|
1 // Copyright (c) 1999-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // |
|
15 |
|
16 // CJpgReadCodec::GetHuffmanCodeL() is based heavily on HUFFMAN_DECODE() from jdhuff.h |
|
17 // in the IJG code, Copyright (C) 1991-1997, Thomas G. Lane. |
|
18 /** |
|
19 @file |
|
20 @internalComponent |
|
21 */ |
|
22 |
|
23 #include <fbs.h> |
|
24 #include "ImageUtils.h" |
|
25 #include "icl/ImageCodec.h" |
|
26 #include "JpegTypes.h" |
|
27 #include "rawcolorprocessor.h" |
|
28 #include "jpgimageframeprocessor.h" |
|
29 #include "JPEGCodec.h" |
|
30 #include "ImageProcessorPriv.h" |
|
31 #include "fwextconstants.h" |
|
32 #include <imageprocessor/imageprocessor.h> |
|
33 |
|
34 #ifdef JPEG_DEBUG_OUTPUT |
|
35 // This can be turned off in the MMP. |
|
36 #pragma message("Building Debug version of JPEG codec!") |
|
37 #endif |
|
38 |
|
39 const TInt KMaxMCUPerDraw = 100; // Maximum MCUs to draw per run |
|
40 // new value should be 48 |
|
41 const TInt KMarkerLookAhead=32; // number of bytes which are checked ahead for presense of 0xFF |
|
42 const TInt KMCUDataLeftThreshhold=192; // approximate value for MCU size, used to avoid re-decoding MCUs when it span data blocks |
|
43 const TInt KMCUMaxTotalDataUnits=1024; // Maximum of data units to use on this process' heap; if we need more, we'll create a local chunk to store them. |
|
44 |
|
45 |
|
46 const TInt KUShiftIdx=0; // index of U shift factor for MCU de-sampling |
|
47 const TInt KVShiftIdx=1; // index of V shift factor for MCU de-sampling |
|
48 |
|
49 #if defined(__ARMCC__) |
|
50 #pragma push |
|
51 #pragma thumb |
|
52 #endif |
|
53 |
|
54 // CJpgReadCodec |
|
55 CJpgReadCodec::CJpgReadCodec(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo) |
|
56 : iFrameInfo(aFrameInfo), |
|
57 iScanInfo(aScanInfo), |
|
58 iOperation(EDecodeNormal) |
|
59 { |
|
60 } |
|
61 |
|
62 |
|
63 CJpgReadCodec::~CJpgReadCodec() |
|
64 { |
|
65 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
66 { |
|
67 delete[] iComponent[i]; |
|
68 } |
|
69 |
|
70 delete iImageFrameCodecPtr; |
|
71 delete iRawColorProcessor; |
|
72 User::Free(iRgbBuffer); |
|
73 iRgbBuffer = NULL; |
|
74 } |
|
75 |
|
76 TFrameState CJpgReadCodec::ProcessFrameL(TBufPtr8& aSrc) |
|
77 { |
|
78 iDataPtr = CONST_CAST(TUint8*,aSrc.Ptr()); |
|
79 iDataPtrLimit = iDataPtr + aSrc.Length(); |
|
80 iPreviousDataLeft = iDataPtrLimit - iDataPtr; |
|
81 |
|
82 TFrameState frameState = EFrameComplete; |
|
83 TRAPD(err, frameState = DoProcessL()); |
|
84 if (err != KErrNone) |
|
85 { |
|
86 if (err == KErrCompletion) |
|
87 { |
|
88 RestoreState(); |
|
89 frameState = EFrameIncomplete; |
|
90 } |
|
91 else if (err == KErrEof) |
|
92 { |
|
93 frameState = EFrameComplete; |
|
94 } |
|
95 else |
|
96 { |
|
97 JPEG_LEAVE(err, "ProcessFrameL"); |
|
98 } |
|
99 } |
|
100 |
|
101 aSrc.Shift(iDataPtr - aSrc.Ptr()); // Shift out used data |
|
102 |
|
103 return frameState; |
|
104 } |
|
105 |
|
106 /** |
|
107 used to configure U,V DCT for high-speed scaling mode |
|
108 */ |
|
109 void CJpgReadCodec::ConfigureUVComponentDCT(TInt aCompIdx) |
|
110 { |
|
111 switch (iScalingFactor) |
|
112 { |
|
113 case -2: |
|
114 if (iHorzSampleFactor[aCompIdx]==iMaxHorzSampleFactor && |
|
115 iVertSampleFactor[aCompIdx]==iMaxVertSampleFactor) |
|
116 { |
|
117 iCompConf[aCompIdx].iDCT = &iFastHalfDCT; |
|
118 iCompConf[aCompIdx].iDequantFunc = &TQTable::FastHalfDeQuantize; |
|
119 } |
|
120 break; |
|
121 |
|
122 case -3: |
|
123 if (iHorzSampleFactor[aCompIdx]==iMaxHorzSampleFactor && |
|
124 iVertSampleFactor[aCompIdx]==iMaxVertSampleFactor) |
|
125 { |
|
126 iCompConf[aCompIdx].iDCT = &iFastQuarterDCT; |
|
127 iCompConf[aCompIdx].iDequantFunc = &TQTable::FastQuarterDeQuantize; |
|
128 } |
|
129 else if (iHorzSampleFactor[aCompIdx]*2 == iMaxHorzSampleFactor && |
|
