 |
err = iExtensionManager->GetScalingCoefficient(iScalingFactor, &sizeToScale);
|
|
233 |
JPEG_LEAVE_IF_ERROR(err, "GetScalingCoefficient failed");
|
|
234 |
|
|
235 |
if (iScalingFactor != -4)
|
|
236 |
{
|
|
237 |
if (!iHighSpeedMode || (iHighSpeedMode && iMonochrome))
|
|
238 |
{
|
|
239 |
// Needs to be the original image/cropped size in correct orientation
|
|
240 |
// and NOT the GetDestinationSize() value
|
|
241 |
requiredSize = sizeToScale;
|
|
242 |
}
|
|
243 |
}
|
|
244 |
}
|
|
245 |
else
|
|
246 |
{
|
|
247 |
// Implicit scaling for compatibility
|
|
248 |
// requiredSize now equals full, cropped or scaled in correct orientation
|
|
249 |
iScalingFactor = ScalingCoefficient(requiredSize, aFrame.SizeInPixels());
|
|
250 |
if ((iHighSpeedMode && !iMonochrome) || iScalingFactor == -4)
|
|
251 |
{
|
|
252 |
err = GetReducedSize(requiredSize, iScalingFactor, requiredSize);
|
|
253 |
JPEG_LEAVE_IF_ERROR(err, "GetReducedSize failed");
|
|
254 |
}
|
|
255 |
}
|
|
256 |
|
|
257 |
if (iScalingFactor == 1)
|
|
258 |
{
|
|
259 |
// For convenience
|
|
260 |
iScalingFactor = -iScalingFactor;
|
|
261 |
}
|
|
262 |
|
|
263 |
JPEG_DEBUG2(" - iMonochrome = %d", iMonochrome);
|
|
264 |
JPEG_DEBUG2(" - iProgressive = %d", iProgressive);
|
|
265 |
JPEG_DEBUG2(" - iHighSpeedMode = %d", iHighSpeedMode);
|
|
266 |
JPEG_DEBUG2(" - iScalingFactor = %d", iScalingFactor);
|
|
267 |
|
|
268 |
// "raw" processor is used when we can directly write data in output format rather than TRgb
|
|
269 |
// that provides with saving on "to/from" TRgb conversion and memory bandwidth
|
|
270 |
TBool useRawProc = (!iMonochrome && !iProgressive &&
|
|
271 |
(aFrame.DisplayMode() == EColor16M ||
|
|
272 |
(aFrame.DisplayMode() == EColor64K &&
|
|
273 |
CPluginExtensionManager::ConvertScalingCoeffToReductionFactor(iScalingFactor) == 3))
|
|
274 |
);
|
|
275 |
|
|
276 |
// defaults which are equal to legacy behaviour
|
|
277 |
iMcuWriteFunc = (iMonochrome ? &CJpgReadCodec::WriteMonoMCU : &CJpgReadCodec::WriteUnScaledMCU);
|
|
278 |
|
|
279 |
iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize;
|
|
280 |
iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize;
|
|
281 |
iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize;
|
|
282 |
|
|
283 |
TInt reductionFactor = 0;
|
|
284 |
switch (iScalingFactor)
|
|
285 |
{
|
|
286 |
case -1:
|
|
287 |
reductionFactor = 0;
|
|
288 |
iCompConf[KYComp].iDCT = &iFullDCT;
|
|
289 |
iCompConf[KUComp].iDCT = &iFullDCT;
|
|
290 |
iCompConf[KVComp].iDCT = &iFullDCT;
|
|
291 |
|
|
292 |
if (iMonochrome)
|
|
293 |
{
|
|
294 |
iMcuWriteFunc = &CJpgReadCodec::WriteMonoMCU;
|
|
295 |
JPEG_DEBUG1(" - Using Mono function");
|
|
296 |
}
|
|
297 |
else
|
|
298 |
{
|
|
299 |
if (useRawProc)
|
|
300 |
{
|
|
301 |
iMcuWriteFunc = &CJpgReadCodec::WriteUnScaledMCU16M;
|
|
302 |
}
|
|
303 |
else
|
|
304 |
{
|
|
305 |
iMcuWriteFunc = &CJpgReadCodec::WriteUnScaledMCU;
|
|
306 |
}
|
|
307 |
JPEG_DEBUG1(" - Using Unscaled functions");
|
|
308 |
}
|
|
309 |
break;
|
|
310 |
|
|
311 |
case -2:
|
|
312 |
reductionFactor = 1;
|
|
313 |
iCompConf[KYComp].iDCT = &iHalfDCT;
|
|
314 |
iCompConf[KUComp].iDCT = &iHalfDCT;
|
|
315 |
iCompConf[KVComp].iDCT = &iHalfDCT;
|
|
316 |
if (!iMonochrome && iHighSpeedMode) // we do not support fast scaling for monochrome
|
|
317 |
{
|
|
318 |
reductionFactor = 0;
|
|
319 |
if (useRawProc)
|
|
320 |
{
|
|
321 |
iMcuWriteFunc = &CJpgReadCodec::WriteDiv2ScaledMCU16M;
|
|
322 |
}
|
|
323 |
else
|
|
324 |
{
|
|
325 |
iMcuWriteFunc = &CJpgReadCodec::WriteDiv2ScaledMCU;
|
|
326 |
}
|
|
327 |
JPEG_DEBUG1(" - Using Div2 functions");
|
|
328 |
|
|
329 |
iCompConf[KYComp].iDCT = &iFastHalfDCT;
|
|
330 |
iCompConf[KYComp].iDequantFunc = &TQTable::FastHalfDeQuantize;
|
|
331 |
ConfigureUVComponentDCT(KUComp);
|
|
332 |
ConfigureUVComponentDCT(KVComp);
|
|
333 |
}
|
|
334 |
else
|
|
335 |
{
|
|
336 |
iScalingFactor = -1;
|
|
337 |
useRawProc = EFalse;
|
|
338 |
}
|
|
339 |
break;
|
|
340 |
|
|
341 |
case -3:
|
|
342 |
reductionFactor = 2;
|
|
343 |
iCompConf[KYComp].iDCT = &iQuarterDCT;
|
|
344 |
iCompConf[KUComp].iDCT = &iQuarterDCT;
|
|
345 |
iCompConf[KVComp].iDCT = &iQuarterDCT;
|
|
346 |
if (!iMonochrome && iHighSpeedMode) // we do not support fast scaling for monochrome
|
|
347 |
{
|
|
348 |
reductionFactor = 0;
|
|
349 |
if (useRawProc)
|
|
350 |
{
|
|
351 |
iMcuWriteFunc = &CJpgReadCodec::WriteDiv4ScaledMCU16M;
|
|
352 |
}
|
|
353 |
else
|
|
354 |
{
|
|
355 |
iMcuWriteFunc = &CJpgReadCodec::WriteDiv4ScaledMCU;
|
|
356 |
}
|
|
357 |
JPEG_DEBUG1(" - Using Div4 functions");
|
|
358 |
|
|
359 |
iCompConf[KYComp].iDCT = &iFastQuarterDCT;
|
|
360 |
iCompConf[KYComp].iDequantFunc = &TQTable::FastQuarterDeQuantize;
|
|
361 |
ConfigureUVComponentDCT(KUComp);
|
|
362 |
ConfigureUVComponentDCT(KVComp);
|
|
363 |
}
|
|
364 |
else
|
|
365 |
{
|
|
366 |
iScalingFactor = -1;
|
|
367 |
useRawProc = EFalse;
|
|
368 |
}
|
|
369 |
break;
|
|
370 |
|
|
371 |
case -4:
|
|
372 |
iCompConf[KYComp].iDCT = &iEighthDCT;
|
|
373 |
iCompConf[KUComp].iDCT = &iEighthDCT;
|
|
374 |
iCompConf[KVComp].iDCT = &iEighthDCT;
|
|
375 |
iCompConf[KYComp].iDequantFunc = &TQTable::Fast18DeQuantize;
|
|
376 |
iCompConf[KUComp].iDequantFunc = &TQTable::Fast18DeQuantize;
|
|
377 |
iCompConf[KVComp].iDequantFunc = &TQTable::Fast18DeQuantize;
|
|
378 |
reductionFactor = 0;
|
|
379 |
if (!iMonochrome) // 1/8 Mono has got its own fast 1/8 inside the function
|
|
380 |
{
|
|
381 |
iMcuWriteFunc = useRawProc? (aFrame.DisplayMode()==EColor16M ? &CJpgReadCodec::WriteDiv8ScaledMCU16M : &CJpgReadCodec::WriteDiv8ScaledMCU64K)
|
|
382 |
: &CJpgReadCodec::WriteDiv8ScaledMCU;
|
|
383 |
JPEG_DEBUG1(" - Using Div8 functions");
|
|
384 |
}
|
|
385 |
break;
|
|
386 |
|
|
387 |
default:
|
|
388 |
JPEG_LEAVE(KErrArgument, "Bad scaling factor");
|
|
389 |
break;
|
|
390 |
}
|
|
391 |
|
|
392 |
iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
393 |
iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
394 |
iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
395 |
|
|
396 |
if (!iMonochrome)
|
|
397 |
{
|
|
398 |
CalculateRgbIndeces();
|
|
399 |
}
|
|
400 |
|
|
401 |
if (iProgressive)
|
|
402 |
{
|
|
403 |
iFrameInfo.iMCUBlocksPerLine = 1;
|
|
404 |
}
|
|
405 |
else
|
|
406 |
{
|
|
407 |
TInt mcuWidth = iFrameInfo.MCUWidthInPixels();
|
|
408 |
iFrameInfo.iMCUBlocksPerLine = (iFrameInfo.iSizeInPixels.iWidth + mcuWidth - 1) / mcuWidth;
|
|
409 |
}
|
|
410 |
|
|
411 |
// Allocate the intermediate buffer.
|
|
412 |
iPixelSize = useRawProc ? TDisplayModeUtils::NumDisplayModeBitsPerPixel(aFrame.DisplayMode()) / 8 : sizeof(TRgb);
|
|
413 |
|
|
414 |
TInt scaleDivisor = CJpgReadCodec::ScaleFactorToDivisorL(iScalingFactor);
|
|
415 |
ConfigureAndAllocateBufferL(scaleDivisor);
|
|
416 |
|
|
417 |
CImageProcessorExtension* imageProc = NULL;
|
|
418 |
if (useRawProc)
|
|
419 |
{
|
|
420 |
JPEG_DEBUG1(" - Using raw processor");
|
|
421 |
imageProc = CRawColorProcessor::NewL();
|
|
422 |
}
|
|
423 |
else
|
|
424 |
{
|
|
425 |
JPEG_DEBUG2(" - Using stock processor, reductionFactor=%d", reductionFactor);
|
|
426 |
imageProc = ImageProcessorUtility::NewImageProcessorExtensionL(
|
|
427 |
aFrame,
|
|
428 |
reductionFactor,
|
|
429 |
iMonochrome ? EGray256 : ERgb,
|
|
430 |
aDisableErrorDiffusion || iHighSpeedMode);
|
|
431 |
}
|
|
432 |
|
|
433 |
ConfigureImageProcessorL(imageProc, aFrame, scaleDivisor, requiredSize);
|
|
434 |
CalculateRenderingParams(scaleDivisor);
|
|
435 |
PostInitFrameL();
|
|
436 |
}
|
|
437 |
|
|
438 |
//
|
|
439 |
// Configures the image processor that has been created.
|
|
440 |
// This function does not take ownership of the image processor.
|
|
441 |
//
|
|
442 |
void CJpgReadCodec::ConfigureImageProcessorL(CImageProcessorExtension* aImageProc, CFbsBitmap& aFrame, const TInt aScaleDivisor, const TSize& aPrepareLSize)
|
|
443 |
{
|
|
444 |
JPEG_DEBUG2("ConfigureImageProcessorL(aScaleDivisor=%d)", aScaleDivisor);
|
|
445 |
JPEG_ASSERT(aImageProc);
|
|
446 |
JPEG_ASSERT(iExtensionManager);
|
|
447 |
JPEG_ASSERT(aScaleDivisor > 0);
|
|
448 |
JPEG_ASSERT(aPrepareLSize.iWidth > 0);
|
|
449 |
JPEG_ASSERT(aPrepareLSize.iHeight > 0);
|
|
450 |
|
|
451 |
|
|
452 |
#ifdef JPEG_DEBUG_OUTPUT
|
|
453 |
TRAPD(err, iExtensionManager->TransferExtensionDataL(aImageProc));
|
|
454 |
JPEG_LEAVE_IF_ERROR(err, "TransferExtensionDataL");
|
|
455 |
#else
|
|
456 |
iExtensionManager->TransferExtensionDataL(aImageProc);
|
|
457 |
#endif
|
|
458 |
|
|
459 |
SetImageProcessor(aImageProc);
|
|
460 |
|
|
461 |
// Set the padding variables.
|
|
462 |
TRect clip = iExtensionManager->ClippingRect();
|
|
463 |
TInt left = (clip.iTl.iX - iMCUClipRect.iTl.iX) / aScaleDivisor;
|
|
464 |
TInt top = (clip.iTl.iY - iMCUClipRect.iTl.iY) / aScaleDivisor;
|
|
465 |
TInt bottom = (iMCUClipRect.iBr.iY - clip.iBr.iY) / aScaleDivisor;
|
|
466 |
TInt right = (iMCUClipRect.iBr.iX - clip.iBr.iX) / aScaleDivisor;
|
|
467 |
|
|
468 |
JPEG_DEBUG1(" - clipping rect offsets (scaled):");
|
|
469 |
JPEG_DEBUG2(" - top: %d", top);
|
|
470 |
JPEG_DEBUG2(" - left: %d", left);
|
|
471 |
JPEG_DEBUG2(" - bottom: %d", bottom);
|
|
472 |
JPEG_DEBUG2(" - right: %d", right);
|
|
473 |
JPEG_DEBUG3(" - Output size: %d x %d", aPrepareLSize.iWidth, aPrepareLSize.iHeight);
|
|
474 |
|
|
475 |
//TBool bottomUp = ETrue;
|
|
476 |
TInt initialPadding = 0;
|
|
477 |
TInt padding = 0;
|
|
478 |
|
|
479 |
// iRubbish is only valid for non-clipped images.
|
|
480 |
switch (iOperation)
|
|
481 |
{
|
|
482 |
case EDecodeNormal:
|
|
483 |
case EDecodeHorizontalFlip:
|
|
484 |
initialPadding = (iUseClipRect ? top : 0);
|
|
485 |
padding = (iUseClipRect ? left : 0);
|
|
486 |
break;
|
|
487 |
|
|
488 |
case EDecodeVerticalFlip:
|
|
489 |
case EDecodeRotate180:
|
|
490 |
initialPadding = (iUseClipRect ? top : 0);
|
|
491 |
padding = (iUseClipRect ? right : iRubbish.iWidth);
|
|
492 |
break;
|
|
493 |
|
|
494 |
case EDecodeRotate90:
|
|
495 |
case EDecodeVerticalFlipRotate90:
|
|
496 |
initialPadding = (iUseClipRect ? left : 0);
|
|
497 |
padding = (iUseClipRect ? bottom : iRubbish.iHeight);
|
|
498 |
break;
|
|
499 |
|
|
500 |
case EDecodeHorizontalFlipRotate90:
|
|
501 |
case EDecodeRotate270:
|
|
502 |
initialPadding = (iUseClipRect ? left : 0);
|
|
503 |
padding = (iUseClipRect ? top : 0);
|
|
504 |
break;
|
|
505 |
|
|
506 |
default:
|
|
507 |
ASSERT(EFalse);
|
|
508 |
}
|
|
509 |
|
|
510 |
JPEG_DEBUG2(" - initialPadding = %d", initialPadding);
|
|
511 |
JPEG_DEBUG2(" - padding = %d", padding);
|
|
512 |
|
|
513 |
JPEG_ASSERT(aImageProc);
|
|
514 |
|
|
515 |
aImageProc->SetInitialScanlineSkipPadding(initialPadding);
|
|
516 |
aImageProc->SetPixelPadding(padding);
|
|
517 |
aImageProc->PrepareL(aFrame, aPrepareLSize, iBufSize);
|
|
518 |
}
|
|
519 |
|
|
520 |
//
|
|
521 |
//
|
|
522 |
//
|
|
523 |
TInt CJpgReadCodec::ScaleFactorToDivisorL(TInt aScalingFactor)
|
|
524 |
{
|
|
525 |
switch (aScalingFactor)
|
|
526 |
{
|
|
527 |
case 1:
|
|
528 |
case -1:
|
|
529 |
return 1;
|
|
530 |
|
|
531 |
case -2:
|
|
532 |
return 2;
|
|
533 |
|
|
534 |
case -3:
|
|
535 |
return 4;
|
|
536 |
|
|
537 |
case -4:
|
|
538 |
return 8;
|
|
539 |
|
|
540 |
default:
|
|
541 |
break;
|
|
542 |
}
|
|
543 |
|
|
544 |
// Keep the compiler happy.
|
|
545 |
JPEG_LEAVE(KErrArgument, "Bad scaling factor");
|
|
546 |
return 0;
|
|
547 |
}
|
|
548 |
|
|
549 |
//
|
|
550 |
// Calculates the necessary intermediate buffer size and allocates it.
|
|
551 |
// It also sets how many MCUs are contained in the buffer (iMCUsPerBuffer).
|
|
552 |
//
|
|
553 |
void CJpgReadCodec::ConfigureAndAllocateBufferL(const TInt aScale)
|
|
554 |
{
|
|
555 |
JPEG_DEBUG2("ConfigureAndAllocateBufferL(aScale=%d)", aScale);
|
|
556 |
JPEG_ASSERT(aScale > 0);
|
|
557 |
|
|
558 |
TInt horizMCUs = 0;
|
|
559 |
TInt vertMCUs = 0;
|
|
560 |
|
|
561 |
if (iUseClipRect)
|
|
562 |
{
|
|
563 |
// We need to translate the clipping rect from pixels to MCU space.
|
|
564 |
// Clipping is done before any rotation.
|
|
565 |
JPEG_ASSERT(!iProgressive);
|
|
566 |
|
|
567 |
CalculateMCUBoundingRectL(iFrameInfo.iMCUBlocksPerLine);
|
|
568 |
horizMCUs = iMCUClipRect.Width() / iFrameInfo.MCUWidthInPixels();
|
|
569 |
vertMCUs = iMCUClipRect.Height() / iFrameInfo.MCUHeightInPixels();
|
|
570 |
}
|
|
571 |
else
|
|
572 |
{
|
|
573 |
if (iProgressive)
|
|
574 |
{
|
|
575 |
JPEG_ASSERT(aScale == 1);
|
|
576 |
JPEG_ASSERT(iOperation == EDecodeNormal);
|
|
577 |
|
|
578 |
horizMCUs = 1;
|
|
579 |
vertMCUs = 1;
|
|
580 |
}
|
|
581 |
else
|
|
582 |
{
|
|
583 |
horizMCUs = iFrameInfo.iMCUBlocksPerLine;
|
|
584 |
vertMCUs = iFrameInfo.iMCUBlocksPerColumn;
|
|
585 |
|
|
586 |
iRubbish.iWidth = ((horizMCUs * iFrameInfo.MCUWidthInPixels()) - iFrameInfo.iSizeInPixels.iWidth) / aScale;
|
|
587 |
iRubbish.iHeight = ((vertMCUs * iFrameInfo.MCUHeightInPixels()) - iFrameInfo.iSizeInPixels.iHeight) / aScale;
|
|
588 |
|
|
589 |
JPEG_DEBUG3(" - iRubbish: %d x %d (scaled)", iRubbish.iWidth, iRubbish.iHeight);
|
|
590 |
JPEG_ASSERT(iRubbish.iWidth >= 0);
|
|
591 |
JPEG_ASSERT(iRubbish.iHeight >= 0);
|
|
592 |
}
|
|
593 |
}
|
|
594 |
|
|
595 |
// We may need to swap dimensions for some rotates.
|
|
596 |
switch (iOperation)
|
|
597 |
{
|
|
598 |
case EDecodeRotate90:
|
|
599 |
case EDecodeRotate270:
|
|
600 |
case EDecodeHorizontalFlipRotate90:
|
|
601 |
case EDecodeVerticalFlipRotate90:
|
|
602 |
iMCUsPerBuffer = vertMCUs;
|
|
603 |
iBufSize.iWidth = vertMCUs * iFrameInfo.MCUHeightInPixels();
|
|
604 |
iBufSize.iHeight = iFrameInfo.MCUWidthInPixels();
|
|
605 |
break;
|
|
606 |
|
|
607 |
default:
|
|
608 |
iMCUsPerBuffer = horizMCUs;
|
|
609 |
iBufSize.iWidth = horizMCUs * iFrameInfo.MCUWidthInPixels();
|
|
610 |
iBufSize.iHeight = iFrameInfo.MCUHeightInPixels();
|
|
611 |
}
|
|
612 |
|
|
613 |
iBufSize.iWidth /= aScale;
|
|
614 |
iBufSize.iHeight /= aScale;
|
|
615 |
|
|
616 |
// Because JPEG doesn't round up with scaling it is possible to have a scaled image that 0x0 in size.
|
|
617 |
// Things are ok for now because a 1x1 image is actually an 8x8 image and the maximum reduction factor
|
|
618 |
// supported is -4 (divide by 8). It is possible that larger reduction factors will be supported in
|
|
619 |
// the future as cameras take larger pictures. In this case an 8x8 image will scale to 0x0.
|
|
620 |
JPEG_DEBUG3(" - scaled buffer dimensions: %d x %d", iBufSize.iWidth, iBufSize.iHeight);
|
|
621 |
JPEG_ASSERT(iBufSize.iWidth > 0);
|
|
622 |
JPEG_ASSERT(iBufSize.iHeight > 0);
|
|
623 |
JPEG_ASSERT(iPixelSize > 0);
|
|
624 |
|
|
625 |
TInt bufSize = iBufSize.iWidth * iBufSize.iHeight * iPixelSize;
|
|
626 |
|
|
627 |
User::Free(iRgbBuffer);
|
|
628 |
iRgbBuffer = NULL;
|
|
629 |
iRgbBuffer = reinterpret_cast<TRgb*>(User::AllocL(bufSize));
|
|
630 |
}
|
|
631 |
|
|
632 |
|
|
633 |
//
|
|
634 |
// Sets up the fields that control where the pixels are
|
|
635 |
// drawn into the intermediate buffer.
|
|
636 |
//
|
|
637 |
void CJpgReadCodec::CalculateRenderingParams(const TInt aScale)
|
|
638 |
{
|
|
639 |
JPEG_DEBUG1("CalculateRenderingParams()");
|
|
640 |
|
|
641 |
JPEG_ASSERT(aScale > 0);
|
|
642 |
|
|
643 |
TInt mcuPixelWidth = iFrameInfo.MCUWidthInPixels() / aScale;
|
|
644 |
TInt mcuPixelHeight = iFrameInfo.MCUHeightInPixels() / aScale;
|
|
645 |
|
|
646 |
switch (iOperation)
|
|
647 |
{
|
|
648 |
case EDecodeNormal:
|
|
649 |
case EDecodeHorizontalFlip:
|
|
650 |
// These are the same except FlipHorizontal will draw from bottom up.
|
|
651 |
iFirstPixelOffset = 0;
|
|
652 |
iPixelIncrement = 1;
|
|
653 |
iRgbBufNextLineOffs = iBufSize.iWidth - mcuPixelWidth;
|
|
654 |
iFillBufferBackwards = EFalse;
|
|
655 |
iMCUHorizExtent = mcuPixelWidth;
|
|
656 |
break;
|
|
657 |
|
|
658 |
case EDecodeVerticalFlip:
|
|
659 |
case EDecodeRotate180:
|
|
660 |
iFirstPixelOffset = mcuPixelWidth - 1;
|
|
661 |
iPixelIncrement = -1;
|
|
662 |
iRgbBufNextLineOffs = iBufSize.iWidth + mcuPixelWidth;
|
|
663 |
iFillBufferBackwards = ETrue;
|
|
664 |
iMCUHorizExtent = mcuPixelWidth;
|
|
665 |
break;
|
|
666 |
|
|
667 |
case EDecodeRotate90:
|
|
668 |
case EDecodeVerticalFlipRotate90:
|
|
669 |
// These differ only in the direction the buffer is copied to the bitmap.
|
|
670 |
iFirstPixelOffset = mcuPixelHeight - 1;
|
|
671 |
iPixelIncrement = iBufSize.iWidth;
|
|
672 |
iRgbBufNextLineOffs = -((iBufSize.iWidth * mcuPixelWidth) + 1);
|
|
673 |
iFillBufferBackwards = ETrue;
|
|
674 |
iMCUHorizExtent = mcuPixelHeight;
|
|
675 |
break;
|
|
676 |
|
|
677 |
case EDecodeRotate270:
|
|
678 |
case EDecodeHorizontalFlipRotate90:
|
|
679 |
// These differ only in the direction the buffer is copied to the bitmap.
|
|
680 |
iFirstPixelOffset = 0;
|
|
681 |
iPixelIncrement = iBufSize.iWidth;
|
|
682 |
iRgbBufNextLineOffs = -(iBufSize.iWidth * mcuPixelWidth) + 1;
|
|
683 |
iFillBufferBackwards = EFalse;
|
|
684 |
iMCUHorizExtent = mcuPixelHeight;
|
|
685 |
break;
|
|
686 |
|
|
687 |
default:
|
|
688 |
// Bad operation.
|
|
689 |
ASSERT(EFalse);
|
|
690 |
}
|
|
691 |
|
|
692 |
JPEG_DEBUG2(" - iFirstPixelOffset = %d", iFirstPixelOffset);
|
|
693 |
JPEG_DEBUG2(" - iPixelIncrement = %d", iPixelIncrement);
|
|
694 |
JPEG_DEBUG2(" - iRgbBufNextLineOffs = %d", iRgbBufNextLineOffs);
|
|
695 |
JPEG_DEBUG2(" - iFillBufferBackwards = %d", iFillBufferBackwards);
|
|
696 |
JPEG_DEBUG2(" - iMCUHorizExtent = %d", iMCUHorizExtent);
|
|
697 |
}
|
|
698 |
|
|
699 |
//
|
|
700 |
// This is called when a clipping rectangle has been set.
|
|
701 |
// Subclasses that support clipping must provide a way of
|
|
702 |
// mapping the clip rect pixel coordinates to MCUs.
|
|
703 |
//
|
|
704 |
void CJpgReadCodec::CalculateMCUBoundingRectL(TInt /*aMCUsPerLine*/)
|
|
705 |
{
|
|
706 |
JPEG_LEAVE(KErrNotSupported, "CalculateMCUBoundingRectL");
|
|
707 |
}
|
|
708 |
|
|
709 |
/**
|
|
710 |
we would go across the whole block top-to-bottom left-to-right
|
|
711 |
*/
|
|
712 |
void CJpgReadCodec::CalculateRgbIndeces()
|
|
713 |
{
|
|
714 |
TUVidxElemType* pixIdxPtr=iUVIndeces;
|
|
715 |
|
|
716 |
TUint offsMask=iMaxVertSampleFactor*iMaxHorzSampleFactor*KJpgDCTBlockSize -1;
|
|
717 |
TInt vertStep=1;
|
|
718 |
|
|
719 |
switch (iScalingFactor)
|
|
720 |
{
|
|
721 |
case -4:
|
|
722 |
offsMask &= ~TUint(KJpgDCTBlockSize - 1);
|
|
723 |
break;
|
|
724 |
|
|
725 |
case -3:
|
|
726 |
vertStep = 4;
|
|
727 |
break;
|
|
728 |
|
|
729 |
case -2:
|
|
730 |
vertStep = 2;
|
|
731 |
break;
|
|
732 |
|
|
733 |
default:
|
|
734 |
ASSERT((iScalingFactor == 1) || (iScalingFactor == -1));
|
|
735 |
}
|
|
736 |
|
|
737 |
for (TInt j = 0; j < iMaxVertSampleFactor*KJpgDCTBlockWidth; j+=vertStep)
|
|
738 |
{
|
|
739 |
|
|
740 |
for (TInt i = 0; i < iMaxHorzSampleFactor; i++)
|
|
741 |
{
|
|
742 |
for (TInt k=0; k<2; ++k)
|
|
743 |
{
|
|
744 |
const TInt shiftIdx=k;
|
|
745 |
const TInt comp=k+1;
|
|
746 |
TInt hOffs =((i*KJpgDCTBlockWidth)>>iHorzSampleRatioSh[shiftIdx])&7;
|
|
747 |
TInt hBlkOffs =(i>>iHorzSampleRatioSh[shiftIdx]) *KJpgDCTBlockSize;
|
|
748 |
|
|
749 |
TInt vOffs =((j>>iVertSampleRatioSh[shiftIdx]&7))*KJpgDCTBlockWidth;
|
|
750 |
|
|
751 |
TInt vBlkOffs =((j/KJpgDCTBlockWidth) >>iVertSampleRatioSh[shiftIdx]) *KJpgDCTBlockSize*iHorzSampleFactor[comp];
|
|
752 |
|
|
753 |
*pixIdxPtr++ = offsMask & (hOffs+ hBlkOffs + vOffs + vBlkOffs);
|
|
754 |
}
|
|
755 |
|
|
756 |
if (iScalingFactor == -3)
|
|
757 |
{
|
|
758 |
// for this factor we have 1 more entry per horizontal line
|
|
759 |
// which is offset against previous pixel i.e. (4>>iHorzSampleRatioSh[Comp])
|
|
760 |
*pixIdxPtr++ = vertStep>>iHorzSampleRatioSh[KUShiftIdx];
|
|
761 |
*pixIdxPtr++ = vertStep>>iHorzSampleRatioSh[KVShiftIdx];
|
|
762 |
}
|
|
763 |
}
|
|
764 |
}
|
|
765 |
ASSERT(pixIdxPtr-iUVIndeces <= sizeof(iUVIndeces)/sizeof(iUVIndeces[0]) );
|
|
766 |
}
|
|
767 |
|
|
768 |
void CJpgReadCodec::InitFrameL(CImageFrame& aDest)
|
|
769 |
{
|
|
770 |
JPEG_DEBUG1("CJpgReadCodec::InitFrameL(CImageFrame)");
|
|
771 |
|
|
772 |
PreInitFrameL();
|
|
773 |
|
|
774 |
// This JPEG codec does not support scaling when using destination of type CImageFrame
|
|
775 |
// It leaves if scaling has been requested.
|
|
776 |
//TInt reductionFactor = 0;
|
|
777 |
|
|
778 |
if (iOperation != EDecodeNormal)
|
|
779 |
{
|
|
780 |
JPEG_LEAVE(KErrNotSupported, "No operations on CImageFrame");
|
|
781 |
}
|
|
782 |
|
|
783 |
if (iExtensionManager->ScalerExtensionRequested())
|
|
784 |
{
|
|
785 |
JPEG_LEAVE(KErrNotSupported, "No scaling on CImageFrame");
|
|
786 |
}
|
|
787 |
|
|
788 |
if (iUseClipRect)
|
|
789 |
{
|
|
790 |
JPEG_LEAVE(KErrNotSupported, "No clipping on CImageFrame");
|
|
791 |
}
|
|
792 |
|
|
793 |
// Check for implicit scaling.
|
|
794 |
TInt reductionFactor = 0;
|
|
795 |
if (!iUseClipRect)
|
|
796 |
{
|
|
797 |
reductionFactor = ReductionFactor(iFrameInfo.iSizeInPixels, aDest.FrameSizeInPixels());
|
|
798 |
}
|
|
799 |
|
|
800 |
if (reductionFactor != 0)
|
|
801 |
{
|
|
802 |
JPEG_DEBUG2(" - reductionFactor = %d", reductionFactor);
|
|
803 |
JPEG_LEAVE(KErrNotSupported, "Bad reductionFactor");
|
|
804 |
}
|
|
805 |
|
|
806 |
InitComponentsL();
|
|
807 |
|
|
808 |
iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize;
|
|
809 |
iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize;
|
|
810 |
iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize;
|
|
811 |
|
|
812 |
iCompConf[KYComp].iDCT = &iFullDCT;
|
|
813 |
iCompConf[KUComp].iDCT = &iFullDCT;
|
|
814 |
iCompConf[KVComp].iDCT = &iFullDCT;
|
|
815 |
|
|
816 |
iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
817 |
iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
818 |
iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
819 |
|
|
820 |
// Create JPEG read codec extension and the appropriate image processor
|
|
821 |
ASSERT(iImageFrameCodecPtr == NULL);
|
|
822 |
delete iImageFrameCodecPtr;
|
|
823 |
iImageFrameCodecPtr = NULL;
|
|
824 |
iImageFrameCodecPtr = CJpgImageFrameReadCodec::NewL(&aDest);
|
|
825 |
iImageFrameCodecPtr->CreateImageProcessorL(iFrameInfo);
|
|
826 |
|
|
827 |
PostInitFrameL();
|
|
828 |
}
|
|
829 |
|
|
830 |
//initialization for streaming
|
|
831 |
void CJpgReadCodec::InitFrameL(TUid aFormat, TDecodeStreamCaps::TNavigation aNavigation)
|
|
832 |
{
|
|
833 |
JPEG_DEBUG1("InitFrameL(TUid)");
|
|
834 |
|
|
835 |
//validate format with frameinfo
|
|
836 |
PreInitFrameL();
|
|
837 |
|
|
838 |
ValidateFormatL(iFrameInfo, aFormat);
|
|
839 |
|
|
840 |
iIsBlockStreaming = ETrue;
|
|
841 |
|
|
842 |
iStreamFormat = aFormat;
|
|
843 |
iNavigation = aNavigation;
|
|
844 |
|
|
845 |
InitComponentsL();
|
|
846 |
|
|
847 |
iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize;
|
|
848 |
iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize;
|
|
849 |
iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize;
|
|
850 |
|
|
851 |
iCompConf[KYComp].iDCT = &iFullDCT;
|
|
852 |
iCompConf[KUComp].iDCT = &iFullDCT;
|
|
853 |
iCompConf[KVComp].iDCT = &iFullDCT;
|
|
854 |
|
|
855 |
iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
856 |
iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
857 |
iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision);
|
|
858 |
|
|
859 |
// Create JPEG read codec extension and the appropriate image processor
|
|
860 |
delete iImageFrameCodecPtr;
|
|
861 |
iImageFrameCodecPtr = NULL;
|
|
862 |
iImageFrameCodecPtr = CJpgImageFrameReadCodec::NewL(NULL);
|
|
863 |
|
|
864 |
PostInitFrameL();
|
|
865 |
}
|
|
866 |
|
|
867 |
#if defined(__ARMCC__)
|
|
868 |
#pragma pop
|
|
869 |
#endif
|
|
870 |
|
|
871 |
//get blocks for streaming
|
|
872 |
void CJpgReadCodec::GetBlocksL(CImageFrame* aFrame, TInt aSeqPosition, TInt aNumBlocksToGet, TInt* aNumBlocksRead)
|
|
873 |
{
|
|
874 |
ASSERT(aNumBlocksRead);
|
|
875 |
|
|
876 |
if(aFrame == NULL || !(iNavigation == TDecodeStreamCaps::ENavigationRandomForward || iNavigation == TDecodeStreamCaps::ENavigationRandomBackwards))
|
|
877 |
{
|
|
878 |
JPEG_LEAVE(KErrArgument, "GetBlocks - bad params");
|
|
879 |
}
|
|
880 |
|
|
881 |
ValidateImageFrameBlockL(aFrame);
|
|
882 |
|
|
883 |
iImageFrameCodecPtr->SetImageFrameBlocksL(aFrame, iFrameInfo);
|
|
884 |
|
|
885 |
*aNumBlocksRead = 0;
|
|
886 |
iStreamDecodeConfig.iSeqPosition = aSeqPosition;
|
|
887 |
iStreamDecodeConfig.iNumBlocksToGet = aNumBlocksToGet;
|
|
888 |
iStreamDecodeConfig.iNumBlocksRead = aNumBlocksRead;
|
|
889 |
}
|
|
890 |
|
|
891 |
//get blocks for streaming
|
|
892 |
void CSequentialJpgReadCodec::GetBlocksL(CImageFrame* aFrame, TInt aSeqPosition, TInt aNumBlocksToGet, TInt* aNumBlocksRead)
|
|
893 |
{
|
|
894 |
if (aSeqPosition < 0)
|
|
895 |
{
|
|
896 |
JPEG_LEAVE(KErrArgument, "GetBlocksL - bad aSeqPosition");
|
|
897 |
}
|
|
898 |
|
|
899 |
iNeededMCU = aSeqPosition;
|
|
900 |
|
|
901 |
CJpgReadCodec::GetBlocksL(aFrame, aSeqPosition, aNumBlocksToGet, aNumBlocksRead);
|
|
902 |
}
|
|
903 |
|
|
904 |
//get blocks for streaming
|
|
905 |
void CJpgReadCodec::GetNextBlocksL(CImageFrame* aFrame, TInt aNumBlocksToGet, TInt* aNumBlocksRead, TBool* aHaveMoreBlocks)
|
|
906 |
{
|
|
907 |
ASSERT(aNumBlocksRead);
|
|
908 |
ASSERT(aHaveMoreBlocks);
|
|
909 |
|
|
910 |
if (aFrame == NULL || iNavigation != TDecodeStreamCaps::ENavigationSequentialForward)
|
|
911 |
{
|
|
912 |
JPEG_LEAVE(KErrArgument, "GetNextBlocksL - bad params");
|
|
913 |
}
|
|
914 |
|
|
915 |
ValidateImageFrameBlockL(aFrame);
|
|
916 |
|
|
917 |
iImageFrameCodecPtr->SetImageFrameBlocksL(aFrame, iFrameInfo);
|
|
918 |
|
|
919 |
*aNumBlocksRead = 0;
|
|
920 |
*aHaveMoreBlocks = ETrue;
|
|
921 |
iStreamDecodeConfig.iNumBlocksToGet = aNumBlocksToGet;
|
|
922 |
iStreamDecodeConfig.iNumBlocksRead = aNumBlocksRead;
|
|
923 |
iStreamDecodeConfig.iHaveMoreBlocks = aHaveMoreBlocks;
|
|
924 |
}
|
|
925 |
|
|
926 |
//validates the blocks passed.
|
|
927 |
void CJpgReadCodec::ValidateImageFrameBlockL(CImageFrame* aFrame)
|
|
928 |
{
|
|
929 |
ASSERT(aFrame);
|
|
930 |
|
|
931 |
TSize aBlockSizeInPixels = aFrame->FrameSizeInPixels();
|
|
932 |
TSize aRefSizeInPixels = TSize(iFrameInfo.MCUWidthInPixels(), iFrameInfo.MCUHeightInPixels());
|
|
933 |
|
|
934 |
const TFrameFormat& format = static_cast<const TFrameFormat&>(aFrame->FrameFormat());
|
|
935 |
TUid imageFrameFormatCode = format.FormatCode();
|
|
936 |
|
|
937 |
TInt oddPixelsWidth = aBlockSizeInPixels.iWidth % aRefSizeInPixels.iWidth;
|
|
938 |
TInt oddPixelsHeight = aBlockSizeInPixels.iHeight % aRefSizeInPixels.iHeight;
|
|
939 |
|
|
940 |
if (oddPixelsWidth != 0 || oddPixelsHeight != 0 || aBlockSizeInPixels.iHeight != aRefSizeInPixels.iHeight)
|
|
941 |
{
|
|
942 |
User::Leave(KErrNotSupported);
|
|
943 |
}
|
|
944 |
|
|
945 |
if(iIsBlockStreaming == EFalse)
|
|
946 |
{
|
|
947 |
User::Leave(KErrNotReady);
|
|
948 |
}
|
|
949 |
|
|
950 |
if(imageFrameFormatCode != KNullUid)
|
|
951 |
{
|
|
952 |
if(imageFrameFormatCode != iStreamFormat)
|
|
953 |
{
|
|
954 |
User::Leave(KErrArgument);
|
|
955 |
}
|
|
956 |
}
|
|
957 |
}
|
|
958 |
|
|
959 |
//get buffer and blockSizeInPix for streaming
|
|
960 |
TInt CJpgReadCodec::GetStreamBufferSizeL(TUid aFormatCode, TSize& aBlockSizeInPixels, TInt aNumBlocks)
|
|
961 |
{
|
|
962 |
return CJpgImageFrameProcessorUtility::RecommendedStreamBufferSizeL(iFrameInfo, aFormatCode, aBlockSizeInPixels, aNumBlocks);
|
|
963 |
}
|
|
964 |
|
|
965 |
//validate format
|
|
966 |
void CJpgReadCodec::ValidateFormatL(const TJpgFrameInfo& aFrameInfo, TUid aFormatCode)
|
|
967 |
{
|
|
968 |
TInt dataUnitCount=0;
|
|
969 |
|
|
970 |
if (aFrameInfo.iNumberOfComponents == 1)
|
|
971 |
{
|
|
972 |
dataUnitCount = 1;
|
|
973 |
}
|
|
974 |
else
|
|
975 |
{
|
|
976 |
dataUnitCount = 0;
|
|
977 |
for (TInt index = 0; index < aFrameInfo.iNumberOfComponents; index++)
|
|
978 |
{
|
|
979 |
dataUnitCount += aFrameInfo.iComponent[index].iHorzSampleFactor *
|
|
980 |
aFrameInfo.iComponent[index].iVertSampleFactor;
|
|
981 |
}
|
|
982 |
}
|
|
983 |
|
|
984 |
switch (dataUnitCount)
|
|
985 |
{
|
|
986 |
|
|
987 |
case 1: // Monochrome
|
|
988 |
{
|
|
989 |
if (aFormatCode != KUidFormatYUVMonochrome)
|
|
990 |
{
|
|
991 |
// error transcoding not supported
|
|
992 |
User::Leave(KErrNotSupported);
|
|
993 |
}
|
|
994 |
break;
|
|
995 |
}
|
|
996 |
|
|
997 |
case 4: // 4:2:2
|
|
998 |
{
|
|
999 |
if (aFormatCode != KUidFormatYUV422Interleaved)
|
|
1000 |
{
|
|
1001 |
// error transcoding not supported
|
|
1002 |
User::Leave(KErrNotSupported);
|
|
1003 |
}
|
|
1004 |
break;
|
|
1005 |
}
|
|
1006 |
|
|
1007 |
case 6: // 4:2:0
|
|
1008 |
{
|
|
1009 |
if (!(aFormatCode == KUidFormatYUV420Planar || aFormatCode == KUidFormatYUV420PlanarReversed))
|
|
1010 |
{
|
|
1011 |
// error transcoding not supported
|
|
1012 |
User::Leave(KErrNotSupported);
|
|
1013 |
}
|
|
1014 |
break;
|
|
1015 |
}
|
|
1016 |
|
|
1017 |
default:
|
|
1018 |
{
|
|
1019 |
User::Leave(KErrNotSupported);
|
|
1020 |
break;
|
|
1021 |
}
|
|
1022 |
}
|
|
1023 |
}
|
|
1024 |
|
|
1025 |
//
|
|
1026 |
// This function should be called at beginning of the
|
|
1027 |
// various InitFrameL versions. It performs initialisation
|
|
1028 |
// that's common to all forms of image.
|
|
1029 |
//
|
|
1030 |
void CJpgReadCodec::PreInitFrameL()
|
|
1031 |
{
|
|
1032 |
JPEG_DEBUG1("PreInitFrameL()");
|
|
1033 |
JPEG_DEBUG2(" - MCU pixel width: %d", iFrameInfo.MCUWidthInPixels());
|
|
1034 |
JPEG_DEBUG2(" - MCU pixel height: %d", iFrameInfo.MCUHeightInPixels());
|
|
1035 |
|
|
1036 |
iHorzMCUBlkCount = 0;
|
|
1037 |
iScalingFactor = 1;
|
|
1038 |
iMCUsPerBuffer = (iFrameInfo.iProgressive ? 1 : iFrameInfo.iMCUBlocksPerLine);
|
|
1039 |
ASSERT(iMCUsPerBuffer > 0);
|
|
1040 |
|
|
1041 |
iMonochrome = (iFrameInfo.iNumberOfComponents == 1);
|
|
1042 |
|
|
1043 |
TInt interval = iFrameInfo.iRestartInterval;
|
|
1044 |
iRestartMCUCount = (interval > 0 ? interval : KErrNotFound);
|
|
1045 |
JPEG_DEBUG2(" - iRestartMCUCount = %d", iRestartMCUCount);
|
|
1046 |
|
|
1047 |
iMaxHorzSampleFactor = iFrameInfo.iMaxHorzSampleFactor;
|
|
1048 |
iMaxVertSampleFactor = iFrameInfo.iMaxVertSampleFactor;
|
|
1049 |
JPEG_DEBUG2(" - iMaxHorzSampleFactor = %d", iMaxHorzSampleFactor);
|
|
1050 |
JPEG_DEBUG2(" - iMaxVertSampleFactor = %d", iMaxVertSampleFactor);
|
|
1051 |
|
|
1052 |
// Get info from the extension manager. The InitFrameL function can
|
|
1053 |
// decide whether or not the operation is supported.
|
|
1054 |
ASSERT(iExtensionManager);
|
|
1055 |
|
|
1056 |
if (iAutoRotateFlag > 1 && iAutoRotateFlag < 9)
|
|
1057 |
{
|
|
1058 |
// To ensure operation extension is created
|
|
1059 |
iExtensionManager->CreateExtensionForAutoRotateL();
|
|
1060 |
iOperation = iExtensionManager->OperationL(iAutoRotateFlag);
|
|
1061 |
}
|
|
1062 |
else
|
|
1063 |
{
|
|
1064 |
iOperation = iExtensionManager->Operation();
|
|
1065 |
}
|
|
1066 |
|
|
1067 |
// check out if we need to clip.
|
|
1068 |
iUseClipRect = EFalse;
|
|
1069 |
if (iExtensionManager->ClippingRectExtensionRequested())
|
|
1070 |
{
|
|
1071 |
iUseClipRect = ETrue;
|
|
1072 |
}
|
|
1073 |
|
|
1074 |
ResetState();
|
|
1075 |
}
|
|
1076 |
|
|
1077 |
//
|
|
1078 |
//
|
|
1079 |
//
|
|
1080 |
void CJpgReadCodec::PostInitFrameL()
|
|
1081 |
{
|
|
1082 |
// Default implementation does nothing.
|
|
1083 |
}
|
|
1084 |
|
|
1085 |
//
|
|
1086 |
//
|
|
1087 |
//
|
|
1088 |
void CJpgReadCodec::StoreState()
|
|
1089 |
{
|
|
1090 |
iInitialDataPtr = iDataPtr;
|
|
1091 |
iInitialDataValue = iDataValue;
|
|
1092 |
iInitialBitsLeft = iBitsLeft;
|
|
1093 |
iBitBufferPtrLimit = NULL;
|
|
1094 |
|
|
1095 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
1096 |
{
|
|
1097 |
iInitialDCPredictor[i] = iDCPredictor[i];
|
|
1098 |
}
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
//
|
|
1102 |
//
|
|
1103 |
//
|
|
1104 |
void CJpgReadCodec::RestoreState()
|
|
1105 |
{
|
|
1106 |
iDataPtr = iInitialDataPtr;
|
|
1107 |
iBitBufferPtrLimit = NULL;
|
|
1108 |
iDataValue = iInitialDataValue;
|
|
1109 |
iBitsLeft = iInitialBitsLeft;
|
|
1110 |
|
|
1111 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
1112 |
{
|
|
1113 |
iDCPredictor[i] = iInitialDCPredictor[i];
|
|
1114 |
}
|
|
1115 |
}
|
|
1116 |
|
|
1117 |
//
|
|
1118 |
//
|
|
1119 |
//
|
|
1120 |
void CJpgReadCodec::ResetState()
|
|
1121 |
{
|
|
1122 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
1123 |
{
|
|
1124 |
iDCPredictor[i] = 0;
|
|
1125 |
}
|
|
1126 |
|
|
1127 |
iBitsLeft = 0;
|
|
1128 |
iBitBufferPtrLimit = NULL;
|
|
1129 |
}
|
|
1130 |
|
|
1131 |
//
|
|
1132 |
// Returns the number of bytes that had to be skipped before the restart marker was found.
|
|
1133 |
//
|
|
1134 |
TInt CJpgReadCodec::RestartStateL()
|
|
1135 |
{
|
|
1136 |
const TUint8* startPtr = iDataPtr;
|
|
1137 |
const TUint8* readLimit = iDataPtrLimit - 2;
|
|
1138 |
|
|
1139 |
// skip the data until the marker is found
|
|
1140 |
while (*iDataPtr != 0xff && iDataPtr < readLimit)
|
|
1141 |
{
|
|
1142 |
iDataPtr++;
|
|
1143 |
}
|
|
1144 |
|
|
1145 |
if (*iDataPtr != 0xff)
|
|
1146 |
{
|
|
1147 |
User::Leave(KErrCompletion);
|
|
1148 |
}
|
|
1149 |
|
|
1150 |
iDataPtr++;
|
|
1151 |
|
|
1152 |
TInt marker = *iDataPtr++;
|
|
1153 |
|
|
1154 |
if (marker == (KJpgEOISignature & 0x00ff))
|
|
1155 |
{
|
|
1156 |
User::Leave(KErrEof);
|
|
1157 |
}
|
|
1158 |
else if ((marker & 0xf0) != 0xd0)
|
|
1159 |
{
|
|
1160 |
#if !defined(RELAX_JPEG_STRICTNESS)
|
|
1161 |
User::Leave(KErrCorrupt);
|
|
1162 |
#endif
|
|
1163 |
}
|
|
1164 |
|
|
1165 |
// if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL
|
|
1166 |
// This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame
|
|
1167 |
iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound;
|
|
1168 |
ResetState();
|
|
1169 |
StoreState();
|
|
1170 |
|
|
1171 |
return iDataPtr - startPtr;
|
|
1172 |
}
|
|
1173 |
|
|
1174 |
CJpgImageFrameReadCodec* CJpgReadCodec::ImageFrameCodec()
|
|
1175 |
{
|
|
1176 |
return iImageFrameCodecPtr;
|
|
1177 |
}
|
|
1178 |
|
|
1179 |
TInt CJpgReadCodec::ReducedSize(const TSize& aOriginalSize, TInt aReductionFactor, TSize& aReducedSize) const
|
|
1180 |
{
|
|
1181 |
aReducedSize = aOriginalSize;
|
|
1182 |
if (aReductionFactor < 0 || aReductionFactor > 3)
|
|
1183 |
{
|
|
1184 |
return KErrArgument;
|
|
1185 |
}
|
|
1186 |
else
|
|
1187 |
{
|
|
1188 |
return CImageReadCodec::ReducedSize(aOriginalSize, aReductionFactor, aReducedSize);
|
|
1189 |
}
|
|
1190 |
}
|
|
1191 |
|
|
1192 |
#if defined(__ARMCC__)
|
|
1193 |
// use ARM instruction for performance-critical code
|
|
1194 |
#pragma push
|
|
1195 |
#pragma arm
|
|
1196 |
#pragma O3
|
|
1197 |
#pragma Otime
|
|
1198 |
#endif
|
|
1199 |
|
|
1200 |
TInt CJpgReadCodec::FillBitBufferL(TInt aBLeft)
|
|
1201 |
{
|
|
1202 |
const TInt KBytesToFetch= 4;
|
|
1203 |
const TUint8* dataPtr = iDataPtr;
|
|
1204 |
|
|
1205 |
const TUint8* bitBufLim = iBitBufferPtrLimit;
|
|
1206 |
if (dataPtr + KBytesToFetch >= bitBufLim)
|
|
1207 |
{
|
|
1208 |
bitBufLim = JpegFillBuffer(dataPtr);
|
|
1209 |
}
|
|
1210 |
|
|
1211 |
register TUint dataValue = iDataValue;
|
|
1212 |
|
|
1213 |
if (dataPtr + KBytesToFetch < bitBufLim )
|
|
1214 |
{
|
|
1215 |
if (aBLeft == 0)
|
|
1216 |
{
|
|
1217 |
aBLeft = 8;
|
|
1218 |
dataValue = (*dataPtr++);
|
|
1219 |
}
|
|
1220 |
dataValue = (dataValue<<8) | (*dataPtr++);
|
|
1221 |
dataValue = (dataValue<<8) | (*dataPtr++);
|
|
1222 |
dataValue = (dataValue<<8) | (*dataPtr++);
|
|
1223 |
|
|
1224 |
iBitsLeft = aBLeft + (KBytesToFetch-1) * 8;
|
|
1225 |
|
|
1226 |
iDataValue= dataValue;
|
|
1227 |
iDataPtr = dataPtr;
|
|
1228 |
|
|
1229 |
return iBitsLeft;
|
|
1230 |
}
|
|
1231 |
|
|
1232 |
if (dataPtr == iDataPtrLimit) // no more data available
|
|
1233 |
{
|
|
1234 |
if (aBLeft) // there are some bits left so make use of them
|
|
1235 |
{
|
|
1236 |
return (iBitsLeft = aBLeft);
|
|
1237 |
}
|
|
1238 |
// no more data in buffer - signal that
|
|
1239 |
User::Leave(KErrCompletion);
|
|
1240 |
}
|
|
1241 |
|
|
1242 |
iDataValue = (dataValue<<8) | (*iDataPtr++);
|
|
1243 |
iBitsLeft = aBLeft + 8;
|
|
1244 |
|
|
1245 |
if ((iDataValue & 0xFF) == 0xFF)
|
|
1246 |
{
|
|
1247 |
if (iDataPtr == iDataPtrLimit)
|
|
1248 |
{
|
|
1249 |
// ----+ +-------
|
|
1250 |
// |FF| |??|??|
|
|
1251 |
// ----+ +-------
|
|
1252 |
--iDataPtr;
|
|
1253 |
User::Leave(KErrCompletion);
|
|
1254 |
}
|
|
1255 |
|
|
1256 |
// When the byte sequence 0xFF occurs in encoded image data it must be followed
|
|
1257 |
// by 0x00 or the decoder will consider it a marker. The 0x00 is ignored
|
|
1258 |
// by the decoder.
|
|
1259 |
|
|
1260 |
// --------...
|
|
1261 |
// |FF|??|
|
|
1262 |
// --------...
|
|
1263 |
TInt marker = *iDataPtr++;
|
|
1264 |
if (marker)//Since (FF,00) stream is valid we send it.For a Non-Zero marker we need to do something
|
|
1265 |
{
|
|
1266 |
// It's a proper marker
|
|
1267 |
if (iBitsLeft > 8) // there are stiil some bits to decode
|
|
1268 |
{
|
|
1269 |
// Before: iDataValue = [xxxxxxxx][xxxxxxxx][xxxxxxxx][ffffffff]
|
|
1270 |
iBitsLeft-=8;
|
|
1271 |
iDataValue >>=8;
|
|
1272 |
iDataPtr-=2;
|
|
1273 |
// After: iDataValue = [00000000][xxxxxxxx][xxxxxxxxx][xxxxxxxx]
|
|
1274 |
return iBitsLeft;
|
|
1275 |
}
|
|
1276 |
// End of encoded image data stream?
|
|
1277 |
if (marker == (KJpgEOISignature&0xFF)) //Allow 0xFF as a valid marker only report KErrEof in case of EOI marker
|
|
1278 |
{
|
|
1279 |
User::Leave(KErrEof); // we've reached the end of the file
|
|
1280 |
}
|
|
1281 |
else
|
|
1282 |
{
|
|
1283 |
//If marker is a special marker like 0xFF we need to give a valid iDataValue..
|
|
1284 |
if(marker == KJpgMarkerByte)
|
|
1285 |
{
|
|
1286 |
while(iDataPtr<iDataPtrLimit && *iDataPtr == KJpgMarkerByte)
|
|
1287 |
{
|
|
1288 |
iDataPtr++;
|
|
1289 |
}
|
|
1290 |
|
|
1291 |
if (iDataPtr==iDataPtrLimit)
|
|
1292 |
{
|
|
1293 |
--iDataPtr;
|
|
1294 |
User::Leave(KErrCompletion);
|
|
1295 |
}
|
|
1296 |
else
|
|
1297 |
{
|
|
1298 |
//Check for 0x00 marker since (0xFF,0x00) is a valid stream
|
|
1299 |
if(*iDataPtr==0x00)
|
|
1300 |
{
|
|
1301 |
iDataPtr+=1;
|
|
1302 |
return iBitsLeft;
|
|
1303 |
}
|
|
1304 |
}
|
|
1305 |
}
|
|
1306 |
iDataPtr-=1; // we'd accept some malformed files, otherwise User::Leave(KErr)
|
|
1307 |
}
|
|
1308 |
}
|
|
1309 |
}
|
|
1310 |
return iBitsLeft;
|
|
1311 |
}
|
|
1312 |
|
|
1313 |
//
|
|
1314 |
// Examine the buffer given by ProcessL for 0xFF sequences.
|
|
1315 |
// This allows for less checking in the FillBitBufferL function.
|
|
1316 |
//
|
|
1317 |
inline const TUint8* CJpgReadCodec::JpegFillBuffer(const TUint8* aDataPtr)
|
|
1318 |
{
|
|
1319 |
register const TUint8* limit = Min(iDataPtrLimit - 1, aDataPtr + KMarkerLookAhead + 1);
|
|
1320 |
|
|
1321 |
// Try to ignore markers that are at the start of the buffer, except for EOI.
|
|
1322 |
while ((aDataPtr < limit) && (*aDataPtr != 0xFF))
|
|
1323 |
{
|
|
1324 |
++aDataPtr;
|
|
1325 |
}
|
|
1326 |
|
|
1327 |
return (iBitBufferPtrLimit = (aDataPtr - 1));
|
|
1328 |
}
|
|
1329 |
|
|
1330 |
FORCEDINLINE TBool CJpgReadCodec::NextBitL()
|
|
1331 |
{
|
|
1332 |
if (iBitsLeft == 0)
|
|
1333 |
{
|
|
1334 |
FillBitBufferL(0);
|
|
1335 |
}
|
|
1336 |
return (iDataValue & (1 << --iBitsLeft));
|
|
1337 |
}
|
|
1338 |
|
|
1339 |
void CJpgReadCodec::SetAutoRotateFlag(TUint16 aAutoRotateFlag)
|
|
1340 |
{
|
|
1341 |
iAutoRotateFlag = aAutoRotateFlag;
|
|
1342 |
}
|
|
1343 |
|
|
1344 |
void CJpgReadCodec::GetComponentBlockL(TDataUnit& aDestination,TInt& aNumValues,TInt& aDCPrediction,const TDecHuffmanTable& aDCTable,const TDecHuffmanTable& aACTable)
|
|
1345 |
{
|
|
1346 |
TInt size = GetHuffmanCodeL(aDCTable);
|
|
1347 |
TInt amplitude = (size > 0) ? GetBinaryNumberL( size & 0x1F ) : 0;
|
|
1348 |
aDCPrediction += amplitude;
|
|
1349 |
|
|
1350 |
if (aDCPrediction > KMaxTInt16 || aDCPrediction < KMinTInt16)
|
|
1351 |
{
|
|
1352 |
JPEG_LEAVE(KErrCorrupt, "Bad component block");
|
|
1353 |
}
|
|
1354 |
|
|
1355 |
if (iScalingFactor != -4)
|
|
1356 |
{
|
|
1357 |
FillCompZ(aDestination, KJpgDCTBlockSize);
|
|
1358 |
TInt16* valuePtr = aDestination.iCoeff;
|
|
1359 |
TInt16* valuePtrLimit = valuePtr + KJpgDCTBlockSize;
|
|
1360 |
|
|
1361 |
*valuePtr++ = TInt16(aDCPrediction);
|
|
1362 |
|
|
1363 |
while (valuePtr < valuePtrLimit)
|
|
1364 |
{
|
|
1365 |
TInt s = GetHuffmanCodeL(aACTable);
|
|
1366 |
if (s == 0) // End of block
|
|
1367 |
{
|
|
1368 |
break;
|
|
1369 |
}
|
|
1370 |
else
|
|
1371 |
{
|
|
1372 |
TInt r = s >> 4;
|
|
1373 |
s &= 0x0f;
|
|
1374 |
if (s > 0)
|
|
1375 |
{
|
|
1376 |
valuePtr += r;
|
|
1377 |
|
|
1378 |
if (valuePtr < valuePtrLimit)
|
|
1379 |
{
|
|
1380 |
*valuePtr++ = GetBinaryNumberL(s);
|
|
1381 |
}
|
|
1382 |
}
|
|
1383 |
else if (r == 15) // Zero run length
|
|
1384 |
{
|
|
1385 |
valuePtr += 16;
|
|
1386 |
}
|
|
1387 |
}
|
|
1388 |
}
|
|
1389 |
|
|
1390 |
if (valuePtr > valuePtrLimit)
|
|
1391 |
{
|
|
1392 |
valuePtr = valuePtrLimit;
|
|
1393 |
}
|
|
1394 |
|
|
1395 |
aNumValues = valuePtr - aDestination.iCoeff;
|
|
1396 |
}
|
|
1397 |
else // for 1/8 scaling we need only DC value, so perform fast block skipping
|
|
1398 |
{
|
|
1399 |
aNumValues = 1;
|
|
1400 |
|
|
1401 |
aDestination.iCoeff[0] = TInt16(aDCPrediction);
|
|
1402 |
TInt numValuesRead = 1; //we've already got DC value
|
|
1403 |
do
|
|
1404 |
{
|
|
1405 |
TInt s = GetHuffmanCodeL(aACTable);
|
|
1406 |
if (s == 0) // End of block
|
|
1407 |
{
|
|
1408 |
break;
|
|
1409 |
}
|
|
1410 |
else
|
|
1411 |
{
|
|
1412 |
TInt r = s >> 4;
|
|
1413 |
s &= 0x0f;
|
|
1414 |
if (s > 0)
|
|
1415 |
{
|
|
1416 |
numValuesRead += r;
|
|
1417 |
|
|
1418 |
if (numValuesRead < KJpgDCTBlockSize)
|
|
1419 |
{
|
|
1420 |
numValuesRead++;
|
|
1421 |
SkipBitsQuickL(s);
|
|
1422 |
}
|
|
1423 |
}
|
|
1424 |
else if (r == 15) // Zero run length
|
|
1425 |
{
|
|
1426 |
numValuesRead += 16;
|
|
1427 |
}
|
|
1428 |
}
|
|
1429 |
} while (numValuesRead < KJpgDCTBlockSize);
|
|
1430 |
}
|
|
1431 |
}
|
|
1432 |
|
|
1433 |
TInt CJpgReadCodec::GetHuffmanCodeL(const TDecHuffmanTable& aTable)
|
|
1434 |
{
|
|
1435 |
TInt bLeft = iBitsLeft;
|
|
1436 |
if (bLeft < KJpgHuffmanLookAhead)
|
|
1437 |
{
|
|
1438 |
bLeft = FillBitBufferL(bLeft);
|
|
1439 |
}
|
|
1440 |
|
|
1441 |
TUint dv = iDataValue;
|
|
1442 |
|
|
1443 |
TInt nb=1;
|
|
1444 |
//
|
|
1445 |
if (bLeft >= KJpgHuffmanLookAhead)
|
|
1446 |
{
|
|
1447 |
|
|
1448 |
TUint32 fastLook = (dv >> (bLeft - KJpgHuffmanLookAhead)) & KJpgHuffmanLookAheadMask;
|
|
1449 |
register TUint32 lookupEntry = aTable.GetLookupEntry(fastLook);
|
|
1450 |
if (aTable.Found(lookupEntry))
|
|
1451 |
{
|
|
1452 |
iBitsLeft = (bLeft - aTable.GetSize(lookupEntry));
|
|
1453 |
return aTable.GetCode(lookupEntry);
|
|
1454 |
}
|
|
1455 |
else
|
|
1456 |
{
|
|
1457 |
nb = (KJpgHuffmanLookAhead+1 > bLeft)? bLeft : KJpgHuffmanLookAhead+1;
|
|
1458 |
}
|
|
1459 |
}
|
|
1460 |
|
|
1461 |
register TUint index = 0;
|
|
1462 |
TInt bitCount = 0;
|
|
1463 |
|
|
1464 |
ASSERT(nb>0);
|
|
1465 |
register TUint32 look = dv << (32 - bLeft);
|
|
1466 |
iBitsLeft -= nb;
|
|
1467 |
do
|
|
1468 |
{
|
|
1469 |
index = (index << 1) + 1;
|
|
1470 |
index +=((look & ((TUint32)1<<31)) != 0);
|
|
1471 |
look<<=1;
|
|
1472 |
} while (++bitCount < nb);
|
|
1473 |
|
|
1474 |
const TUint8* codeIdxHash = aTable.GetCodeIdxHash();
|
|
1475 |
|
|
1476 |
for (; bitCount <= 16; bitCount++)
|
|
1477 |
{
|
|
1478 |
TInt first = codeIdxHash[bitCount];
|
|
1479 |
TInt last = codeIdxHash[bitCount+1];
|
|
1480 |
while (last >= first)
|
|
1481 |
{
|
|
1482 |
register TInt notFoundPosition = (first + last) >> 1;
|
|
1483 |
TInt codeIndex = aTable.GetIndex(notFoundPosition);
|
|
1484 |
|
|
1485 |
if (index < codeIndex)
|
|
1486 |
{
|
|
1487 |
last = notFoundPosition - 1;
|
|
1488 |
}
|
|
1489 |
else if (index > codeIndex)
|
|
1490 |
{
|
|
1491 |
first = notFoundPosition + 1;
|
|
1492 |
}
|
|
1493 |
else
|
|
1494 |
{
|
|
1495 |
return aTable.GetIndexedCode(notFoundPosition);
|
|
1496 |
}
|
|
1497 |
}
|
|
1498 |
|
|
1499 |
index = (index << 1) + 1;
|
|
1500 |
index += (NextBitL()!=0);
|
|
1501 |
}
|
|
1502 |
|
|
1503 |
#if !defined(RELAX_JPEG_STRICTNESS)
|
|
1504 |
User::Leave(KErrCorrupt);
|
|
1505 |
#endif
|
|
1506 |
|
|
1507 |
return aTable.GetIndexedCode(0);
|
|
1508 |
}
|
|
1509 |
|
|
1510 |
FORCEDINLINE void CJpgReadCodec::SkipBitsQuickL(TInt aNumOfBits)
|
|
1511 |
{
|
|
1512 |
TInt bLeft = iBitsLeft;
|
|
1513 |
|
|
1514 |
FOREVER
|
|
1515 |
{
|
|
1516 |
bLeft -= aNumOfBits;
|
|
1517 |
if (bLeft >= 0)
|
|
1518 |
{
|
|
1519 |
iBitsLeft = bLeft;
|
|
1520 |
return;
|
|
1521 |
}
|
|
1522 |
aNumOfBits = -bLeft;
|
|
1523 |
iBitsLeft = 0;
|
|
1524 |
bLeft = FillBitBufferL(0);
|
|
1525 |
}
|
|
1526 |
}
|
|
1527 |
|
|
1528 |
FORCEDINLINE TInt CJpgReadCodec::GetBinaryNumberQuickL(TInt aLength)
|
|
1529 |
{
|
|
1530 |
register TInt bLeft = iBitsLeft;
|
|
1531 |
register TUint number = 0;
|
|
1532 |
register TBitBuffer bitBuf;
|
|
1533 |
|
|
1534 |
FOREVER
|
|
1535 |
{
|
|
1536 |
bitBuf = iDataValue;
|
|
1537 |
|
|
1538 |
bLeft -= aLength;
|
|
1539 |
if (bLeft >= 0)
|
|
1540 |
{
|
|
1541 |
break;
|
|
1542 |
}
|
|
1543 |
bLeft += aLength;
|
|
1544 |
aLength -= bLeft;
|
|
1545 |
number |= ((bitBuf & ((1<<bLeft)-1)) << aLength);
|
|
1546 |
|
|
1547 |
bLeft = FillBitBufferL(0);
|
|
1548 |
}
|
|
1549 |
|
|
1550 |
iBitsLeft = bLeft;
|
|
1551 |
|
|
1552 |
number |= ((bitBuf>>bLeft) & ((1<<aLength)-1));
|
|
1553 |
return number;
|
|
1554 |
}
|
|
1555 |
|
|
1556 |
FORCEDINLINE TInt16 CJpgReadCodec::GetPositiveBinaryNumberL(TInt aLength)
|
|
1557 |
{
|
|
1558 |
return TInt16( GetBinaryNumberQuickL(aLength) );
|
|
1559 |
}
|
|
1560 |
|
|
1561 |
FORCEDINLINE TInt16 CJpgReadCodec::GetBinaryNumberL(TInt aLength)
|
|
1562 |
{
|
|
1563 |
TInt mask = (-1) << (aLength - 1);
|
|
1564 |
TInt number = GetBinaryNumberQuickL(aLength);
|
|
1565 |
return TInt16( (number & mask)? number : number + ( mask<<1 ) + 1);
|
|
1566 |
}
|
|
1567 |
|
|
1568 |
/**
|
|
1569 |
This class is to provide with "write pixel" functionality
|
|
1570 |
for writting pixels into TRgb-type buffer
|
|
1571 |
*/
|
|
1572 |
class TRgbWriter
|
|
1573 |
{
|
|
1574 |
public:
|
|
1575 |
inline
|
|
1576 |
static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV)
|
|
1577 |
{
|
|
1578 |
*aPtr = TYCbCr::YCbCrtoRGB(aY, aU, aV);
|
|
1579 |
}
|
|
1580 |
inline
|
|
1581 |
static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs)
|
|
1582 |
{
|
|
1583 |
return aPtr + aUnitsOffs;
|
|
1584 |
}
|
|
1585 |
};
|
|
1586 |
|
|
1587 |
/**
|
|
1588 |
This class is to provide with "write pixel" functionality
|
|
1589 |
for writting pixels into EColor16M-type buffer i.e. 3 bytes per pixel
|
|
1590 |
*/
|
|
1591 |
class TRawWriter
|
|
1592 |
{
|
|
1593 |
public:
|
|
1594 |
inline
|
|
1595 |
static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV)
|
|
1596 |
{
|
|
1597 |
TYCbCr::YCbCrtoRawRGB(aY, aU, aV, aPtr);
|
|
1598 |
}
|
|
1599 |
inline
|
|
1600 |
static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs)
|
|
1601 |
{
|
|
1602 |
return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) + aUnitsOffs);
|
|
1603 |
}
|
|
1604 |
};
|
|
1605 |
|
|
1606 |
/**
|
|
1607 |
This class is to provide with "write pixel" functionality
|
|
1608 |
for writting pixels into EColor16M-type buffer i.e. 3 bytes per pixel
|
|
1609 |
It is similar to the TRawWriter but uses inline version of YUV->RGB
|
|
1610 |
conversion function
|
|
1611 |
*/
|
|
1612 |
class TRawInlineWriter
|
|
1613 |
{
|
|
1614 |
public:
|
|
1615 |
inline
|
|
1616 |
static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV)
|
|
1617 |
{
|
|
1618 |
TYCbCr::YCbCrtoRawRGBInl(aY, aU, aV, aPtr);
|
|
1619 |
}
|
|
1620 |
inline
|
|
1621 |
static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs)
|
|
1622 |
{
|
|
1623 |
return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) + aUnitsOffs);
|
|
1624 |
}
|
|
1625 |
};
|
|
1626 |
|
|
1627 |
/**
|
|
1628 |
This class is to provide with "write pixel" functionality
|
|
1629 |
for writting pixels into EColor64K-type buffer i.e. 2 bytes per pixel
|
|
1630 |
*/
|
|
1631 |
class TRaw64KColorWriter
|
|
1632 |
{
|
|
1633 |
public:
|
|
1634 |
inline
|
|
1635 |
static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV)
|
|
1636 |
{
|
|
1637 |
TYCbCr::YCbCrtoRaw64K(aY, aU, aV, aPtr);
|
|
1638 |
}
|
|
1639 |
inline
|
|
1640 |
static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs)
|
|
1641 |
{
|
|
1642 |
return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) );
|
|
1643 |
}
|
|
1644 |
};
|
|
1645 |
|
|
1646 |
inline void CJpgReadCodec::WriteMCU()
|
|
1647 |
{
|
|
1648 |
JPEG_ASSERT(iMcuWriteFunc);
|
|
1649 |
(this->*iMcuWriteFunc)();
|
|
1650 |
}
|
|
1651 |
|
|
1652 |
//
|
|
1653 |
// Calculate where in the intermediate buffer this MCU should be drawn.
|
|
1654 |
//
|
|
1655 |
TInt CJpgReadCodec::GetMCURenderOffset()
|
|
1656 |
{
|
|
1657 |
TInt mcuPos;
|
|
1658 |
|
|
1659 |
JPEG_ASSERT(iMCUHorizExtent > 0);
|
|
1660 |
|
|
1661 |
if (iFillBufferBackwards)
|
|
1662 |
{
|
|
1663 |
JPEG_ASSERT(!iProgressive);
|
|
1664 |
mcuPos = iMCUsPerBuffer - iHorzMCUBlkCount - 1;
|
|
1665 |
}
|
|
1666 |
else
|
|
1667 |
{
|
|
1668 |
// Fill from left to right.
|
|
1669 |
mcuPos = iHorzMCUBlkCount;
|
|
1670 |
}
|
|
1671 |
|
|
1672 |
JPEG_ASSERT(mcuPos >= 0);
|
|
1673 |
|
|
1674 |
// iMCUHorizExtent has already been scaled by CalculateRenderingParams().
|
|
1675 |
return (mcuPos * iMCUHorizExtent);
|
|
1676 |
|
|
1677 |
}
|
|
1678 |
|
|
1679 |
//
|
|
1680 |
// Writes a monochrome MCU.
|
|
1681 |
//
|
|
1682 |
void CJpgReadCodec::WriteMonoMCU()
|
|
1683 |
{
|
|
1684 |
const TInt16* yComp = iComponent[KYComp]->iCoeff;
|
|
1685 |
|
|
1686 |
if (iScalingFactor == -4)
|
|
1687 |
{
|
|
1688 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1689 |
TRgb* writeAddress = iRgbBuffer + pixelsToSkip;
|
|
1690 |
/* Coverity may flag as overrun of array yComp by indexing, which is false positive. There is more than one TDataUnit object pointed to by
|
|
1691 |
iComponent[KYComp], which Coverity may fail to take into account */
|
|
1692 |
for (TInt j = 0; j < iMaxVertSampleFactor; j++)
|
|
1693 |
{
|
|
1694 |
for (TInt i = 0; i < iMaxHorzSampleFactor; i++)
|
|
1695 |
{
|
|
1696 |
*writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(yComp[0]));
|
|
1697 |
writeAddress += iPixelIncrement;
|
|
1698 |
yComp += KJpgDCTBlockSize;
|
|
1699 |
}
|
|
1700 |
writeAddress += iRgbBufNextLineOffs;
|
|
1701 |
}
|
|
1702 |
}
|
|
1703 |
else
|
|
1704 |
{
|
|
1705 |
const TInt KYBlockOffset = KJpgDCTBlockWidth-(iMaxHorzSampleFactor * KJpgDCTBlockSize);
|
|
1706 |
|
|
1707 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1708 |
TRgb* writeAddress = iRgbBuffer + pixelsToSkip;
|
|
1709 |
|
|
1710 |
for (TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth; sf;)
|
|
1711 |
{
|
|
1712 |
TInt hsf = iMaxHorzSampleFactor;
|
|
1713 |
do
|
|
1714 |
{
|
|
1715 |
TInt i = KJpgDCTBlockWidth / 2;
|
|
1716 |
do
|
|
1717 |
{
|
|
1718 |
*writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(*yComp++));
|
|
1719 |
writeAddress += iPixelIncrement;
|
|
1720 |
*writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(*yComp++));
|
|
1721 |
writeAddress += iPixelIncrement;
|
|
1722 |
}
|
|
1723 |
while (--i);
|
|
1724 |
|
|
1725 |
yComp += (KJpgDCTBlockSize - KJpgDCTBlockWidth);
|
|
1726 |
}
|
|
1727 |
while (--hsf);
|
|
1728 |
|
|
1729 |
--sf;
|
|
1730 |
yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: -(KJpgDCTBlockSize-KJpgDCTBlockWidth);
|
|
1731 |
writeAddress += iRgbBufNextLineOffs;
|
|
1732 |
}
|
|
1733 |
}
|
|
1734 |
}
|
|
1735 |
|
|
1736 |
void CJpgReadCodec::WriteDiv8ScaledMCU16M()
|
|
1737 |
{
|
|
1738 |
WriteDiv8MCUImpl<TRawWriter>();
|
|
1739 |
}
|
|
1740 |
|
|
1741 |
void CJpgReadCodec::WriteDiv8ScaledMCU()
|
|
1742 |
{
|
|
1743 |
WriteDiv8MCUImpl<TRgbWriter>();
|
|
1744 |
}
|
|
1745 |
|
|
1746 |
void CJpgReadCodec::WriteDiv8ScaledMCU64K()
|
|
1747 |
{
|
|
1748 |
WriteDiv8MCUImpl<TRaw64KColorWriter>();
|
|
1749 |
}
|
|
1750 |
|
|
1751 |
template <class T>
|
|
1752 |
inline void CJpgReadCodec::WriteDiv8MCUImpl()
|
|
1753 |
{
|
|
1754 |
ASSERT(iScalingFactor == -4);
|
|
1755 |
|
|
1756 |
TInt16* yComp = iComponent[0]->iCoeff;
|
|
1757 |
|
|
1758 |
TUVidxElemType* uVIndeces = iUVIndeces;
|
|
1759 |
|
|
1760 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1761 |
TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip);
|
|
1762 |
|
|
1763 |
const TInt16* uComp = iComponent[KUComp]->iCoeff;
|
|
1764 |
const TInt16* vComp = iComponent[KVComp]->iCoeff;
|
|
1765 |
|
|
1766 |
TInt hsf = iMaxHorzSampleFactor;
|
|
1767 |
TInt vsf = iMaxVertSampleFactor;
|
|
1768 |
/* Coverity may flag as overrun of array on indexing yComp. This is false positive. Coverity doesn't take into account that
|
|
1769 |
iComponent[0] can point to more than one TDataUnit.
|
|
1770 |
*/
|
|
1771 |
do
|
|
1772 |
{
|
|
1773 |
do
|
|
1774 |
{
|
|
1775 |
const TInt16 uValue = uComp[*uVIndeces];
|
|
1776 |
uVIndeces++;
|
|
1777 |
const TInt16 vValue = vComp[*uVIndeces];
|
|
1778 |
uVIndeces++;
|
|
1779 |
T::WritePixel(writeAddress, *yComp, uValue, vValue);
|
|
1780 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1781 |
|
|
1782 |
yComp += KJpgDCTBlockSize;
|
|
1783 |
}
|
|
1784 |
while (--hsf);
|
|
1785 |
|
|
1786 |
hsf = iMaxHorzSampleFactor;
|
|
1787 |
uVIndeces += (hsf << 4); // 2 * hsf * KJpgBlockWidth
|
|
1788 |
writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs);
|
|
1789 |
}
|
|
1790 |
while (--vsf);
|
|
1791 |
}
|
|
1792 |
|
|
1793 |
void CJpgReadCodec::WriteUnScaledMCU16M()
|
|
1794 |
{
|
|
1795 |
WriteUnScaledMCUImpl<TRawWriter>();
|
|
1796 |
}
|
|
1797 |
|
|
1798 |
void CJpgReadCodec::WriteUnScaledMCU()
|
|
1799 |
{
|
|
1800 |
WriteUnScaledMCUImpl<TRgbWriter>();
|
|
1801 |
}
|
|
1802 |
|
|
1803 |
template <class T>
|
|
1804 |
inline void CJpgReadCodec::WriteUnScaledMCUImpl()
|
|
1805 |
{
|
|
1806 |
ASSERT((iScalingFactor == 1) || (iScalingFactor == -1));
|
|
1807 |
|
|
1808 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1809 |
TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip);
|
|
1810 |
|
|
1811 |
const TInt KYBlockOffset = KJpgDCTBlockWidth - (iFrameInfo.MCUWidthInPixels() * 8);
|
|
1812 |
|
|
1813 |
register const TInt ush = iHorzSampleRatioSh[KUShiftIdx];
|
|
1814 |
register const TInt vsh = iHorzSampleRatioSh[KVShiftIdx];
|
|
1815 |
const TInt16* yComp = iComponent[KYComp]->iCoeff;
|
|
1816 |
const TUVidxElemType* pixIdx = iUVIndeces;
|
|
1817 |
|
|
1818 |
TInt sf = iFrameInfo.MCUHeightInPixels();
|
|
1819 |
do
|
|
1820 |
{
|
|
1821 |
TInt hsf = iMaxHorzSampleFactor;
|
|
1822 |
do
|
|
1823 |
{
|
|
1824 |
const TInt16* const u_base = iComponent[KUComp]->iCoeff + *pixIdx++;
|
|
1825 |
const TInt16* const v_base = iComponent[KVComp]->iCoeff + *pixIdx++;
|
|
1826 |
|
|
1827 |
#if defined(JPEG_OPTIMIZE_FOR_PERFORMCE)
|
|
1828 |
|
|
1829 |
T::WritePixel(writeAddress, *yComp++, u_base[0], v_base[0]);
|
|
1830 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1831 |
|
|
1832 |
register TInt p=1;
|
|
1833 |
|
|
1834 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1835 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1836 |
++p;
|
|
1837 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1838 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1839 |
++p;
|
|
1840 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1841 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1842 |
++p;
|
|
1843 |
|
|
1844 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1845 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1846 |
++p;
|
|
1847 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1848 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1849 |
++p;
|
|
1850 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1851 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1852 |
++p;
|
|
1853 |
T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]);
|
|
1854 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1855 |
#else
|
|
1856 |
|
|
1857 |
register TInt p = 0;
|
|
1858 |
do
|
|
1859 |
{
|
|
1860 |
TInt y = *yComp++;
|
|
1861 |
TInt u = u_base[(p >> ush)];
|
|
1862 |
TInt v = v_base[(p >> vsh)];
|
|
1863 |
|
|
1864 |
T::WritePixel(writeAddress, y, u, v);
|
|
1865 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1866 |
}
|
|
1867 |
while (++p < 8);
|
|
1868 |
#endif
|
|
1869 |
yComp += (KJpgDCTBlockSize - KJpgDCTBlockWidth);
|
|
1870 |
}
|
|
1871 |
while (--hsf);
|
|
1872 |
|
|
1873 |
--sf;
|
|
1874 |
yComp += (sf & (KJpgDCTBlockWidth - 1)) ? KYBlockOffset : -(KJpgDCTBlockSize - KJpgDCTBlockWidth);
|
|
1875 |
writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs);
|
|
1876 |
}
|
|
1877 |
while (sf);
|
|
1878 |
}
|
|
1879 |
|
|
1880 |
void CJpgReadCodec::WriteDiv2ScaledMCU()
|
|
1881 |
{
|
|
1882 |
WriteDiv2ScaledMCUImpl<TRgbWriter>();
|
|
1883 |
}
|
|
1884 |
|
|
1885 |
void CJpgReadCodec::WriteDiv2ScaledMCU16M()
|
|
1886 |
{
|
|
1887 |
WriteDiv2ScaledMCUImpl<TRawWriter>();
|
|
1888 |
}
|
|
1889 |
|
|
1890 |
template <class T>
|
|
1891 |
inline void CJpgReadCodec::WriteDiv2ScaledMCUImpl()
|
|
1892 |
{
|
|
1893 |
ASSERT(iScalingFactor == -2);
|
|
1894 |
|
|
1895 |
const TInt KScalingFactor = 2;
|
|
1896 |
const TInt KYBlockOffset = KJpgDCTBlockWidth -
|
|
1897 |
(iMaxHorzSampleFactor * KJpgDCTBlockSize) +
|
|
1898 |
(KScalingFactor - 1) * KJpgDCTBlockWidth;
|
|
1899 |
|
|
1900 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1901 |
TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip);
|
|
1902 |
|
|
1903 |
const TInt16* yComp = iComponent[KYComp]->iCoeff;
|
|
1904 |
const TUVidxElemType* pixIdx = iUVIndeces;
|
|
1905 |
register const TInt ush = iHorzSampleRatioSh[KUShiftIdx];
|
|
1906 |
register const TInt vsh = iHorzSampleRatioSh[KVShiftIdx];
|
|
1907 |
|
|
1908 |
TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth;
|
|
1909 |
/* Coverity may flag as overrun of array by accessing yComp. This is false positive. Coverity doesn't take into account that
|
|
1910 |
iComponent[KYComp] can point to more than one TDataUnit.
|
|
1911 |
*/
|
|
1912 |
do
|
|
1913 |
{
|
|
1914 |
TInt hsf = iMaxHorzSampleFactor;
|
|
1915 |
do
|
|
1916 |
{
|
|
1917 |
const TInt16* const u_base = iComponent[KUComp]->iCoeff + *pixIdx++;
|
|
1918 |
const TInt16* const v_base = iComponent[KVComp]->iCoeff + *pixIdx++;
|
|
1919 |
|
|
1920 |
T::WritePixel(writeAddress, *yComp, u_base[0], v_base[0]);
|
|
1921 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1922 |
yComp += KScalingFactor;
|
|
1923 |
|
|
1924 |
T::WritePixel(writeAddress, *yComp, u_base[KScalingFactor >> ush], v_base[KScalingFactor >> vsh]);
|
|
1925 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1926 |
yComp += KScalingFactor;
|
|
1927 |
|
|
1928 |
T::WritePixel(writeAddress, *yComp, u_base[2 * KScalingFactor >> ush], v_base[2 * KScalingFactor >> vsh]);
|
|
1929 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1930 |
yComp += KScalingFactor;
|
|
1931 |
|
|
1932 |
T::WritePixel(writeAddress, *yComp, u_base[3 * KScalingFactor >> ush], v_base[3 * KScalingFactor >> vsh]);
|
|
1933 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1934 |
yComp += KScalingFactor + (KJpgDCTBlockSize - KJpgDCTBlockWidth);
|
|
1935 |
}
|
|
1936 |
while (--hsf);
|
|
1937 |
|
|
1938 |
sf -= KScalingFactor;
|
|
1939 |
yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: KScalingFactor*KJpgDCTBlockWidth-KJpgDCTBlockSize;
|
|
1940 |
writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs);
|
|
1941 |
}
|
|
1942 |
while (sf);
|
|
1943 |
}
|
|
1944 |
|
|
1945 |
void CJpgReadCodec::WriteDiv4ScaledMCU()
|
|
1946 |
{
|
|
1947 |
WriteDiv4ScaledMCUImpl<TRgbWriter>();
|
|
1948 |
}
|
|
1949 |
|
|
1950 |
void CJpgReadCodec::WriteDiv4ScaledMCU16M()
|
|
1951 |
{
|
|
1952 |
WriteDiv4ScaledMCUImpl<TRawInlineWriter>();
|
|
1953 |
}
|
|
1954 |
|
|
1955 |
template <class T>
|
|
1956 |
inline void CJpgReadCodec::WriteDiv4ScaledMCUImpl()
|
|
1957 |
{
|
|
1958 |
ASSERT(iScalingFactor == -3);
|
|
1959 |
|
|
1960 |
const TInt KScalingFactor = 4;
|
|
1961 |
const TInt KYBlockOffset = KJpgDCTBlockWidth -
|
|
1962 |
(iMaxHorzSampleFactor * KJpgDCTBlockSize) +
|
|
1963 |
(KScalingFactor - 1) * KJpgDCTBlockWidth;
|
|
1964 |
|
|
1965 |
TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset;
|
|
1966 |
TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip);
|
|
1967 |
|
|
1968 |
const TInt16* yComp = iComponent[KYComp]->iCoeff;
|
|
1969 |
const TUVidxElemType* pixIdx=iUVIndeces;
|
|
1970 |
|
|
1971 |
TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth;
|
|
1972 |
/* Coverity may flag as overrun of array on accessing yComp. This is false positive. Coverity doesn't take into account that
|
|
1973 |
iComponent[KYComp] can point to more than one TDataUnit.
|
|
1974 |
*/
|
|
1975 |
do
|
|
1976 |
{
|
|
1977 |
TInt hsf = iMaxHorzSampleFactor;
|
|
1978 |
do
|
|
1979 |
{
|
|
1980 |
const TInt16* const u_base1 = iComponent[KUComp]->iCoeff + *pixIdx;
|
|
1981 |
pixIdx++;
|
|
1982 |
const TInt16* const v_base1 = iComponent[KVComp]->iCoeff + *pixIdx;
|
|
1983 |
pixIdx++;
|
|
1984 |
|
|
1985 |
T::WritePixel(writeAddress, *yComp, u_base1[0], v_base1[0]);
|
|
1986 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1987 |
yComp += KScalingFactor;
|
|
1988 |
|
|
1989 |
const TInt16 u_base2 = u_base1[*pixIdx];
|
|
1990 |
pixIdx++;
|
|
1991 |
const TInt16 v_base2 = v_base1[*pixIdx];
|
|
1992 |
pixIdx++;
|
|
1993 |
|
|
1994 |
T::WritePixel(writeAddress, *yComp, u_base2, v_base2);
|
|
1995 |
writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement);
|
|
1996 |
yComp += KScalingFactor + (KJpgDCTBlockSize - KJpgDCTBlockWidth);
|
|
1997 |
}
|
|
1998 |
while (--hsf);
|
|
1999 |
|
|
2000 |
sf -= KScalingFactor;
|
|
2001 |
yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: KScalingFactor*KJpgDCTBlockWidth-KJpgDCTBlockSize;
|
|
2002 |
writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs);
|
|
2003 |
}
|
|
2004 |
while (sf);
|
|
2005 |
}
|
|
2006 |
|
|
2007 |
|
|
2008 |
TInt CJpgReadCodec::ComponentIndexL(TInt aComponentId) const
|
|
2009 |
{
|
|
2010 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
2011 |
{
|
|
2012 |
if (iFrameInfo.iComponent[count].iId == aComponentId)
|
|
2013 |
return count;
|
|
2014 |
}
|
|
2015 |
|
|
2016 |
User::Leave(KErrCorrupt);
|
|
2017 |
return 0;
|
|
2018 |
}
|
|
2019 |
|
|
2020 |
void CJpgReadCodec::SetYuvDecode(TBool aYuvDecode)
|
|
2021 |
{
|
|
2022 |
iYuvDecode = aYuvDecode;
|
|
2023 |
}
|
|
2024 |
|
|
2025 |
void CJpgReadCodec::SetHighSpeedMode(TBool aHighSpeedMode)
|
|
2026 |
{
|
|
2027 |
iHighSpeedMode = aHighSpeedMode;
|
|
2028 |
}
|
|
2029 |
|
|
2030 |
TInt CJpgReadCodec::RecommendBufferSizeL(TUid aFormatCode)
|
|
2031 |
{
|
|
2032 |
return CJpgImageFrameProcessorUtility::RecommendedBufferSizeL(iFrameInfo, aFormatCode);
|
|
2033 |
}
|
|
2034 |
|
|
2035 |
void CJpgReadCodec::InitDrawFrame()
|
|
2036 |
{//default implementation do nothing
|
|
2037 |
}
|
|
2038 |
|
|
2039 |
TBool CJpgReadCodec::DrawFrameL()
|
|
2040 |
{//default implementation do nothing
|
|
2041 |
return ETrue;
|
|
2042 |
}
|
|
2043 |
|
|
2044 |
void CJpgReadCodec::CleanupBuffers()
|
|
2045 |
{//default implementation do nothing
|
|
2046 |
}
|
|
2047 |
|
|
2048 |
void CJpgReadCodec::InitFrameHeader(TFrameInfo& aFrameInfo, CFrameImageData& /*aFrameData*/)
|
|
2049 |
{
|
|
2050 |
aFrameInfo.SetCurrentFrameState(TFrameInfo::EFrameInfoProcessingComplete);
|
|
2051 |
}
|
|
2052 |
|
|
2053 |
|
|
2054 |
TInt CJpgReadCodec::MCUBlockPerRgbBuffer() const
|
|
2055 |
{
|
|
2056 |
return iMCUsPerBuffer;
|
|
2057 |
}
|
|
2058 |
|
|
2059 |
TInt CJpgReadCodec::GetHorzMCUCount()
|
|
2060 |
{
|
|
2061 |
TInt maxMCUWidth = KJpgDCTBlockWidth * iMaxHorzSampleFactor;
|
|
2062 |
return (iFrameInfo.iSizeInPixels.iWidth + maxMCUWidth - 1) / maxMCUWidth;
|
|
2063 |
}
|
|
2064 |
|
|
2065 |
TInt CJpgReadCodec::GetVertMCUCount()
|
|
2066 |
{
|
|
2067 |
TInt maxMCUHeight = KJpgDCTBlockWidth * iMaxVertSampleFactor;
|
|
2068 |
return (iFrameInfo.iSizeInPixels.iHeight + maxMCUHeight - 1) / maxMCUHeight;
|
|
2069 |
}
|
|
2070 |
|
|
2071 |
//
|
|
2072 |
// aExtensionManager is not owned.
|
|
2073 |
//
|
|
2074 |
void CJpgReadCodec::SetExtensionManager(CPluginExtensionManager* aExtensionManager)
|
|
2075 |
{
|
|
2076 |
iExtensionManager = aExtensionManager;
|
|
2077 |
}
|
|
2078 |
|
|
2079 |
#if defined(__ARMCC__)
|
|
2080 |
#pragma pop
|
|
2081 |
#endif
|
|
2082 |
|
|
2083 |
#if defined(__ARMCC__)
|
|
2084 |
#pragma push
|
|
2085 |
#pragma thumb
|
|
2086 |
#endif
|
|
2087 |
//
|
|
2088 |
// CSequentialJpgReadCodec
|
|
2089 |
CSequentialJpgReadCodec::CSequentialJpgReadCodec(
|
|
2090 |
const TJpgFrameInfo& aFrameInfo,
|
|
2091 |
const TJpgScanInfo& aScanInfo,
|
|
2092 |
TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],
|
|
2093 |
TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],
|
|
2094 |
const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
2095 |
: CJpgReadCodec(aFrameInfo, aScanInfo),
|
|
2096 |
iDCHuffmanTable(aDCHuffmanTable),
|
|
2097 |
iACHuffmanTable(aACHuffmanTable),
|
|
2098 |
iQTable(aQTable)
|
|
2099 |
{
|
|
2100 |
iProgressive = EFalse;
|
|
2101 |
}
|
|
2102 |
|
|
2103 |
//
|
|
2104 |
//
|
|
2105 |
//
|
|
2106 |
CSequentialJpgReadCodec::~CSequentialJpgReadCodec()
|
|
2107 |
{
|
|
2108 |
delete iMCUStore;
|
|
2109 |
iMCUStore = NULL;
|
|
2110 |
|
|
2111 |
User::Free(iMCULookup);
|
|
2112 |
iMCULookup = NULL;
|
|
2113 |
}
|
|
2114 |
|
|
2115 |
//
|
|
2116 |
//
|
|
2117 |
//
|
|
2118 |
CSequentialJpgReadCodec* CSequentialJpgReadCodec::NewL(
|
|
2119 |
const TJpgFrameInfo& aFrameInfo,
|
|
2120 |
const TJpgScanInfo& aScanInfo,
|
|
2121 |
TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],
|
|
2122 |
TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],
|
|
2123 |
const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
2124 |
{
|
|
2125 |
CSequentialJpgReadCodec* self = new(ELeave) CSequentialJpgReadCodec(
|
|
2126 |
aFrameInfo,
|
|
2127 |
aScanInfo,
|
|
2128 |
aDCHuffmanTable,
|
|
2129 |
aACHuffmanTable,
|
|
2130 |
aQTable);
|
|
2131 |
CleanupStack::PushL(self);
|
|
2132 |
self->ConstructL();
|
|
2133 |
CleanupStack::Pop(self);
|
|
2134 |
return self;
|
|
2135 |
}
|
|
2136 |
|
|
2137 |
//
|
|
2138 |
//
|
|
2139 |
//
|
|
2140 |
void CSequentialJpgReadCodec::ConstructL(TBool aUseCache)
|
|
2141 |
{
|
|
2142 |
CJpgReadCodec::ConstructL();
|
|
2143 |
|
|
2144 |
ASSERT(iMCULookup == NULL);
|
|
2145 |
|
|
2146 |
iTotalMCUCount = iFrameInfo.TotalMCUCount();
|
|
2147 |
|
|
2148 |
// Make sure iFrameInfo has had its members set.
|
|
2149 |
JPEG_ASSERT(iTotalMCUCount >= 1);
|
|
2150 |
|
|
2151 |
iMCUStore = CMCUStore::NewL(iFrameInfo);
|
|
2152 |
|
|
2153 |
// If the allocation of the lookup table fails, continue
|
|
2154 |
// to decode the image as it's not needed for some decodes
|
|
2155 |
// and others should be able to continue without it (with a
|
|
2156 |
// performance hit).
|
|
2157 |
if (aUseCache)
|
|
2158 |
{
|
|
2159 |
JPEG_DEBUG2(" - Cache for %d elements", iTotalMCUCount);
|
|
2160 |
TInt allocSize = iTotalMCUCount * sizeof(TMCUEntry);
|
|
2161 |
iMCULookup = reinterpret_cast<TMCUEntry*>(User::AllocZ(allocSize));
|
|
2162 |
}
|
|
2163 |
}
|
|
2164 |
|
|
2165 |
//
|
|
2166 |
// Nothing is guaranteed to be known about the image structure at this point.
|
|
2167 |
//
|
|
2168 |
void CSequentialJpgReadCodec::PreInitFrameL()
|
|
2169 |
{
|
|
2170 |
CJpgReadCodec::PreInitFrameL();
|
|
2171 |
iMCUStore->Reset();
|
|
2172 |
}
|
|
2173 |
|
|
2174 |
|
|
2175 |
//
|
|
2176 |
// This function is called after the various variants of
|
|
2177 |
// InitFrameL have been called. At this stage enough should
|
|
2178 |
// be known about the image to set several properties.
|
|
2179 |
//
|
|
2180 |
void CSequentialJpgReadCodec::PostInitFrameL()
|
|
2181 |
{
|
|
2182 |
iHorzMCUBlkCount = 0;
|
|
2183 |
iStreamMCU = 0;
|
|
2184 |
iMCUStore->SetMCUsPerBuffer(iMCUsPerBuffer);
|
|
2185 |
iMCUStore->SetOperation(iOperation);
|
|
2186 |
iNeededMCU = iMCUStore->GetNextMCU();
|
|
2187 |
|
|
2188 |
// Make sure iScanInfo isn't used before its members have been set.
|
|
2189 |
JPEG_ASSERT(iScanInfo.iImageOffset > 0);
|
|
2190 |
|
|
2191 |
iCurrentMCUBitOffset = (iScanInfo.iImageOffset * 8);
|
|
2192 |
|
|
2193 |
CJpgReadCodec::PostInitFrameL();
|
|
2194 |
}
|
|
2195 |
|
|
2196 |
//
|
|
2197 |
// This is called by the framework whenever DoProcessL returns EFrameIncompleteRepositionRequest.
|
|
2198 |
// After this function returns the framework should call DoProcessL again.
|
|
2199 |
//
|
|
2200 |
void CSequentialJpgReadCodec::GetNewDataPosition(TInt& aPosition, TInt& /*aLength*/)
|
|
2201 |
{
|
|
2202 |
if (!iMCULookup)
|
|
2203 |
{
|
|
2204 |
// Seek to the start of the image data.
|
|
2205 |
aPosition = iScanInfo.iImageOffset;
|
|
2206 |
iSeekDone = ETrue;
|
|
2207 |
return;
|
|
2208 |
}
|
|
2209 |
|
|
2210 |
if ((iNeededMCU >= 0) && (iNeededMCU < iTotalMCUCount))
|
|
2211 |
{
|
|
2212 |
TMCUEntry& entry = iMCULookup[iNeededMCU];
|
|
2213 |
|
|
2214 |
aPosition = (entry.iPosition >> 3);
|
|
2215 |
iSeekDone = ETrue;
|
|
2216 |
return;
|
|
2217 |
}
|
|
2218 |
|
|
2219 |
// The seek shouldn't have been made if iNeededMCU is outside
|
|
2220 |
// the bounds of the lookup table.
|
|
2221 |
ASSERT(EFalse);
|
|
2222 |
}
|
|
2223 |
|
|
2224 |
#if defined(__ARMCC__)
|
|
2225 |
#pragma pop
|
|
2226 |
#endif
|
|
2227 |
|
|
2228 |
#if defined(__ARMCC__)
|
|
2229 |
// use ARM instruction for performance-critical code
|
|
2230 |
#pragma push
|
|
2231 |
#pragma arm
|
|
2232 |
#pragma O3
|
|
2233 |
#pragma Otime
|
|
2234 |
#endif
|
|
2235 |
//
|
|
2236 |
// This will be called by CJpgReadCodec once enough
|
|
2237 |
// data is available to do correct calculations.
|
|
2238 |
//
|
|
2239 |
void CSequentialJpgReadCodec::CalculateMCUBoundingRectL(TInt aMCUsPerLine)
|
|
2240 |
{
|
|
2241 |
JPEG_DEBUG1("CalculateMCUBoundingRectL()");
|
|
2242 |
|
|
2243 |
ASSERT(iExtensionManager);
|
|
2244 |
|
|
2245 |
JPEG_ASSERT(!iIsBlockStreaming);
|
|
2246 |
JPEG_ASSERT(!iProgressive);
|
|
2247 |
JPEG_ASSERT(aMCUsPerLine > 0);
|
|
2248 |
|
|
2249 |
TRect clipRect;
|
|
2250 |
clipRect = iExtensionManager->ClippingRect();
|
|
2251 |
|
|
2252 |
// This function shouldn't be called by InitFrameL
|
|
2253 |
// if no clipping rect has been set.
|
|
2254 |
JPEG_ASSERT(!clipRect.IsEmpty());
|
|
2255 |
|
|
2256 |
TInt mcuWidthInPixels = iFrameInfo.MCUWidthInPixels();
|
|
2257 |
TInt mcuHeightInPixels = iFrameInfo.MCUHeightInPixels();
|
|
2258 |
JPEG_DEBUG2(" - MCU pixel width: %d", mcuWidthInPixels);
|
|
2259 |
JPEG_DEBUG2(" - MCU pixel height: %d", mcuHeightInPixels);
|
|
2260 |
|
|
2261 |
// The clipping rect is specified in pixels. We need to
|
|
2262 |
// find out which MCUs contain these pixels.
|
|
2263 |
TInt left = clipRect.iTl.iX / mcuWidthInPixels;
|
|
2264 |
TInt top = clipRect.iTl.iY / mcuHeightInPixels;
|
|
2265 |
TInt right = (clipRect.iBr.iX - 1) / mcuWidthInPixels;
|
|
2266 |
TInt bottom = (clipRect.iBr.iY - 1) / mcuHeightInPixels;
|
|
2267 |
|
|
2268 |
TInt firstMCU = (top * aMCUsPerLine) + left;
|
|
2269 |
|
|
2270 |
iMCUClipRect.SetRect(left, top, right + 1, bottom + 1);
|
|
2271 |
|
|
2272 |
iMCUStore->SetClippingRect(firstMCU, iMCUClipRect.Width() * iMCUClipRect.Height());
|
|
2273 |
|
|
2274 |
// Convert back to pixels.
|
|
2275 |
left *= mcuWidthInPixels;
|
|
2276 |
top *= mcuHeightInPixels;
|
|
2277 |
right = (right * mcuWidthInPixels) + mcuWidthInPixels;
|
|
2278 |
bottom = (bottom * mcuHeightInPixels) + mcuHeightInPixels;
|
|
2279 |
|
|
2280 |
iMCUClipRect.SetRect(left, top, right, bottom);
|
|
2281 |
JPEG_DEBUG5("iMCUClipRect: (%d, %d) - (%d x %d)",
|
|
2282 |
iMCUClipRect.iTl.iX,
|
|
2283 |
iMCUClipRect.iTl.iY,
|
|
2284 |
iMCUClipRect.Width(),
|
|
2285 |
iMCUClipRect.Height());
|
|
2286 |
}
|
|
2287 |
|
|
2288 |
//
|
|
2289 |
//
|
|
2290 |
//
|
|
2291 |
void CSequentialJpgReadCodec::CacheMCULocation()
|
|
2292 |
{
|
|
2293 |
JPEG_ASSERT(iStreamMCU >= 0);
|
|
2294 |
JPEG_ASSERT(!iFrameInfo.iMultiScan);
|
|
2295 |
|
|
2296 |
if (!iMCULookup || (iStreamMCU >= iTotalMCUCount))
|
|
2297 |
{
|
|
2298 |
return;
|
|
2299 |
}
|
|
2300 |
|
|
2301 |
TMCUEntry& entry = iMCULookup[iStreamMCU];
|
|
2302 |
|
|
2303 |
if (entry.iPosition != 0)
|
|
2304 |
{
|
|
2305 |
for (TInt i = 0; i < 3; i++)
|
|
2306 |
{
|
|
2307 |
JPEG_ASSERT(entry.iDCPredictor[i] == iDCPredictor[i]);
|
|
2308 |
}
|
|
2309 |
}
|
|
2310 |
else
|
|
2311 |
{
|
|
2312 |
entry.iPosition = iCurrentMCUBitOffset;
|
|
2313 |
if (iEscapeAtEnd)
|
|
2314 |
{
|
|
2315 |
entry.iPosition -= 8; // Go back a byte.
|
|
2316 |
}
|
|
2317 |
|
|
2318 |
entry.iDCPredictor[0] = iDCPredictor[0];
|
|
2319 |
entry.iDCPredictor[1] = iDCPredictor[1];
|
|
2320 |
entry.iDCPredictor[2] = iDCPredictor[2];
|
|
2321 |
entry.iRestartMCUCount = iRestartMCUCount;
|
|
2322 |
}
|
|
2323 |
}
|
|
2324 |
|
|
2325 |
//
|
|
2326 |
//
|
|
2327 |
//
|
|
2328 |
#ifdef JPEG_DEBUG_OUTPUT
|
|
2329 |
void CSequentialJpgReadCodec::DumpCache()
|
|
2330 |
{
|
|
2331 |
JPEG_DEBUG1("CACHE DUMP");
|
|
2332 |
|
|
2333 |
for (TInt i = 0; i < iTotalMCUCount; i++)
|
|
2334 |
{
|
|
2335 |
TMCUEntry& entry = iMCULookup[i];
|
|
2336 |
if (entry.iPosition == 0)
|
|
2337 |
{
|
|
2338 |
return;
|
|
2339 |
}
|
|
2340 |
|
|
2341 |
JPEG_DEBUG7("Entry[%6d] location=%8d; predictors[%4d, %4d, %4d] restart=%d",
|
|
2342 |
i,
|
|
2343 |
entry.iPosition,
|
|
2344 |
entry.iDCPredictor[0],
|
|
2345 |
entry.iDCPredictor[1],
|
|
2346 |
entry.iDCPredictor[2],
|
|
2347 |
entry.iRestartMCUCount);
|
|
2348 |
}
|
|
2349 |
}
|
|
2350 |
#endif
|
|
2351 |
|
|
2352 |
//
|
|
2353 |
// This is called after a seek has been performed.
|
|
2354 |
// It sets everything up so that we're decoding from
|
|
2355 |
// the correct position in the bitstream and does
|
|
2356 |
// some other housekeeping.
|
|
2357 |
//
|
|
2358 |
void CSequentialJpgReadCodec::RestoreAfterSeekL()
|
|
2359 |
{
|
|
2360 |
// Reset the bitstream.
|
|
2361 |
TInt bitOffset = 0;
|
|
2362 |
iBitsLeft = 0;
|
|
2363 |
iBitBufferPtrLimit = 0;
|
|
2364 |
iDataValue = 0;
|
|
2365 |
|
|
2366 |
if (iMCULookup)
|
|
2367 |
{
|
|
2368 |
TMCUEntry& entry = iMCULookup[iNeededMCU];
|
|
2369 |
|
|
2370 |
// Divide entry.iPosition into byte and bit offsets.
|
|
2371 |
bitOffset = (entry.iPosition & 0x07);
|
|
2372 |
|
|
2373 |
// Make sure re-caching will work.
|
|
2374 |
iCurrentMCUBitOffset = entry.iPosition;
|
|
2375 |
iDCPredictor[0] = entry.iDCPredictor[0];
|
|
2376 |
iDCPredictor[1] = entry.iDCPredictor[1];
|
|
2377 |
iDCPredictor[2] = entry.iDCPredictor[2];
|
|
2378 |
iRestartMCUCount = entry.iRestartMCUCount;
|
|
2379 |
|
|
2380 |
iStreamMCU = iNeededMCU;
|
|
2381 |
}
|
|
2382 |
else
|
|
2383 |
{
|
|
2384 |
// The seek was to the start of the image.
|
|
2385 |
iRestartMCUCount = iFrameInfo.iRestartInterval;
|
|
2386 |
iDCPredictor[0] = 0;
|
|
2387 |
iDCPredictor[1] = 0;
|
|
2388 |
iDCPredictor[2] = 0;
|
|
2389 |
iStreamMCU = 0;
|
|
2390 |
iCurrentMCUBitOffset = iScanInfo.iImageOffset * 8;
|
|
2391 |
}
|
|
2392 |
|
|
2393 |
//FetchNext3BytesL();
|
|
2394 |
FillBitBufferL(iBitsLeft);
|
|
2395 |
iBitsLeft -= bitOffset;
|
|
2396 |
iSeekDone = EFalse;
|
|
2397 |
}
|
|
2398 |
|
|
2399 |
|
|
2400 |
//
|
|
2401 |
// Check's if the location of iNeededMCU is known in advance.
|
|
2402 |
//
|
|
2403 |
TBool CSequentialJpgReadCodec::QueryCache()
|
|
2404 |
{
|
|
2405 |
// Prevent an infinite seeking loop.
|
|
2406 |
if (iNeededMCU == iStreamMCU)
|
|
2407 |
{
|
|
2408 |
return EFalse;
|
|
2409 |
}
|
|
2410 |
|
|
2411 |
if (!iMCULookup)
|
|
2412 |
{
|
|
2413 |
if (iNeededMCU < iStreamMCU)
|
|
2414 |
{
|
|
2415 |
// We can seek to the start of the image and start
|
|
2416 |
// decoding again from there.
|
|
2417 |
iDataPtr++;
|
|
2418 |
return ETrue;
|
|
2419 |
}
|
|
2420 |
|
|
2421 |
return EFalse;
|
|
2422 |
}
|
|
2423 |
|
|
2424 |
if ((iNeededMCU < 0) || (iNeededMCU >= iTotalMCUCount))
|
|
2425 |
{
|
|
2426 |
// Out of bounds.
|
|
2427 |
return EFalse;
|
|
2428 |
}
|
|
2429 |
|
|
2430 |
TMCUEntry& entry = iMCULookup[iNeededMCU];
|
|
2431 |
if (entry.iPosition != 0)
|
|
2432 |
{
|
|
2433 |
// This is in order to get the framework to do the seek.
|
|
2434 |
iDataPtr++;
|
|
2435 |
return ETrue;
|
|
2436 |
}
|
|
2437 |
|
|
2438 |
return EFalse;
|
|
2439 |
}
|
|
2440 |
|
|
2441 |
|
|
2442 |
#if defined(__ARMCC__)
|
|
2443 |
#pragma pop
|
|
2444 |
#endif
|
|
2445 |
|
|
2446 |
//
|
|
2447 |
//
|
|
2448 |
//
|
|
2449 |
TFrameState CSequentialJpgReadCodec::DoProcessL()
|
|
2450 |
{
|
|
2451 |
if (iSeekDone)
|
|
2452 |
{
|
|
2453 |
RestoreAfterSeekL();
|
|
2454 |
}
|
|
2455 |
|
|
2456 |
while (iDataPtr < iDataPtrLimit)
|
|
2457 |
{
|
|
2458 |
if (iNeededMCU > iTotalMCUCount)
|
|
2459 |
{
|
|
2460 |
JPEG_LEAVE(KErrOverflow, "iNeededMCU is out of bounds");
|
|
2461 |
}
|
|
2462 |
|
|
2463 |
// See if we're done.
|
|
2464 |
if (iNeededMCU == KErrCompletion)
|
|
2465 |
{
|
|
2466 |
return EFrameComplete;
|
|
2467 |
}
|
|
2468 |
else if (QueryCache())
|
|
2469 |
{
|
|
2470 |
return EFrameIncompleteRepositionRequest;
|
|
2471 |
}
|
|
2472 |
|
|
2473 |
StoreState();
|
|
2474 |
if (iRestartMCUCount == 0)
|
|
2475 |
{
|
|
2476 |
TInt skipped = RestartStateL();
|
|
2477 |
iCurrentMCUBitOffset += (skipped * 8);
|
|
2478 |
}
|
|
2479 |
|
|
2480 |
CacheMCULocation();
|
|
2481 |
|
|
2482 |
TInt error = KErrNone;
|
|
2483 |
TInt mcuBitSize = 0;
|
|
2484 |
// we do that "if" in order to bypass exception handling which can
|
|
2485 |
// affect performance of the decoder
|
|
2486 |
if (iPreviousDataLeft < KMCUDataLeftThreshhold)
|
|
2487 |
{
|
|
2488 |
const TUint8* const latestDataPtr = iDataPtr;
|
|
2489 |
TRAP(error, mcuBitSize = ProcessMCUL());
|
|
2490 |
|
|
2491 |
// leave if it wasn't a partial MCU
|
|
2492 |
if ((error != KErrNone) &&
|
|
2493 |
(error != KErrEof ||
|
|
2494 |
latestDataPtr == iDataPtr ||
|
|
2495 |
(latestDataPtr + sizeof(TUint16) <= iDataPtrLimit &&
|
|
2496 |
PtrReadUtil::ReadBigEndianUint16(latestDataPtr) == KJpgEOISignature)))
|
|
2497 |
{
|
|
2498 |
User::Leave(error);
|
|
2499 |
}
|
|
2500 |
}
|
|
2501 |
else
|
|
2502 |
{
|
|
2503 |
mcuBitSize = ProcessMCUL();
|
|
2504 |
}
|
|
2505 |
|
|
2506 |
iCurrentMCUBitOffset += mcuBitSize;
|
|
2507 |
|
|
2508 |
// we would try to render the partially decoded MCU
|
|
2509 |
// in case if there is a partial MCU/incompelete image
|
|
2510 |
// and do leave with original error code later
|
|
2511 |
if (iStreamMCU == iNeededMCU)
|
|
2512 |
{
|
|
2513 |
if (iIsBlockStreaming &&
|
|
2514 |
(iNavigation == TDecodeStreamCaps::ENavigationRandomForward ||
|
|
2515 |
iNavigation == TDecodeStreamCaps::ENavigationRandomBackwards) &&
|
|
2516 |
iStreamMCU < iStreamDecodeConfig.iSeqPosition)
|
|
2517 |
{
|
|
2518 |
iNeededMCU = iMCUStore->GetNextMCU();
|
|
2519 |
}
|
|
2520 |
else
|
|
2521 |
{
|
|
2522 |
PostProcessMCUL(error != KErrNone);
|
|
2523 |
|
|
2524 |
User::LeaveIfError(error);
|
|
2525 |
|
|
2526 |
if (iIsBlockStreaming)
|
|
2527 |
{
|
|
2528 |
iNeededMCU++;
|
|
2529 |
if (EBlockComplete == ProcessStreaming())
|
|
2530 |
{
|
|
2531 |
iStreamMCU++;
|
|
2532 |
iRestartMCUCount--;
|
|
2533 |
return EBlockComplete;
|
|
2534 |
}
|
|
2535 |
}
|
|
2536 |
else
|
|
2537 |
{
|
|
2538 |
iNeededMCU = iMCUStore->GetNextMCU();
|
|
2539 |
}
|
|
2540 |
}
|
|
2541 |
}
|
|
2542 |
|
|
2543 |
iStreamMCU++;
|
|
2544 |
iRestartMCUCount--;
|
|
2545 |
|
|
2546 |
TInt dataLeft = iDataPtrLimit - iDataPtr;
|
|
2547 |
if (dataLeft < KMCUDataLeftThreshhold)
|
|
2548 |
{
|
|
2549 |
TBool needLeave = (iPreviousDataLeft > dataLeft);
|
|
2550 |
iPreviousDataLeft = dataLeft;
|
|
2551 |
if (needLeave)
|
|
2552 |
{
|
|
2553 |
StoreState();
|
|
2554 |
User::Leave(KErrCompletion);
|
|
2555 |
}
|
|
2556 |
}
|
|
2557 |
}
|
|
2558 |
|
|
2559 |
return EFrameIncomplete;
|
|
2560 |
}
|
|
2561 |
|
|
2562 |
TFrameState CSequentialJpgReadCodec::ProcessStreaming()
|
|
2563 |
{
|
|
2564 |
if(iNavigation == TDecodeStreamCaps::ENavigationSequentialForward)
|
|
2565 |
{
|
|
2566 |
if(iTotalMCUCount > iNeededMCU)
|
|
2567 |
{
|
|
2568 |
*(iStreamDecodeConfig.iHaveMoreBlocks) = ETrue;
|
|
2569 |
}
|
|
2570 |
else
|
|
2571 |
{
|
|
2572 |
*(iStreamDecodeConfig.iHaveMoreBlocks) = EFalse;
|
|
2573 |
}
|
|
2574 |
}
|
|
2575 |
|
|
2576 |
*(iStreamDecodeConfig.iNumBlocksRead) += 1;
|
|
2577 |
|
|
2578 |
if(*(iStreamDecodeConfig.iNumBlocksRead) >= iStreamDecodeConfig.iNumBlocksToGet)
|
|
2579 |
{
|
|
2580 |
return EBlockComplete;
|
|
2581 |
}
|
|
2582 |
else
|
|
2583 |
{
|
|
2584 |
return EFrameIncomplete;
|
|
2585 |
}
|
|
2586 |
}
|
|
2587 |
|
|
2588 |
//
|
|
2589 |
// This functions turns the MCU data into pixel data.
|
|
2590 |
// The pixel data is written into an intermediate buffer,
|
|
2591 |
// iRgbBuffer, by WriteMCU() and then if this intermediate
|
|
2592 |
// buffer is full this is copied to the output bitmap by
|
|
2593 |
// SetPixelBlock().
|
|
2594 |
//
|
|
2595 |
void CSequentialJpgReadCodec::PostProcessMCUL(TBool aForceBufferFlush)
|
|
2596 |
{
|
|
2597 |
if (!iImageFrameCodecPtr)
|
|
2598 |
{
|
|
2599 |
TBool copyIt = aForceBufferFlush;
|
|
2600 |
|
|
2601 |
WriteMCU();
|
|
2602 |
iHorzMCUBlkCount++;
|
|
2603 |
|
|
2604 |
// Only copy the buffer if we have rendered a row of MCUs or are forced to.
|
|
2605 |
copyIt |= (iHorzMCUBlkCount == iMCUsPerBuffer);
|
|
2606 |
if (copyIt)
|
|
2607 |
{
|
|
2608 |
CImageProcessor* proc = ImageProcessor();
|
|
2609 |
ASSERT(proc != NULL);
|
|
2610 |
proc->SetPixelBlock(iRgbBuffer);
|
|
2611 |
iMCUStore->NextLine();
|
|
2612 |
iHorzMCUBlkCount = 0;
|
|
2613 |
}
|
|
2614 |
}
|
|
2615 |
else
|
|
2616 |
{
|
|
2617 |
RArray<const TDataUnit*> dataUnits;
|
|
2618 |
CleanupClosePushL(dataUnits);
|
|
2619 |
for(TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++)
|
|
2620 |
{
|
|
2621 |
TDataUnit* compPtr = iComponent[i];
|
|
2622 |
TInt numSamples = iMCUDataUnitCount[i];
|
|
2623 |
while (numSamples > 0)
|
|
2624 |
{
|
|
2625 |
numSamples--;
|
|
2626 |
User::LeaveIfError(dataUnits.Append(compPtr++));
|
|
2627 |
}
|
|
2628 |
}
|
|
2629 |
iImageFrameCodecPtr->ProcessL(dataUnits);
|
|
2630 |
CleanupStack::PopAndDestroy(1, &dataUnits);
|
|
2631 |
}
|
|
2632 |
}
|
|
2633 |
|
|
2634 |
|
|
2635 |
TInt CSequentialJpgReadCodec::ProcessMCUL()
|
|
2636 |
{
|
|
2637 |
TDataUnit temp;
|
|
2638 |
TInt numValues;
|
|
2639 |
TInt bitsBefore = iBitsLeft;
|
|
2640 |
const TUint8* startPtr = iDataPtr;
|
|
2641 |
|
|
2642 |
iEscapeAtEnd = EFalse;
|
|
2643 |
for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++)
|
|
2644 |
{
|
|
2645 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[i];
|
|
2646 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
2647 |
TJpgFrameInfo::TComponentInfo& compInfo = iFrameInfo.iComponent[compIndex];
|
|
2648 |
const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable];
|
|
2649 |
const TDecHuffmanTable& acTable = iACHuffmanTable[scanInfo.iACCodingTable];
|
|
2650 |
const TQTable& qTable = iQTable[compInfo.iQTable];
|
|
2651 |
TDataUnit* compPtr = iComponent[compIndex];
|
|
2652 |
if (compPtr==NULL)
|
|
2653 |
{
|
|
2654 |
compPtr = &temp; // we'd throw it away in case of Mono mode
|
|
2655 |
}
|
|
2656 |
TInt numSamples = iMCUDataUnitCount[compIndex];
|
|
2657 |
|
|
2658 |
while (numSamples > 0)
|
|
2659 |
{
|
|
2660 |
GetComponentBlockL(*compPtr, numValues, iDCPredictor[compIndex], dcTable, acTable);
|
|
2661 |
if (compIndex == 0 || !iMonochrome)
|
|
2662 |
{
|
|
2663 |
(qTable.*iCompConf[compIndex].iDequantFunc)(temp, *compPtr, numValues);
|
|
2664 |
iCompConf[compIndex].iDCT->InverseTransform(*compPtr, temp);
|
|
2665 |
compPtr++;
|
|
2666 |
}
|
|
2667 |
numSamples--;
|
|
2668 |
}
|
|
2669 |
}
|
|
2670 |
|
|
2671 |
if (iRestartMCUCount == 1)
|
|
2672 |
{
|
|
2673 |
iBitsLeft = 0;
|
|
2674 |
}
|
|
2675 |
else
|
|
2676 |
{
|
|
2677 |
iEscapeAtEnd = ((iDataValue & 0xFF) == 0xFF);
|
|
2678 |
}
|
|
2679 |
|
|
2680 |
TInt bytesRead = iDataPtr - startPtr;
|
|
2681 |
return bitsBefore + (bytesRead * 8) - iBitsLeft;
|
|
2682 |
}
|
|
2683 |
|
|
2684 |
|
|
2685 |
#if defined(__ARMCC__)
|
|
2686 |
// use ARM instruction for performance-critical code
|
|
2687 |
#pragma push
|
|
2688 |
#pragma thumb
|
|
2689 |
#endif
|
|
2690 |
|
|
2691 |
// CProgressiveJpgReadCodec
|
|
2692 |
CProgressiveJpgReadCodec::CProgressiveJpgReadCodec(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo,const TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],const TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
2693 |
: CJpgReadCodec(aFrameInfo,aScanInfo),
|
|
2694 |
iOriginalFrameInfo(aFrameInfo),
|
|
2695 |
iOriginalScanInfo(aScanInfo)
|
|
2696 |
{
|
|
2697 |
iProgressive = ETrue;
|
|
2698 |
Mem::Copy(iDCHuffmanTable,aDCHuffmanTable,sizeof(TDecHuffmanTable) * KJpgMaxNumberOfTables);
|
|
2699 |
Mem::Copy(iACHuffmanTable,aACHuffmanTable,sizeof(TDecHuffmanTable) * KJpgMaxNumberOfTables);
|
|
2700 |
Mem::Copy(iQTable,aQTable,sizeof(TQTable) * KJpgMaxNumberOfTables);
|
|
2701 |
}
|
|
2702 |
|
|
2703 |
CProgressiveJpgReadCodec* CProgressiveJpgReadCodec::NewL(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo,const TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],const TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
2704 |
{
|
|
2705 |
CProgressiveJpgReadCodec* self = new(ELeave) CProgressiveJpgReadCodec(aFrameInfo, aScanInfo, aDCHuffmanTable, aACHuffmanTable, aQTable);
|
|
2706 |
CleanupStack::PushL(self);
|
|
2707 |
self->ConstructL();
|
|
2708 |
CleanupStack::Pop(self);
|
|
2709 |
return self;
|
|
2710 |
}
|
|
2711 |
|
|
2712 |
CProgressiveJpgReadCodec::~CProgressiveJpgReadCodec()
|
|
2713 |
{
|
|
2714 |
CleanupBuffers();
|
|
2715 |
}
|
|
2716 |
|
|
2717 |
void CProgressiveJpgReadCodec::DoInitFrameL()
|
|
2718 |
{
|
|
2719 |
iFrameInfo = iOriginalFrameInfo;
|
|
2720 |
iScanInfo = iOriginalScanInfo;
|
|
2721 |
|
|
2722 |
TInt maxMCUWidth = KJpgDCTBlockWidth * iMaxHorzSampleFactor;
|
|
2723 |
TInt maxMCUHeight = KJpgDCTBlockWidth * iMaxVertSampleFactor;
|
|
2724 |
iHorzMCUCount = (iFrameInfo.iSizeInPixels.iWidth + maxMCUWidth - 1) / maxMCUWidth;
|
|
2725 |
iVertMCUCount = (iFrameInfo.iSizeInPixels.iHeight + maxMCUHeight - 1) / maxMCUHeight;
|
|
2726 |
iTotalMCUCount = iHorzMCUCount * iVertMCUCount;
|
|
2727 |
iCurrentMCUCount = 0;
|
|
2728 |
iCurrentMCUHorzCount = 0;
|
|
2729 |
iCurrentMCUVertCount = 0;
|
|
2730 |
iMCUChunkAllocated = EFalse;
|
|
2731 |
|
|
2732 |
// We calculate how many data units we'll need in total
|
|
2733 |
TInt totalDataUnitCount = 0;
|
|
2734 |
for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++)
|
|
2735 |
{
|
|
2736 |
totalDataUnitCount += iMCUDataUnitCount[compIndex] * iTotalMCUCount;
|
|
2737 |
}
|
|
2738 |
|
|
2739 |
TUint8* offset = NULL;
|
|
2740 |
if(totalDataUnitCount > KMCUMaxTotalDataUnits)
|
|
2741 |
{
|
|
2742 |
iMCUChunk.Close();
|
|
2743 |
User::LeaveIfError(iMCUChunk.CreateLocal(totalDataUnitCount * sizeof(TDataUnit), totalDataUnitCount * sizeof(TDataUnit)));
|
|
2744 |
offset = iMCUChunk.Base();
|
|
2745 |
iMCUChunkAllocated = ETrue;
|
|
2746 |
}
|
|
2747 |
else
|
|
2748 |
{
|
|
2749 |
delete iMCUMemoryBuffer;
|
|
2750 |
iMCUMemoryBuffer = NULL;
|
|
2751 |
iMCUMemoryBuffer = new (ELeave) TUint8 [ totalDataUnitCount * sizeof(TDataUnit) ];
|
|
2752 |
offset = iMCUMemoryBuffer;
|
|
2753 |
}
|
|
2754 |
|
|
2755 |
|
|
2756 |
for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++)
|
|
2757 |
{
|
|
2758 |
TInt dataUnitCount = iMCUDataUnitCount[compIndex] * iTotalMCUCount;
|
|
2759 |
|
|
2760 |
iMCUBuffer[compIndex] = new(offset) TDataUnit[dataUnitCount];
|
|
2761 |
offset += dataUnitCount * sizeof(TDataUnit);
|
|
2762 |
|
|
2763 |
Mem::FillZ(iMCUBuffer[compIndex],dataUnitCount * sizeof(TDataUnit));
|
|
2764 |
iMCUBufferPtr[compIndex] = iMCUBuffer[compIndex];
|
|
2765 |
iMCUBufferPtrLimit[compIndex] = iMCUBuffer[compIndex] + dataUnitCount;
|
|
2766 |
|
|
2767 |
iIndividualHorzMCUCount[compIndex] = ((iFrameInfo.iSizeInPixels.iWidth*iHorzSampleFactor[compIndex]) + maxMCUWidth - 1) / maxMCUWidth;
|
|
2768 |
iIndividualVertMCUCount[compIndex] = ((iFrameInfo.iSizeInPixels.iHeight*iVertSampleFactor[compIndex]) + maxMCUHeight - 1) / maxMCUHeight;
|
|
2769 |
}
|
|
2770 |
|
|
2771 |
iProcessing = ETrue;
|
|
2772 |
iRefinedDCValue = 0;
|
|
2773 |
}
|
|
2774 |
|
|
2775 |
//
|
|
2776 |
// Progressive supports scaling and normal decode only.
|
|
2777 |
//
|
|
2778 |
void CProgressiveJpgReadCodec::PreInitFrameL()
|
|
2779 |
{
|
|
2780 |
CJpgReadCodec::PreInitFrameL();
|
|
2781 |
|
|
2782 |
if (iOperation != EDecodeNormal)
|
|
2783 |
{
|
|
2784 |
JPEG_LEAVE(KErrNotSupported, "No operations on Progressive");
|
|
2785 |
}
|
|
2786 |
|
|
2787 |
if (iUseClipRect)
|
|
2788 |
{
|
|
2789 |
JPEG_LEAVE(KErrNotSupported, "No clipping on Progressive");
|
|
2790 |
}
|
|
2791 |
}
|
|
2792 |
|
|
2793 |
void CProgressiveJpgReadCodec::InitFrameL(TFrameInfo& aFrameInfo, CFrameImageData& aFrameImageData, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* aFrameMask)
|
|
2794 |
{
|
|
2795 |
CJpgReadCodec::InitFrameL(aFrameInfo, aFrameImageData, aDisableErrorDiffusion, aFrame, aFrameMask);
|
|
2796 |
|
|
2797 |
ClearBitmapL(aFrame, KRgbWhite); // clear bitmap so sensibly draw partial decodes
|
|
2798 |
|
|
2799 |
DoInitFrameL();
|
|
2800 |
}
|
|
2801 |
|
|
2802 |
void CProgressiveJpgReadCodec::InitFrameL(CImageFrame& aFrame)
|
|
2803 |
{
|
|
2804 |
CJpgReadCodec::InitFrameL(aFrame);
|
|
2805 |
|
|
2806 |
DoInitFrameL();
|
|
2807 |
}
|
|
2808 |
|
|
2809 |
#if defined(__ARMCC__)
|
|
2810 |
#pragma pop
|
|
2811 |
#endif
|
|
2812 |
|
|
2813 |
TFrameState CProgressiveJpgReadCodec::DoProcessL()
|
|
2814 |
{
|
|
2815 |
FOREVER
|
|
2816 |
{
|
|
2817 |
if (iProcessing)
|
|
2818 |
ProcessFrameL();
|
|
2819 |
else
|
|
2820 |
{
|
|
2821 |
StoreState();
|
|
2822 |
TInt dataRemaining = iDataPtrLimit - iDataPtr;
|
|
2823 |
if (dataRemaining < 2)
|
|
2824 |
return EFrameIncomplete;
|
|
2825 |
|
|
2826 |
TInt sig = (iDataPtr[0] << 8) | iDataPtr[1];
|
|
2827 |
switch (sig)
|
|
2828 |
{
|
|
2829 |
case KJpgDHTSignature:
|
|
2830 |
LoadHuffmanTableL();
|
|
2831 |
break;
|
|
2832 |
case KJpgDQTSignature:
|
|
2833 |
break;
|
|
2834 |
case KJpgSOSSignature:
|
|
2835 |
LoadSOSL();
|
|
2836 |
iProcessing = ETrue;
|
|
2837 |
break;
|
|
2838 |
case KJpgRestartIntervalSignature:
|
|
2839 |
LoadRestartIntervalL();
|
|
2840 |
break;
|
|
2841 |
case KJpgEOISignature:
|
|
2842 |
iDataPtr += 2;
|
|
2843 |
return EFrameComplete;
|
|
2844 |
default:
|
|
2845 |
#if defined(RELAX_JPEG_STRICTNESS)
|
|
2846 |
iDataPtr += 1;
|
|
2847 |
dataRemaining = iDataPtrLimit - iDataPtr;
|
|
2848 |
if (dataRemaining < 2)
|
|
2849 |
{
|
|
2850 |
return EFrameIncomplete;
|
|
2851 |
}
|
|
2852 |
#else
|
|
2853 |
User::Leave(KErrCorrupt);
|
|
2854 |
#endif
|
|
2855 |
break;
|
|
2856 |
}
|
|
2857 |
}
|
|
2858 |
}
|
|
2859 |
}
|
|
2860 |
|
|
2861 |
void CProgressiveJpgReadCodec::ProcessFrameL()
|
|
2862 |
{
|
|
2863 |
if (iScanInfo.iEndSpectralSelection == 0)
|
|
2864 |
{
|
|
2865 |
if (iScanInfo.iSuccessiveApproximationBitsHigh == 0)
|
|
2866 |
InitDCL();
|
|
2867 |
else
|
|
2868 |
RefineDCL();
|
|
2869 |
}
|
|
2870 |
else
|
|
2871 |
{
|
|
2872 |
if (iScanInfo.iSuccessiveApproximationBitsHigh == 0)
|
|
2873 |
InitACL();
|
|
2874 |
else
|
|
2875 |
RefineACL();
|
|
2876 |
}
|
|
2877 |
}
|
|
2878 |
|
|
2879 |
void CProgressiveJpgReadCodec::InitDCL()
|
|
2880 |
{
|
|
2881 |
if(iScanInfo.iNumberOfComponents == 1)
|
|
2882 |
{ //Non interleaved scan
|
|
2883 |
for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++)
|
|
2884 |
{
|
|
2885 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex];
|
|
2886 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
2887 |
const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable];
|
|
2888 |
TInt& dcPredictor = iDCPredictor[compIndex];
|
|
2889 |
TInt dataUnitCount = iMCUDataUnitCount[compIndex];
|
|
2890 |
|
|
2891 |
TInt horzSamples = iHorzSampleFactor[compIndex];
|
|
2892 |
TInt vertSamples = iVertSampleFactor[compIndex];
|
|
2893 |
TDataUnit* dataUnit = iMCUBuffer[compIndex];
|
|
2894 |
for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++)
|
|
2895 |
{
|
|
2896 |
TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount;
|
|
2897 |
TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples;
|
|
2898 |
for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++)
|
|
2899 |
{
|
|
2900 |
StoreState();
|
|
2901 |
if (iRestartMCUCount == 0)
|
|
2902 |
RestartStateL();
|
|
2903 |
|
|
2904 |
TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples);
|
|
2905 |
TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples);
|
|
2906 |
|
|
2907 |
GetDCValueL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],dcTable,dcPredictor);
|
|
2908 |
|
|
2909 |
iRestartMCUCount--;
|
|
2910 |
}
|
|
2911 |
|
|
2912 |
iCurrentMCUHorzCount = 0;
|
|
2913 |
}
|
|
2914 |
iCurrentMCUVertCount = 0;
|
|
2915 |
}
|
|
2916 |
}
|
|
2917 |
else
|
|
2918 |
{ // Interleaved scan
|
|
2919 |
for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++)
|
|
2920 |
{
|
|
2921 |
StoreState();
|
|
2922 |
if (iRestartMCUCount == 0)
|
|
2923 |
RestartStateL();
|
|
2924 |
|
|
2925 |
for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++)
|
|
2926 |
{
|
|
2927 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex];
|
|
2928 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
2929 |
const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable];
|
|
2930 |
TInt& dcPredictor = iDCPredictor[compIndex];
|
|
2931 |
TDataUnit* tempMCUBufferPtr = iMCUBufferPtr[compIndex];
|
|
2932 |
|
|
2933 |
for (TInt count = iMCUDataUnitCount[compIndex]; count > 0; count--)
|
|
2934 |
{
|
|
2935 |
GetDCValueL(*tempMCUBufferPtr,dcTable,dcPredictor);
|
|
2936 |
tempMCUBufferPtr++;
|
|
2937 |
}
|
|
2938 |
}
|
|
2939 |
|
|
2940 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
2941 |
iMCUBufferPtr[count] += iMCUDataUnitCount[count];
|
|
2942 |
|
|
2943 |
iRestartMCUCount--;
|
|
2944 |
}
|
|
2945 |
}
|
|
2946 |
|
|
2947 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
2948 |
iMCUBufferPtr[count] = iMCUBuffer[count];
|
|
2949 |
|
|
2950 |
ResetState();
|
|
2951 |
iCurrentMCUCount = 0;
|
|
2952 |
iProcessing = EFalse;
|
|
2953 |
}
|
|
2954 |
|
|
2955 |
void CProgressiveJpgReadCodec::RefineDCL()
|
|
2956 |
{
|
|
2957 |
for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++)
|
|
2958 |
{
|
|
2959 |
StoreState();
|
|
2960 |
if (iRestartMCUCount == 0)
|
|
2961 |
RestartStateL();
|
|
2962 |
|
|
2963 |
for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++)
|
|
2964 |
{
|
|
2965 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex];
|
|
2966 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
2967 |
TDataUnit* tempMCUBufferPtr = iMCUBufferPtr[compIndex];
|
|
2968 |
|
|
2969 |
for (TInt count = iMCUDataUnitCount[compIndex]; count > 0; count--)
|
|
2970 |
{
|
|
2971 |
if (NextBitL())
|
|
2972 |
tempMCUBufferPtr->iCoeff[0] |= iRefinedDCValue;
|
|
2973 |
tempMCUBufferPtr++;
|
|
2974 |
}
|
|
2975 |
}
|
|
2976 |
|
|
2977 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
2978 |
iMCUBufferPtr[count] += iMCUDataUnitCount[count];
|
|
2979 |
|
|
2980 |
iRestartMCUCount--;
|
|
2981 |
}
|
|
2982 |
|
|
2983 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
2984 |
iMCUBufferPtr[count] = iMCUBuffer[count];
|
|
2985 |
|
|
2986 |
ResetState();
|
|
2987 |
iCurrentMCUCount = 0;
|
|
2988 |
iProcessing = EFalse;
|
|
2989 |
}
|
|
2990 |
|
|
2991 |
void CProgressiveJpgReadCodec::InitACL()
|
|
2992 |
{
|
|
2993 |
if (iScanInfo.iNumberOfComponents > 1)
|
|
2994 |
User::Leave(KErrCorrupt);
|
|
2995 |
|
|
2996 |
TInt compIndex = ComponentIndexL(iScanInfo.iComponent[0].iId);
|
|
2997 |
const TDecHuffmanTable& acTable = iACHuffmanTable[iScanInfo.iComponent[0].iACCodingTable];
|
|
2998 |
TInt dataUnitCount = iMCUDataUnitCount[compIndex];
|
|
2999 |
|
|
3000 |
if (dataUnitCount == 1)
|
|
3001 |
{
|
|
3002 |
for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++)
|
|
3003 |
{
|
|
3004 |
StoreState();
|
|
3005 |
if (iRestartMCUCount == 0)
|
|
3006 |
RestartStateL();
|
|
3007 |
|
|
3008 |
if (iSkipCount == 0)
|
|
3009 |
iSkipCount = GetACValuesL(*iMCUBufferPtr[compIndex],acTable);
|
|
3010 |
else
|
|
3011 |
iSkipCount--;
|
|
3012 |
|
|
3013 |
iMCUBufferPtr[compIndex]++;
|
|
3014 |
iRestartMCUCount--;
|
|
3015 |
}
|
|
3016 |
|
|
3017 |
iCurrentMCUCount = 0;
|
|
3018 |
}
|
|
3019 |
else
|
|
3020 |
{
|
|
3021 |
TInt horzSamples = iHorzSampleFactor[compIndex];
|
|
3022 |
TInt vertSamples = iVertSampleFactor[compIndex];
|
|
3023 |
TDataUnit* dataUnit = iMCUBuffer[compIndex];
|
|
3024 |
for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++)
|
|
3025 |
{
|
|
3026 |
TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount;
|
|
3027 |
TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples;
|
|
3028 |
for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++)
|
|
3029 |
{
|
|
3030 |
StoreState();
|
|
3031 |
if (iRestartMCUCount == 0)
|
|
3032 |
RestartStateL();
|
|
3033 |
|
|
3034 |
if (iSkipCount == 0)
|
|
3035 |
{
|
|
3036 |
TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples);
|
|
3037 |
TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples);
|
|
3038 |
iSkipCount = GetACValuesL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],acTable);
|
|
3039 |
}
|
|
3040 |
else
|
|
3041 |
iSkipCount--;
|
|
3042 |
|
|
3043 |
iRestartMCUCount--;
|
|
3044 |
}
|
|
3045 |
|
|
3046 |
iCurrentMCUHorzCount = 0;
|
|
3047 |
}
|
|
3048 |
iCurrentMCUVertCount = 0;
|
|
3049 |
}
|
|
3050 |
|
|
3051 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
3052 |
iMCUBufferPtr[count] = iMCUBuffer[count];
|
|
3053 |
|
|
3054 |
iSkipCount = 0;
|
|
3055 |
ResetState();
|
|
3056 |
iProcessing = EFalse;
|
|
3057 |
}
|
|
3058 |
|
|
3059 |
void CProgressiveJpgReadCodec::RefineACL()
|
|
3060 |
{
|
|
3061 |
if (iScanInfo.iNumberOfComponents > 1)
|
|
3062 |
User::Leave(KErrCorrupt);
|
|
3063 |
|
|
3064 |
TInt compIndex = ComponentIndexL(iScanInfo.iComponent[0].iId);
|
|
3065 |
const TDecHuffmanTable& acTable = iACHuffmanTable[iScanInfo.iComponent[0].iACCodingTable];
|
|
3066 |
TInt dataUnitCount = iMCUDataUnitCount[compIndex];
|
|
3067 |
if (dataUnitCount == 1)
|
|
3068 |
{
|
|
3069 |
for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++)
|
|
3070 |
{
|
|
3071 |
StoreState();
|
|
3072 |
if (iRestartMCUCount == 0)
|
|
3073 |
RestartStateL();
|
|
3074 |
|
|
3075 |
RefineACValuesL(*iMCUBufferPtr[compIndex],acTable);
|
|
3076 |
iMCUBufferPtr[compIndex]++;
|
|
3077 |
|
|
3078 |
iRestartMCUCount--;
|
|
3079 |
}
|
|
3080 |
|
|
3081 |
iCurrentMCUCount = 0;
|
|
3082 |
}
|
|
3083 |
else
|
|
3084 |
{
|
|
3085 |
TInt horzSamples = iHorzSampleFactor[compIndex];
|
|
3086 |
TInt vertSamples = iVertSampleFactor[compIndex];
|
|
3087 |
TDataUnit* dataUnit = iMCUBuffer[compIndex];
|
|
3088 |
for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++)
|
|
3089 |
{
|
|
3090 |
TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount;
|
|
3091 |
TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples;
|
|
3092 |
for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++)
|
|
3093 |
{
|
|
3094 |
StoreState();
|
|
3095 |
if (iRestartMCUCount == 0)
|
|
3096 |
RestartStateL();
|
|
3097 |
|
|
3098 |
TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples);
|
|
3099 |
TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples);
|
|
3100 |
RefineACValuesL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],acTable);
|
|
3101 |
|
|
3102 |
iRestartMCUCount--;
|
|
3103 |
}
|
|
3104 |
|
|
3105 |
iCurrentMCUHorzCount = 0;
|
|
3106 |
}
|
|
3107 |
iCurrentMCUVertCount = 0;
|
|
3108 |
}
|
|
3109 |
|
|
3110 |
for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++)
|
|
3111 |
iMCUBufferPtr[count] = iMCUBuffer[count];
|
|
3112 |
|
|
3113 |
ResetState();
|
|
3114 |
iProcessing = EFalse;
|
|
3115 |
}
|
|
3116 |
|
|
3117 |
void CProgressiveJpgReadCodec::InitDrawFrame()
|
|
3118 |
{
|
|
3119 |
iCurrentDrawMCU = 0;
|
|
3120 |
TInt numberOfComponents = iMonochrome ? 1 : iFrameInfo.iNumberOfComponents;
|
|
3121 |
for (TInt count = 0; count < numberOfComponents; count++)
|
|
3122 |
{
|
|
3123 |
iDrawMCUPtr[count] = iMCUBuffer[count];
|
|
3124 |
}
|
|
3125 |
|
|
3126 |
if (!iImageFrameCodecPtr)
|
|
3127 |
{
|
|
3128 |
CImageProcessor* const imageProc = ImageProcessor();
|
|
3129 |
imageProc->SetPos(TPoint(0,0));
|
|
3130 |
}
|
|
3131 |
}
|
|
3132 |
|
|
3133 |
TBool CProgressiveJpgReadCodec::DrawFrameL()
|
|
3134 |
{
|
|
3135 |
TInt numberOfComponents = iMonochrome ? 1 : iFrameInfo.iNumberOfComponents;
|
|
3136 |
|
|
3137 |
TDataUnit dataUnit;
|
|
3138 |
CImageProcessor* const imageProc = ImageProcessor();
|
|
3139 |
|
|
3140 |
const TInt drawMCULimit = Min(iCurrentDrawMCU + KMaxMCUPerDraw, iTotalMCUCount);
|
|
3141 |
|
|
3142 |
while (iCurrentDrawMCU < drawMCULimit)
|
|
3143 |
{
|
|
3144 |
for (TInt compIndex = 0; compIndex < numberOfComponents; compIndex++)
|
|
3145 |
{
|
|
3146 |
TQTable& qTable = iQTable[iFrameInfo.iComponent[compIndex].iQTable];
|
|
3147 |
TDataUnit* compPtr = iComponent[compIndex];
|
|
3148 |
for (TInt dataUnitCount = iMCUDataUnitCount[compIndex]; dataUnitCount > 0; dataUnitCount--)
|
|
3149 |
{
|
|
3150 |
qTable.DeQuantize(dataUnit, *iDrawMCUPtr[compIndex], KJpgDCTBlockSize);
|
|
3151 |
iCompConf[compIndex].iDCT->InverseTransform(*compPtr, dataUnit);
|
|
3152 |
iDrawMCUPtr[compIndex]++;
|
|
3153 |
compPtr++;
|
|
3154 |
}
|
|
3155 |
}
|
|
3156 |
|
|
3157 |
if (imageProc)
|
|
3158 |
{
|
|
3159 |
WriteMCU();
|
|
3160 |
imageProc->SetPixelBlock(iRgbBuffer);
|
|
3161 |
}
|
|
3162 |
else
|
|
3163 |
{
|
|
3164 |
RArray<const TDataUnit*> dataUnits;
|
|
3165 |
CleanupClosePushL(dataUnits);
|
|
3166 |
for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++)
|
|
3167 |
{
|
|
3168 |
TDataUnit* compPtr = iComponent[compIndex];
|
|
3169 |
TInt numSamples = iMCUDataUnitCount[compIndex];
|
|
3170 |
while (numSamples > 0)
|
|
3171 |
{
|
|
3172 |
numSamples--;
|
|
3173 |
User::LeaveIfError(dataUnits.Append(compPtr++));
|
|
3174 |
}
|
|
3175 |
}
|
|
3176 |
iImageFrameCodecPtr->ProcessL(dataUnits);
|
|
3177 |
CleanupStack::PopAndDestroy(1, &dataUnits);
|
|
3178 |
}
|
|
3179 |
|
|
3180 |
iCurrentDrawMCU++;
|
|
3181 |
}
|
|
3182 |
|
|
3183 |
if (iCurrentDrawMCU < iTotalMCUCount)
|
|
3184 |
{
|
|
3185 |
return EFalse;
|
|
3186 |
}
|
|
3187 |
|
|
3188 |
return ETrue;
|
|
3189 |
}
|
|
3190 |
|
|
3191 |
void CProgressiveJpgReadCodec::GetDCValueL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable,TInt& aDCPredictor)
|
|
3192 |
{
|
|
3193 |
TInt size = GetHuffmanCodeL(aHuffmanTable);
|
|
3194 |
TInt amplitude = (size > 0) ? GetBinaryNumberL(size) : 0;
|
|
3195 |
aDCPredictor += amplitude;
|
|
3196 |
ASSERT(aDCPredictor <= KMaxTInt16 && aDCPredictor >= KMinTInt16);
|
|
3197 |
aDataUnit.iCoeff[0] = TInt16(aDCPredictor << iScanInfo.iSuccessiveApproximationBitsLow);
|
|
3198 |
}
|
|
3199 |
|
|
3200 |
TInt CProgressiveJpgReadCodec::GetACValuesL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable)
|
|
3201 |
{
|
|
3202 |
TInt16* valuePtr = &aDataUnit.iCoeff[iScanInfo.iStartSpectralSelection];
|
|
3203 |
TInt16* valuePtrLimit = &aDataUnit.iCoeff[iScanInfo.iEndSpectralSelection + 1];
|
|
3204 |
|
|
3205 |
while (valuePtr < valuePtrLimit)
|
|
3206 |
{
|
|
3207 |
TInt s = GetHuffmanCodeL(aHuffmanTable);
|
|
3208 |
const TInt r = s >> 4;
|
|
3209 |
s &= 0x0f;
|
|
3210 |
if (s > 0)
|
|
3211 |
{
|
|
3212 |
valuePtr += r;
|
|
3213 |
|
|
3214 |
if (valuePtr < valuePtrLimit)
|
|
3215 |
*valuePtr++ |= TInt16(GetBinaryNumberL(s) << iScanInfo.iSuccessiveApproximationBitsLow);
|
|
3216 |
}
|
|
3217 |
else
|
|
3218 |
{
|
|
3219 |
if (r == 15) // Zero run length
|
|
3220 |
valuePtr += 16;
|
|
3221 |
else
|
|
3222 |
{
|
|
3223 |
TInt eobRun = 1 << r;
|
|
3224 |
if (r > 0)
|
|
3225 |
eobRun += GetPositiveBinaryNumberL(r);
|
|
3226 |
return eobRun - 1;
|
|
3227 |
}
|
|
3228 |
}
|
|
3229 |
}
|
|
3230 |
return 0;
|
|
3231 |
}
|
|
3232 |
|
|
3233 |
void CProgressiveJpgReadCodec::RefineACValuesL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable)
|
|
3234 |
{
|
|
3235 |
TInt s = 0;
|
|
3236 |
TInt r;
|
|
3237 |
TInt16* valuePtr = &aDataUnit.iCoeff[iScanInfo.iStartSpectralSelection];
|
|
3238 |
TInt16* valuePtrLimit = &aDataUnit.iCoeff[iScanInfo.iEndSpectralSelection];
|
|
3239 |
|
|
3240 |
TInt err;
|
|
3241 |
TInt numNewNonZero = 0;
|
|
3242 |
TInt16* newNonZeroPosition[KJpgDCTBlockSize];
|
|
3243 |
TInt oldEobRun = iEobRun;
|
|
3244 |
if (iEobRun == 0)
|
|
3245 |
{
|
|
3246 |
for (; valuePtr <= valuePtrLimit; valuePtr++)
|
|
3247 |
{
|
|
3248 |
TRAP(err,s = GetHuffmanCodeL(aHuffmanTable));
|
|
3249 |
if (err == KErrCompletion)
|
|
3250 |
goto OutOfData;
|
|
3251 |
User::LeaveIfError(err);
|
|
3252 |
r = s >> 4;
|
|
3253 |
s &= 0x0f;
|
|
3254 |
if (s > 0)
|
|
3255 |
{
|
|
3256 |
TBool nextBit = EFalse;
|
|
3257 |
TRAP(err,nextBit = NextBitL());
|
|
3258 |
if (err == KErrCompletion)
|
|
3259 |
goto OutOfData;
|
|
3260 |
User::LeaveIfError(err);
|
|
3261 |
if (nextBit)
|
|
3262 |
s = iP1;
|
|
3263 |
else
|
|
3264 |
s = iM1;
|
|
3265 |
}
|
|
3266 |
else
|
|
3267 |
{
|
|
3268 |
if (r != 15)
|
|
3269 |
{
|
|
3270 |
iEobRun = 1 << r;
|
|
3271 |
if (r > 0)
|
|
3272 |
{
|
|
3273 |
TRAP(err,iEobRun += GetPositiveBinaryNumberL(r));
|
|
3274 |
if (err == KErrCompletion)
|
|
3275 |
goto OutOfData;
|
|
3276 |
User::LeaveIfError(err);
|
|
3277 |
}
|
|
3278 |
break;
|
|
3279 |
}
|
|
3280 |
}
|
|
3281 |
|
|
3282 |
do
|
|
3283 |
{
|
|
3284 |
TInt16* coef = valuePtr;
|
|
3285 |
if (*coef != 0)
|
|
3286 |
{
|
|
3287 |
TBool nextBit = EFalse;
|
|
3288 |
TRAP(err,nextBit = NextBitL());
|
|
3289 |
if (err == KErrCompletion)
|
|
3290 |
goto OutOfData;
|
|
3291 |
User::LeaveIfError(err);
|
|
3292 |
if (nextBit)
|
|
3293 |
{
|
|
3294 |
if ((*coef & iP1) == 0)
|
|
3295 |
{
|
|
3296 |
if (*coef >= 0)
|
|
3297 |
*coef = TInt16(*coef + iP1);
|
|
3298 |
else
|
|
3299 |
*coef = TInt16(*coef + iM1);
|
|
3300 |
}
|
|
3301 |
}
|
|
3302 |
}
|
|
3303 |
else
|
|
3304 |
{
|
|
3305 |
if (--r < 0)
|
|
3306 |
break;
|
|
3307 |
}
|
|
3308 |
valuePtr++;
|
|
3309 |
}
|
|
3310 |
while (valuePtr <= valuePtrLimit);
|
|
3311 |
|
|
3312 |
if (s != 0)
|
|
3313 |
{
|
|
3314 |
*valuePtr = TInt16(s);
|
|
3315 |
newNonZeroPosition[numNewNonZero++] = valuePtr;
|
|
3316 |
}
|
|
3317 |
}
|
|
3318 |
}
|
|
3319 |
|
|
3320 |
if (iEobRun > 0)
|
|
3321 |
{
|
|
3322 |
for (; valuePtr <= valuePtrLimit; valuePtr++)
|
|
3323 |
{
|
|
3324 |
TInt16* coef = valuePtr;
|
|
3325 |
if (*coef != 0)
|
|
3326 |
{
|
|
3327 |
TBool nextBit = EFalse;
|
|
3328 |
TRAP(err,nextBit = NextBitL());
|
|
3329 |
if (err == KErrCompletion)
|
|
3330 |
goto OutOfData;
|
|
3331 |
User::LeaveIfError(err);
|
|
3332 |
if (nextBit)
|
|
3333 |
{
|
|
3334 |
if ((*coef & iP1) == 0)
|
|
3335 |
{
|
|
3336 |
if (*coef >= 0)
|
|
3337 |
*coef = TInt16(*coef + iP1);
|
|
3338 |
else
|
|
3339 |
*coef = TInt16(*coef + iM1);
|
|
3340 |
}
|
|
3341 |
}
|
|
3342 |
}
|
|
3343 |
}
|
|
3344 |
iEobRun--;
|
|
3345 |
}
|
|
3346 |
return;
|
|
3347 |
|
|
3348 |
OutOfData:
|
|
3349 |
while (numNewNonZero > 0)
|
|
3350 |
*(newNonZeroPosition[--numNewNonZero]) = 0;
|
|
3351 |
iEobRun = oldEobRun;
|
|
3352 |
|
|
3353 |
User::Leave(KErrCompletion);
|
|
3354 |
}
|
|
3355 |
|
|
3356 |
#if defined(__ARMCC__)
|
|
3357 |
#pragma push
|
|
3358 |
#pragma thumb
|
|
3359 |
#endif
|
|
3360 |
|
|
3361 |
void CProgressiveJpgReadCodec::LoadHuffmanTableL()
|
|
3362 |
{
|
|
3363 |
if (iDataPtr + 4 > iDataPtrLimit)
|
|
3364 |
{
|
|
3365 |
User::Leave(KErrCompletion);
|
|
3366 |
}
|
|
3367 |
|
|
3368 |
TInt length = (iDataPtr[2] << 8) | iDataPtr[3];
|
|
3369 |
|
|
3370 |
const TUint8* dataPtrLimit = iDataPtr + length + 2;
|
|
3371 |
if (dataPtrLimit > iDataPtrLimit)
|
|
3372 |
User::Leave(KErrCompletion);
|
|
3373 |
|
|
3374 |
iDataPtr += 4;
|
|
3375 |
while (iDataPtr < dataPtrLimit)
|
|
3376 |
{
|
|
3377 |
TInt index = *iDataPtr++;
|
|
3378 |
TBool dcTable = !(index & 0x10);
|
|
3379 |
index &= 0x0f;
|
|
3380 |
if (index >= KJpgMaxNumberOfTables)
|
|
3381 |
User::Leave(KErrCorrupt);
|
|
3382 |
TDecHuffmanTable& table = dcTable ? iDCHuffmanTable[index] : iACHuffmanTable[index];
|
|
3383 |
iDataPtr += table.SetL(iDataPtr,dataPtrLimit);
|
|
3384 |
}
|
|
3385 |
}
|
|
3386 |
|
|
3387 |
void CProgressiveJpgReadCodec::LoadSOSL()
|
|
3388 |
{
|
|
3389 |
if (iDataPtr + 4 > iDataPtrLimit)
|
|
3390 |
User::Leave(KErrCompletion);
|
|
3391 |
TInt length = (iDataPtr[2] << 8) | iDataPtr[3];
|
|
3392 |
|
|
3393 |
if (iDataPtr + length + 2 > iDataPtrLimit)
|
|
3394 |
User::Leave(KErrCompletion);
|
|
3395 |
|
|
3396 |
iDataPtr += 4;
|
|
3397 |
iScanInfo.iNumberOfComponents = *iDataPtr++;
|
|
3398 |
|
|
3399 |
// We ony support up to 3 components, even though spec supports up to 4.
|
|
3400 |
// Additionaly, number must not be greater than in original frame SOS header
|
|
3401 |
if (iScanInfo.iNumberOfComponents < KJpgMinNumberOfComponents ||
|
|
3402 |
iScanInfo.iNumberOfComponents > iOriginalFrameInfo.iNumberOfComponents)
|
|
3403 |
User::Leave(KErrCorrupt);
|
|
3404 |
|
|
3405 |
for (TInt count = 0; count < iScanInfo.iNumberOfComponents; count++)
|
|
3406 |
{
|
|
3407 |
iScanInfo.iComponent[count].iId = *iDataPtr++;
|
|
3408 |
|
|
3409 |
TUint8 table = *iDataPtr++;
|
|
3410 |
TUint8 DCTable = static_cast<TUint8>(table >> 4);
|
|
3411 |
TUint8 ACTable = static_cast<TUint8>(table & 0x0f);
|
|
3412 |
|
|
3413 |
if(DCTable >= KJpgMaxNumberOfTables || ACTable >= KJpgMaxNumberOfTables)
|
|
3414 |
User::Leave(KErrCorrupt);
|
|
3415 |
|
|
3416 |
iScanInfo.iComponent[count].iDCCodingTable = DCTable;
|
|
3417 |
iScanInfo.iComponent[count].iACCodingTable = ACTable;
|
|
3418 |
|
|
3419 |
iDCHuffmanTable[DCTable].MakeDerivedTableL();
|
|
3420 |
iACHuffmanTable[ACTable].MakeDerivedTableL();
|
|
3421 |
}
|
|
3422 |
|
|
3423 |
iScanInfo.iStartSpectralSelection = *iDataPtr++;
|
|
3424 |
iScanInfo.iEndSpectralSelection = *iDataPtr++;
|
|
3425 |
TUint8 successiveApproximation = *iDataPtr++;
|
|
3426 |
iScanInfo.iSuccessiveApproximationBitsHigh = successiveApproximation >> 4;
|
|
3427 |
iScanInfo.iSuccessiveApproximationBitsLow = successiveApproximation & 0x0f;
|
|
3428 |
iP1 = 1 << iScanInfo.iSuccessiveApproximationBitsLow;
|
|
3429 |
iM1 = (-1) << iScanInfo.iSuccessiveApproximationBitsLow;
|
|
3430 |
|
|
3431 |
iRefinedDCValue = TInt16(1 << iScanInfo.iSuccessiveApproximationBitsLow);
|
|
3432 |
|
|
3433 |
// if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL
|
|
3434 |
// This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame
|
|
3435 |
iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound;
|
|
3436 |
}
|
|
3437 |
|
|
3438 |
void CProgressiveJpgReadCodec::LoadRestartIntervalL()
|
|
3439 |
{
|
|
3440 |
if (iDataPtr + 6 > iDataPtrLimit)
|
|
3441 |
{
|
|
3442 |
User::Leave(KErrCompletion);
|
|
3443 |
}
|
|
3444 |
|
|
3445 |
iFrameInfo.iRestartInterval = iDataPtr[5] | (iDataPtr[4] << 8);
|
|
3446 |
iDataPtr += 6;
|
|
3447 |
|
|
3448 |
// if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL
|
|
3449 |
// This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame
|
|
3450 |
iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound;
|
|
3451 |
}
|
|
3452 |
|
|
3453 |
// 03/12/03 - function added as a result of INC037134
|
|
3454 |
// needed a way to cleanup buffers when decoding complete
|
|
3455 |
void CProgressiveJpgReadCodec::CleanupBuffers()
|
|
3456 |
{
|
|
3457 |
if(!iMCUChunkAllocated)
|
|
3458 |
{
|
|
3459 |
delete iMCUMemoryBuffer;
|
|
3460 |
iMCUMemoryBuffer = NULL;
|
|
3461 |
}
|
|
3462 |
else
|
|
3463 |
{
|
|
3464 |
iMCUChunk.Close();
|
|
3465 |
}
|
|
3466 |
for (TInt count = 0; count < KJpgNumberOfComponents; count++)
|
|
3467 |
{
|
|
3468 |
iMCUBuffer[count] = NULL;
|
|
3469 |
}
|
|
3470 |
iMCUChunkAllocated = EFalse;
|
|
3471 |
}
|
|
3472 |
|
|
3473 |
// CJpgImageFrameReadCodec
|
|
3474 |
CJpgImageFrameReadCodec::CJpgImageFrameReadCodec(CImageFrame* aFrame)
|
|
3475 |
{
|
|
3476 |
iDestination = aFrame;
|
|
3477 |
}
|
|
3478 |
|
|
3479 |
CJpgImageFrameReadCodec::~CJpgImageFrameReadCodec()
|
|
3480 |
{
|
|
3481 |
delete iImageFrameProcessorPtr;
|
|
3482 |
}
|
|
3483 |
|
|
3484 |
CJpgImageFrameReadCodec* CJpgImageFrameReadCodec::NewL(CImageFrame* aFrame)
|
|
3485 |
{
|
|
3486 |
CJpgImageFrameReadCodec* self = new(ELeave) CJpgImageFrameReadCodec(aFrame);
|
|
3487 |
return self;
|
|
3488 |
}
|
|
3489 |
|
|
3490 |
void CJpgImageFrameReadCodec::CreateImageProcessorL(const TJpgFrameInfo& aFrameInfo)
|
|
3491 |
{
|
|
3492 |
ASSERT(iImageFrameProcessorPtr==NULL);
|
|
3493 |
|
|
3494 |
iDestination->SetFrameSizeInPixels(aFrameInfo.iSizeInPixels);
|
|
3495 |
CJpgImageFrameProcessorUtility::PrepareImageFrameL(aFrameInfo,*iDestination);
|
|
3496 |
iImageFrameProcessorPtr = CJpgImageFrameProcessorUtility::NewL(*iDestination);
|
|
3497 |
}
|
|
3498 |
|
|
3499 |
void CJpgImageFrameReadCodec::ProcessL(const RArray<const TDataUnit*>& aDataUnits)
|
|
3500 |
{
|
|
3501 |
iImageFrameProcessorPtr->WriteBlockL(aDataUnits);
|
|
3502 |
}
|
|
3503 |
|
|
3504 |
CImageFrame* CJpgImageFrameReadCodec::Destination()
|
|
3505 |
{
|
|
3506 |
return iDestination;
|
|
3507 |
}
|
|
3508 |
|
|
3509 |
void CJpgImageFrameReadCodec::SetImageFrameBlocksL(CImageFrame* aFrame, const TJpgFrameInfo& aFrameInfo)
|
|
3510 |
{
|
|
3511 |
iDestination = aFrame;
|
|
3512 |
|
|
3513 |
if(iImageFrameProcessorPtr)
|
|
3514 |
{
|
|
3515 |
delete iImageFrameProcessorPtr;
|
|
3516 |
iImageFrameProcessorPtr = NULL;
|
|
3517 |
}
|
|
3518 |
|
|
3519 |
CJpgImageFrameProcessorUtility::PrepareImageFrameL(aFrameInfo, *iDestination);
|
|
3520 |
iImageFrameProcessorPtr = CJpgImageFrameProcessorUtility::NewL(*iDestination);
|
|
3521 |
}
|
|
3522 |
|
|
3523 |
//
|
|
3524 |
// Multiscan sequential read codec.
|
|
3525 |
//
|
|
3526 |
CMultiScanSequentialJpgReadCodec* CMultiScanSequentialJpgReadCodec::NewL(
|
|
3527 |
const TJpgFrameInfo& aFrameInfo,
|
|
3528 |
const TJpgScanInfo& aScanInfo,
|
|
3529 |
TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],
|
|
3530 |
TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],
|
|
3531 |
const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
3532 |
{
|
|
3533 |
CMultiScanSequentialJpgReadCodec* self = new(ELeave) CMultiScanSequentialJpgReadCodec(
|
|
3534 |
aFrameInfo,
|
|
3535 |
aScanInfo,
|
|
3536 |
aDCHuffmanTable,
|
|
3537 |
aACHuffmanTable,
|
|
3538 |
aQTable);
|
|
3539 |
CleanupStack::PushL(self);
|
|
3540 |
self->ConstructL(EFalse); // No cache needed
|
|
3541 |
CleanupStack::Pop(self);
|
|
3542 |
return self;
|
|
3543 |
}
|
|
3544 |
|
|
3545 |
|
|
3546 |
//
|
|
3547 |
//
|
|
3548 |
//
|
|
3549 |
CMultiScanSequentialJpgReadCodec::CMultiScanSequentialJpgReadCodec(
|
|
3550 |
const TJpgFrameInfo& aFrameInfo,
|
|
3551 |
const TJpgScanInfo& aScanInfo,
|
|
3552 |
TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],
|
|
3553 |
TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],
|
|
3554 |
const TQTable aQTable[KJpgMaxNumberOfTables])
|
|
3555 |
: CSequentialJpgReadCodec(aFrameInfo,
|
|
3556 |
aScanInfo,
|
|
3557 |
aDCHuffmanTable,
|
|
3558 |
aACHuffmanTable,
|
|
3559 |
aQTable)
|
|
3560 |
{
|
|
3561 |
Mem::Copy(&iFirstScan, &iScanInfo, sizeof(TJpgScanInfo));
|
|
3562 |
}
|
|
3563 |
|
|
3564 |
|
|
3565 |
//
|
|
3566 |
//
|
|
3567 |
//
|
|
3568 |
CMultiScanSequentialJpgReadCodec::~CMultiScanSequentialJpgReadCodec()
|
|
3569 |
{
|
|
3570 |
iMCUChunk.Close();
|
|
3571 |
}
|
|
3572 |
|
|
3573 |
|
|
3574 |
//
|
|
3575 |
//
|
|
3576 |
//
|
|
3577 |
void CMultiScanSequentialJpgReadCodec::PreInitFrameL()
|
|
3578 |
{
|
|
3579 |
CSequentialJpgReadCodec::PreInitFrameL();
|
|
3580 |
|
|
3581 |
// Restore the first scan.
|
|
3582 |
Mem::Copy(&iScanInfo, &iFirstScan, sizeof(TJpgScanInfo));
|
|
3583 |
|
|
3584 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
3585 |
{
|
|
3586 |
iCompAvailable[i] = EFalse;
|
|
3587 |
}
|
|
3588 |
|
|
3589 |
iMCUChunk.Close();
|
|
3590 |
iMCUMemoryOffset = NULL;
|
|
3591 |
}
|
|
3592 |
|
|
3593 |
|
|
3594 |
//
|
|
3595 |
//
|
|
3596 |
//
|
|
3597 |
void CMultiScanSequentialJpgReadCodec::InitFrameL(TFrameInfo& aFrameInfo, CFrameImageData& aFrameImageData, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* aFrameMask)
|
|
3598 |
{
|
|
3599 |
CJpgReadCodec::InitFrameL(aFrameInfo, aFrameImageData, aDisableErrorDiffusion, aFrame, aFrameMask);
|
|
3600 |
|
|
3601 |
iTotalMCUBlocks = GetHorzMCUCount() * GetVertMCUCount();
|
|
3602 |
|
|
3603 |
// Prepare RChunk memory for all components
|
|
3604 |
TInt mcuMemory = 0;
|
|
3605 |
for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++)
|
|
3606 |
{
|
|
3607 |
mcuMemory += iTotalMCUBlocks * iMCUDataUnitCount[i] * sizeof(TDataUnit);
|
|
3608 |
}
|
|
3609 |
|
|
3610 |
TInt err = iMCUChunk.CreateLocal(mcuMemory, mcuMemory);
|
|
3611 |
JPEG_LEAVE_IF_ERROR(err, "Chunk creation");
|
|
3612 |
|
|
3613 |
iMCUMemoryOffset = iMCUChunk.Base();
|
|
3614 |
|
|
3615 |
// Allocate memory for individual components in scan.
|
|
3616 |
for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++)
|
|
3617 |
{
|
|
3618 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex];
|
|
3619 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
3620 |
TInt unitCount = iTotalMCUBlocks * iMCUDataUnitCount[compIndex];
|
|
3621 |
|
|
3622 |
iCompBuf[compIndex] = reinterpret_cast<TDataUnit*>(iMCUMemoryOffset);
|
|
3623 |
iCompAvailable[compIndex] = ETrue;
|
|
3624 |
|
|
3625 |
iMCUMemoryOffset += unitCount * sizeof(TDataUnit);
|
|
3626 |
}
|
|
3627 |
|
|
3628 |
iCurrentMcuIdx = 0;
|
|
3629 |
}
|
|
3630 |
|
|
3631 |
#if defined(__ARMCC__)
|
|
3632 |
#pragma pop
|
|
3633 |
#endif
|
|
3634 |
|
|
3635 |
//
|
|
3636 |
//
|
|
3637 |
//
|
|
3638 |
TFrameState CMultiScanSequentialJpgReadCodec::DoProcessL()
|
|
3639 |
{
|
|
3640 |
while (iDataPtr < iDataPtrLimit)
|
|
3641 |
{
|
|
3642 |
StoreState();
|
|
3643 |
if (iRestartMCUCount == 0)
|
|
3644 |
{
|
|
3645 |
RestartStateL();
|
|
3646 |
}
|
|
3647 |
|
|
3648 |
const TUint8* const latestDataPtr = iDataPtr;
|
|
3649 |
TInt error = KErrNone;
|
|
3650 |
// we do that "if" in order to bypass exception handling which can
|
|
3651 |
// affect performance of the decoder
|
|
3652 |
if (iPreviousDataLeft < KMCUDataLeftThreshhold)
|
|
3653 |
{
|
|
3654 |
TRAP(error, ProcessMCUL());
|
|
3655 |
// leave if it wasn't a partial MCU
|
|
3656 |
if (error != KErrNone && (error != KErrEof || latestDataPtr == iDataPtr ||
|
|
3657 |
(latestDataPtr + sizeof(TUint16) <= iDataPtrLimit
|
|
3658 |
&& PtrReadUtil::ReadBigEndianUint16(latestDataPtr)==KJpgEOISignature
|
|
3659 |
)
|
|
3660 |
)
|
|
3661 |
)
|
|
3662 |
{
|
|
3663 |
JPEG_LEAVE(error, "From ProcessMCUL_1");
|
|
3664 |
}
|
|
3665 |
}
|
|
3666 |
else
|
|
3667 |
{
|
|
3668 |
ProcessMCUL();
|
|
3669 |
}
|
|
3670 |
|
|
3671 |
JPEG_LEAVE_IF_ERROR(error, "From slow ProcessMCUL");
|
|
3672 |
|
|
3673 |
//in case of corrupt image, if MCUs exceed total MCUs then leave
|
|
3674 |
if (iCurrentMcuIdx >= iTotalMCUBlocks)
|
|
3675 |
{
|
|
3676 |
JPEG_LEAVE(KErrEof, "Too many MCUs in image");
|
|
3677 |
}
|
|
3678 |
|
|
3679 |
for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++)
|
|
3680 |
{
|
|
3681 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex];
|
|
3682 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
3683 |
CopyMCUs(compIndex);
|
|
3684 |
}
|
|
3685 |
|
|
3686 |
iCurrentMcuIdx++;
|
|
3687 |
iRestartMCUCount--;
|
|
3688 |
|
|
3689 |
if (iDataPtrLimit - iDataPtr < KMCUDataLeftThreshhold)
|
|
3690 |
{
|
|
3691 |
TBool needLeave = (iPreviousDataLeft > iDataPtrLimit - iDataPtr);
|
|
3692 |
iPreviousDataLeft = iDataPtrLimit - iDataPtr;
|
|
3693 |
if (needLeave && !iNewTableOrScan)
|
|
3694 |
{
|
|
3695 |
StoreState();
|
|
3696 |
User::Leave(KErrCompletion);
|
|
3697 |
}
|
|
3698 |
}
|
|
3699 |
}
|
|
3700 |
return EFrameIncomplete;
|
|
3701 |
}
|
|
3702 |
|
|
3703 |
|
|
3704 |
//
|
|
3705 |
// Searches Start of Scan marker(0xffda) or Huffman table marker(0xffc4) and gives the position in aPos.
|
|
3706 |
//
|
|
3707 |
TBool CMultiScanSequentialJpgReadCodec::SearchTableOrSosMarker(TBufPtr8& aSourceData, TInt& aPos, TUint16& aMarker)
|
|
3708 |
{
|
|
3709 |
const TUint8* ptr = aSourceData.Ptr();
|
|
3710 |
const TUint8* limit = ptr + aSourceData.Length() - 1;
|
|
3711 |
|
|
3712 |
aPos = 0;
|
|
3713 |
while ((ptr + 1) <= limit)
|
|
3714 |
{
|
|
3715 |
// Mem::Copy must be used to avoid KERN:EXEC 3 access alignment panics on hardware.
|
|
3716 |
TUint16 data = 0;
|
|
3717 |
Mem::Copy(&data, ptr++, sizeof(TUint16));
|
|
3718 |
|
|
3719 |
switch (data)
|
|
3720 |
{
|
|
3721 |
case 0xDAFF: // Big-endian version of KJpgSOSSignature.
|
|
3722 |
aMarker = KJpgSOSSignature;
|
|
3723 |
return ETrue;
|
|
3724 |
|
|
3725 |
case 0xC4FF: // Big-endian version of KJpgDHTSignature.
|
|
3726 |
aMarker = KJpgDHTSignature;
|
|
3727 |
return ETrue;
|
|
3728 |
|
|
3729 |
default:
|
|
3730 |
aPos++;
|
|
3731 |
}
|
|
3732 |
}
|
|
3733 |
|
|
3734 |
return EFalse;
|
|
3735 |
}
|
|
3736 |
|
|
3737 |
|
|
3738 |
//
|
|
3739 |
// Processes frame data. Renders only on decoding all MCUs.
|
|
3740 |
//
|
|
3741 |
TFrameState CMultiScanSequentialJpgReadCodec::ProcessFrameL(TBufPtr8& aSrc)
|
|
3742 |
{
|
|
3743 |
TUint16 marker = 0;
|
|
3744 |
TInt markerPos = -1;
|
|
3745 |
iDataPtr = const_cast<TUint8*>(aSrc.Ptr());
|
|
3746 |
TInt dataLen = aSrc.Length();
|
|
3747 |
const TUint8* newMarkerAddr = NULL;
|
|
3748 |
const TUint8* bufferLimit = iDataPtr + dataLen;
|
|
3749 |
TBool switched = EFalse;
|
|
3750 |
|
|
3751 |
// Exclude table or next scan.
|
|
3752 |
iNewTableOrScan = SearchTableOrSosMarker(aSrc, markerPos, marker);
|
|
3753 |
if (iNewTableOrScan)
|
|
3754 |
{
|
|
3755 |
newMarkerAddr = iDataPtr + markerPos;
|
|
3756 |
iDataPtrLimit = const_cast<TUint8*>(newMarkerAddr);
|
|
3757 |
}
|
|
3758 |
else
|
|
3759 |
{
|
|
3760 |
// If marker 0xff is in the last byte, exclude it.
|
|
3761 |
iDataPtrLimit = iDataPtr + dataLen;
|
|
3762 |
if (*(iDataPtrLimit - 1) == 0xFF)
|
|
3763 |
{
|
|
3764 |
iDataPtrLimit--;
|
|
3765 |
}
|
|
3766 |
}
|
|
3767 |
|
|
3768 |
iPreviousDataLeft = iDataPtrLimit - iDataPtr;
|
|
3769 |
|
|
3770 |
TFrameState frameState = EFrameComplete;
|
|
3771 |
TRAPD(err, frameState = DoProcessL());
|
|
3772 |
// If there is new scan or table, switch to it.
|
|
3773 |
if (iNewTableOrScan)
|
|
3774 |
{
|
|
3775 |
if (marker == KJpgDHTSignature)
|
|
3776 |
{
|
|
3777 |
switched = ProcessHuffmanTableL(newMarkerAddr, bufferLimit);
|
|
3778 |
}
|
|
3779 |
else if (marker == KJpgSOSSignature)
|
|
3780 |
{
|
|
3781 |
switched = SwitchScanL(newMarkerAddr, bufferLimit);
|
|
3782 |
}
|
|
3783 |
}
|
|
3784 |
|
|
3785 |
if (err != KErrNone)
|
|
3786 |
{
|
|
3787 |
if (err == KErrCompletion)
|
|
3788 |
{
|
|
3789 |
RestoreState();
|
|
3790 |
frameState = EFrameIncomplete;
|
|
3791 |
}
|
|
3792 |
else if (err == KErrEof)
|
|
3793 |
{
|
|
3794 |
frameState = EFrameComplete;
|
|
3795 |
// Render all MCUs.
|
|
3796 |
RenderMCUsL();
|
|
3797 |
}
|
|
3798 |
else
|
|
3799 |
{
|
|
3800 |
JPEG_LEAVE(err, "From DoProcessL");
|
|
3801 |
}
|
|
3802 |
}
|
|
3803 |
|
|
3804 |
if (switched)
|
|
3805 |
{
|
|
3806 |
iDataPtr = const_cast<TUint8*>(newMarkerAddr);
|
|
3807 |
if (marker == KJpgSOSSignature)
|
|
3808 |
{
|
|
3809 |
ResetOnNewScan();
|
|
3810 |
}
|
|
3811 |
}
|
|
3812 |
|
|
3813 |
aSrc.Shift(iDataPtr - aSrc.Ptr()); // Shift out used data.
|
|
3814 |
|
|
3815 |
return frameState;
|
|
3816 |
}
|
|
3817 |
|
|
3818 |
|
|
3819 |
//
|
|
3820 |
// Switches to new scan if sufficient header information is available.
|
|
3821 |
//
|
|
3822 |
TBool CMultiScanSequentialJpgReadCodec::SwitchScanL(const TUint8*& aScan, const TUint8* aDataLimit)
|
|
3823 |
{
|
|
3824 |
const TInt KSosSizeFieldLength = 2;
|
|
3825 |
if (aScan + sizeof(KJpgSOSSignature) + KSosSizeFieldLength > aDataLimit)
|
|
3826 |
{
|
|
3827 |
return EFalse;
|
|
3828 |
}
|
|
3829 |
|
|
3830 |
// Check for SOS marker.
|
|
3831 |
TUint16 value = ReadBigEndianUint16(aScan);
|
|
3832 |
if (value != KJpgSOSSignature)
|
|
3833 |
{
|
|
3834 |
return EFalse;
|
|
3835 |
}
|
|
3836 |
|
|
3837 |
// Read length and check if entire scan is available.
|
|
3838 |
value = ReadBigEndianUint16(aScan);
|
|
3839 |
if (aScan + value - KSosSizeFieldLength > aDataLimit)
|
|
3840 |
{
|
|
3841 |
return EFalse;
|
|
3842 |
}
|
|
3843 |
|
|
3844 |
// Keep track of MCUs available for components.
|
|
3845 |
for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++)
|
|
3846 |
{
|
|
3847 |
TInt compIndex = ComponentIndexL(iScanInfo.iComponent[i].iId);
|
|
3848 |
iCompMcuCount[compIndex] = iCurrentMcuIdx;
|
|
3849 |
}
|
|
3850 |
|
|
3851 |
iScanInfo.iNumberOfComponents = *aScan;
|
|
3852 |
// Component id, table selector bytes.
|
|
3853 |
const TInt KCompBytes = 2;
|
|
3854 |
// Scan start, scan end, successive approx bytes.
|
|
3855 |
const TInt KScanBytes = 3;
|
|
3856 |
if (aScan + (iScanInfo.iNumberOfComponents * KCompBytes) + KScanBytes > aDataLimit)
|
|
3857 |
{
|
|
3858 |
// Header length is wrong. Entire header is not available in the buffer.
|
|
3859 |
return EFalse;
|
|
3860 |
}
|
|
3861 |
|
|
3862 |
TJpgScanInfoProcessor::ProcessStartOfScanL(aScan, iFrameInfo, iScanInfo, iDCHuffmanTable, iACHuffmanTable);
|
|
3863 |
|
|
3864 |
// Move to next address after scan.
|
|
3865 |
aScan++;
|
|
3866 |
for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++)
|
|
3867 |
{
|
|
3868 |
TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[i];
|
|
3869 |
TInt compIndex = ComponentIndexL(scanInfo.iId);
|
|
3870 |
if (iCompAvailable[compIndex])
|
|
3871 |
{
|
|
3872 |
// If a same component repeats, then the file is corrupt. Stop further decoding.
|
|
3873 |
JPEG_LEAVE(KErrEof, "Repeated component");
|
|
3874 |
}
|
|
3875 |
|
|
3876 |
TInt unitCount = iTotalMCUBlocks * iMCUDataUnitCount[compIndex];
|
|
3877 |
iCompBuf[compIndex] = reinterpret_cast<TDataUnit*>(iMCUMemoryOffset);
|
|
3878 |
iCompAvailable[compIndex] = ETrue;
|
|
3879 |
|
|
3880 |
iMCUMemoryOffset += unitCount * sizeof(TDataUnit);
|
|
3881 |
}
|
|
3882 |
|
|
3883 |
iCurrentMcuIdx = 0;
|
|
3884 |
if (iFrameInfo.iRestartInterval > 0)
|
|
3885 |
{
|
|
3886 |
iRestartMCUCount = iFrameInfo.iRestartInterval;
|
|
3887 |
}
|
|
3888 |
else
|
|
3889 |
{
|
|
3890 |
iRestartMCUCount = KErrNotFound;
|
|
3891 |
}
|
|
3892 |
|
|
3893 |
ResetState();
|
|
3894 |
return ETrue;
|
|
3895 |
}
|
|
3896 |
|
|
3897 |
|
|
3898 |
//
|
|
3899 |
//
|
|
3900 |
//
|
|
3901 |
TBool CMultiScanSequentialJpgReadCodec::ProcessHuffmanTableL(const TUint8*& aData, const TUint8* aBufferLimit)
|
|
3902 |
{
|
|
3903 |
// Length of size field for table marker.
|
|
3904 |
const TInt KTableMarkerSizeField = 2;
|
|
3905 |
if (aData + sizeof(KJpgDHTSignature) + KTableMarkerSizeField > aBufferLimit)
|
|
3906 |
{
|
|
3907 |
return EFalse;
|
|
3908 |
}
|
|
3909 |
|
|
3910 |
// Read marker.
|
|
3911 |
TUint16 value = ReadBigEndianUint16(aData);
|
|
3912 |
if (value != KJpgDHTSignature)
|
|
3913 |
{
|
|
3914 |
return EFalse;
|
|
3915 |
}
|
|
3916 |
|
|
3917 |
// Read length.
|
|
3918 |
value = ReadBigEndianUint16(aData);
|
|
3919 |
|
|
3920 |
// Check if entire table data is available in buffer.
|
|
3921 |
const TUint8* dataLimit = aData + value - KTableMarkerSizeField;
|
|
3922 |
if (dataLimit > aBufferLimit)
|
|
3923 |
{
|
|
3924 |
return EFalse;
|
|
3925 |
}
|
|
3926 |
|
|
3927 |
THuffmanTableProcessor::ProcessHuffmanTableL(aData, dataLimit, iDCHuffmanTable, iACHuffmanTable);
|
|
3928 |
|
|
3929 |
return ETrue;
|
|
3930 |
}
|
|
3931 |
|
|
3932 |
|
|
3933 |
//
|
|
3934 |
// Copies MCUs to component buffers, where they are accumulated.
|
|
3935 |
//
|
|
3936 |
void CMultiScanSequentialJpgReadCodec::CopyMCUs(TInt aCompIdx)
|
|
3937 |
{
|
|
3938 |
if (iMonochrome && (aCompIdx != KYComp))
|
|
3939 |
{
|
|
3940 |
return;
|
|
3941 |
}
|
|
3942 |
|
|
3943 |
// Assumes that iCurrentMcuIdx value start from 0.
|
|
3944 |
const TDataUnit* src = iComponent[aCompIdx];
|
|
3945 |
TDataUnit* des = iCompBuf[aCompIdx];
|
|
3946 |
|
|
3947 |
// If Y with 4 DUs.
|
|
3948 |
if ((aCompIdx == KYComp) && (iMCUDataUnitCount[KYComp] == 4))
|
|
3949 |
{
|
|
3950 |
// Rearranges Y Data Units, so that they are rendered sequentially.
|
|
3951 |
TInt mcusPerLine = GetHorzMCUCount();
|
|
3952 |
TInt dusPerLine = mcusPerLine * iMCUDataUnitCount[KYComp];
|
|
3953 |
TInt line = iCurrentMcuIdx / mcusPerLine;
|
|
3954 |
TDataUnit* lineAddr = des + (line * dusPerLine);
|
|
3955 |
TInt mcuIdxInLine = iCurrentMcuIdx - (line * mcusPerLine);
|
|
3956 |
|
|
3957 |
// Copy offset.
|
|
3958 |
TInt offset = 0;
|
|
3959 |
if ((mcuIdxInLine + 1) <= mcusPerLine / 2)
|
|
3960 |
{
|
|
3961 |
offset = mcuIdxInLine * 8;
|
|
3962 |
}
|
|
3963 |
else
|
|
3964 |
{
|
|
3965 |
TInt idx = (mcuIdxInLine + 1) - (mcusPerLine / 2);
|
|
3966 |
offset = (idx - 1) * 8 + 2;
|
|
3967 |
}
|
|
3968 |
|
|
3969 |
// Copy 2 DUs at a time, giving 2 DU space.
|
|
3970 |
Mem::Copy(lineAddr + offset, src, 2 * sizeof(TDataUnit));
|
|
3971 |
Mem::Copy(lineAddr + offset + 4, src + 2, 2 * sizeof(TDataUnit));
|
|
3972 |
}
|
|
3973 |
else
|
|
3974 |
{
|
|
3975 |
des += iCurrentMcuIdx * iMCUDataUnitCount[aCompIdx];
|
|
3976 |
Mem::Copy(des, src, iMCUDataUnitCount[aCompIdx] * sizeof(TDataUnit));
|
|
3977 |
}
|
|
3978 |
}
|
|
3979 |
|
|
3980 |
|
|
3981 |
//
|
|
3982 |
// Sets up iComponent to point to the right parts of the RChunk memory.
|
|
3983 |
//
|
|
3984 |
void CMultiScanSequentialJpgReadCodec::PrepareToRenderMCU(TInt aMCUIndex)
|
|
3985 |
{
|
|
3986 |
JPEG_ASSERT(aMCUIndex >= 0);
|
|
3987 |
|
|
3988 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
3989 |
{
|
|
3990 |
if (iCompAvailable[i])
|
|
3991 |
{
|
|
3992 |
iComponent[i] = &iCompBuf[i][aMCUIndex * iMCUDataUnitCount[i]];
|
|
3993 |
}
|
|
3994 |
}
|
|
3995 |
}
|
|
3996 |
|
|
3997 |
|
|
3998 |
//
|
|
3999 |
// Sends all MCUs of components to rendering.
|
|
4000 |
//
|
|
4001 |
void CMultiScanSequentialJpgReadCodec::RenderMCUsL()
|
|
4002 |
{
|
|
4003 |
for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++)
|
|
4004 |
{
|
|
4005 |
// Keep track of number of MCUs available for components.
|
|
4006 |
TInt compIndex = ComponentIndexL(iScanInfo.iComponent[i].iId);
|
|
4007 |
iCompMcuCount[compIndex] = iCurrentMcuIdx;
|
|
4008 |
}
|
|
4009 |
|
|
4010 |
FillEmptyMCUs();
|
|
4011 |
|
|
4012 |
while (iNeededMCU != KErrCompletion)
|
|
4013 |
{
|
|
4014 |
iStreamMCU = iNeededMCU; // Maintain behaviour of CSequentialJpgReadCodec.
|
|
4015 |
|
|
4016 |
Mem::Copy(&iComponentCpy, &iComponent, sizeof(TDataUnit*) * KJpgNumberOfComponents);
|
|
4017 |
PrepareToRenderMCU(iNeededMCU);
|
|
4018 |
PostProcessMCUL(EFalse);
|
|
4019 |
Mem::Copy(&iComponent, &iComponentCpy, sizeof(TDataUnit*) * KJpgNumberOfComponents);
|
|
4020 |
|
|
4021 |
|
|
4022 |
iNeededMCU = iMCUStore->GetNextMCU();
|
|
4023 |
}
|
|
4024 |
}
|
|
4025 |
|
|
4026 |
|
|
4027 |
//
|
|
4028 |
// If the number of available MCUs for Cb and Cr is less than that of Y, those MCUs are filled with 0x7f.
|
|
4029 |
//
|
|
4030 |
void CMultiScanSequentialJpgReadCodec::FillEmptyMCUs()
|
|
4031 |
{
|
|
4032 |
// MCU index to start filling. This may involve overwriting existing U or V data.
|
|
4033 |
TInt startIdx = Min(iCompMcuCount[KUComp], iCompMcuCount[KVComp]);
|
|
4034 |
for (TInt i = KUComp; i <= KVComp; i++)
|
|
4035 |
{
|
|
4036 |
if (iComponent[i] == NULL)
|
|
4037 |
{
|
|
4038 |
// If monochrome or if the component is not part of image.
|
|
4039 |
continue;
|
|
4040 |
}
|
|
4041 |
|
|
4042 |
TDataUnit* des = NULL;
|
|
4043 |
if (iCompAvailable[i])
|
|
4044 |
{
|
|
4045 |
des = iCompBuf[i];
|
|
4046 |
des += startIdx * iMCUDataUnitCount[i];
|
|
4047 |
TInt dus = (iCompMcuCount[KYComp] - startIdx) * iMCUDataUnitCount[i];
|
|
4048 |
for (TInt k = 0; k < dus; k++)
|
|
4049 |
{
|
|
4050 |
FillEmptyDU(&des[k]);
|
|
4051 |
}
|
|
4052 |
}
|
|
4053 |
else
|
|
4054 |
{
|
|
4055 |
des = iComponent[i];
|
|
4056 |
// If component is not at all available, fill iComponent[] buffer with 0x7f.
|
|
4057 |
for (TInt k = 0; k < iMCUDataUnitCount[i]; k++)
|
|
4058 |
{
|
|
4059 |
FillEmptyDU(&des[k]);
|
|
4060 |
}
|
|
4061 |
}
|
|
4062 |
}
|
|
4063 |
}
|
|
4064 |
|
|
4065 |
|
|
4066 |
//
|
|
4067 |
// Resets the data members so that new scan can be started
|
|
4068 |
//
|
|
4069 |
void CMultiScanSequentialJpgReadCodec::ResetOnNewScan()
|
|
4070 |
{
|
|
4071 |
iInitialDataPtr = NULL;
|
|
4072 |
iBitBufferPtrLimit = NULL;
|
|
4073 |
iDataValue = 0;
|
|
4074 |
iInitialDataValue = 0;
|
|
4075 |
iBitsLeft = 0;
|
|
4076 |
iInitialBitsLeft = 0;
|
|
4077 |
|
|
4078 |
for (TInt i = 0; i < KJpgNumberOfComponents; i++)
|
|
4079 |
{
|
|
4080 |
iDCPredictor[i] = 0;
|
|
4081 |
iInitialDCPredictor[i] = 0;
|
|
4082 |
}
|
|
4083 |
}
|
|
4084 |
|
|
4085 |
|
|
4086 |
//
|
|
4087 |
// Fills the given Data Unit with 0x7f.
|
|
4088 |
//
|
|
4089 |
void CMultiScanSequentialJpgReadCodec::FillEmptyDU(TDataUnit* pDU)
|
|
4090 |
{
|
|
4091 |
JPEG_ASSERT(pDU);
|
|
4092 |
JPEG_ASSERT(pDU->iCoeff);
|
|
4093 |
|
|
4094 |
TDataUnit::TDataUnitElemType* ptr = pDU->iCoeff;
|
|
4095 |
for(TInt i = 0; i < KJpgDCTBlockSize; i++)
|
|
4096 |
{
|
|
4097 |
*ptr++ = 0x7f;
|
|
4098 |
}
|
|
4099 |
}
|
|
4100 |
|
|
4101 |
|
|
4102 |
|