130 iVertSampleFactor[aCompIdx]*2 == iMaxVertSampleFactor) |
|
131 { |
|
132 iCompConf[aCompIdx].iDCT = &iFastHalfDCT; |
|
133 iCompConf[aCompIdx].iDequantFunc = &TQTable::FastHalfDeQuantize; |
|
134 } |
|
135 break; |
|
136 default: |
|
137 { |
|
138 ASSERT(EFalse); |
|
139 } |
|
140 } |
|
141 } |
|
142 // |
|
143 // |
|
144 // |
|
145 void CJpgReadCodec::InitComponentsL() |
|
146 { |
|
147 JPEG_ASSERT(iMaxHorzSampleFactor > 0); |
|
148 JPEG_ASSERT(iMaxVertSampleFactor > 0); |
|
149 |
|
150 for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++) |
|
151 { |
|
152 iHorzSampleFactor[i] = iFrameInfo.iComponent[i].iHorzSampleFactor; |
|
153 iVertSampleFactor[i] = iFrameInfo.iComponent[i].iVertSampleFactor; |
|
154 iHorzSampleRatio[i] = iMaxHorzSampleFactor / iHorzSampleFactor[i]; |
|
155 iVertSampleRatio[i] = iMaxVertSampleFactor / iVertSampleFactor[i]; |
|
156 |
|
157 TInt dataUnits = iHorzSampleFactor[i] * iVertSampleFactor[i]; |
|
158 iMCUDataUnitCount[i] = dataUnits; |
|
159 if ((i == 0) || !iMonochrome) |
|
160 { |
|
161 JPEG_ASSERT(dataUnits > 0); |
|
162 delete[] iComponent[i]; |
|
163 iComponent[i] = NULL; |
|
164 iComponent[i] = new(ELeave) TDataUnit[dataUnits]; |
|
165 } |
|
166 } |
|
167 } |
|
168 |
|
169 // |
|
170 // |
|
171 // |
|
172 void CJpgReadCodec::InitFrameL(TFrameInfo& /*aFrameInfo*/, CFrameImageData& /*aFrameImageData*/, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* /*aFrameMask*/) |
|
173 { |
|
174 JPEG_DEBUG1("InitFrameL(TFrameInfo)"); |
|
175 JPEG_DEBUG3(" - iFrameInfo dimensions: %d x %d", |
|
176 iFrameInfo.iSizeInPixels.iWidth, |
|
177 iFrameInfo.iSizeInPixels.iHeight); |
|
178 |
|
179 JPEG_DEBUG3(" - aFrame dimensions: %d x %d", |
|
180 aFrame.SizeInPixels().iWidth, |
|
181 aFrame.SizeInPixels().iHeight); |
|
182 |
|
183 PreInitFrameL(); |
|
184 |
|
185 iMonochrome |= (aFrame.DisplayMode() <= EGray256); |
|
186 |
|
187 if ((iMaxHorzSampleFactor != iFrameInfo.iComponent[KYComp].iHorzSampleFactor) || |
|
188 (iMaxVertSampleFactor != iFrameInfo.iComponent[KYComp].iVertSampleFactor)) |
|
189 { |
|
190 // Current implementation doesn't support images with Y sampling frequency |
|
191 // lower than U or V components |
|
192 JPEG_LEAVE(KErrNotSupported, "Unsupported sampling frequency"); |
|
193 } |
|
194 |
|
195 InitComponentsL(); |
|
196 for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++) |
|
197 { |
|
198 if ((iFrameInfo.iComponent[i].iVertSampleFactor == 3) || |
|
199 (iFrameInfo.iComponent[i].iHorzSampleFactor == 3)) |
|
200 { |
|
201 JPEG_LEAVE(KErrCorrupt, "Bad sample factor"); |
|
202 } |
|
203 |
|
204 if ((i == 1) || (i == 2)) |
|
205 { |
|
206 iHorzSampleRatioSh[i - 1] = iHorzSampleRatio[i] / 2; |
|
207 iVertSampleRatioSh[i - 1] = iVertSampleRatio[i] / 2; |
|
208 } |
|
209 } |
|
210 |
|
211 TSize requiredSize = iFrameInfo.iSizeInPixels; |
|
212 TInt err = iExtensionManager->GetDestinationSize(requiredSize); |
|
213 JPEG_LEAVE_IF_ERROR(err, "GetDestinationSize failed"); |
|
214 |
|
215 if (iExtensionManager->ScalerExtensionRequested()) |
|
216 { |
|
217 // Explicit scaling |
|
218 // Mandatory check that the destination size matches the calculated size |
|
219 if (requiredSize != aFrame.SizeInPixels()) |
|
220 { |
|
221 JPEG_LEAVE(KErrArgument, "Destination bitmap size != GetDestinationSize"); |
|
222 } |
|
223 |
|
224 TSize sizeToScale = iExtensionManager->ClippingRectExtensionRequested() ? |
|
225 iExtensionManager->ClippingRect().Size() : iFrameInfo.iSizeInPixels; |
|
226 |
|
227 if (iExtensionManager->DimensionsSwapped()) |
|
228 { |
|
229 sizeToScale.SetSize(sizeToScale.iHeight, sizeToScale.iWidth); |
|
230 } |
|
231 |
|
232 err = iExtensionManager->GetScalingCoefficient(iScalingFactor, &sizeToScale); |
|
233 JPEG_LEAVE_IF_ERROR(err, "GetScalingCoefficient failed"); |
|
234 |
|
235 if (iScalingFactor != -4) |
|
236 { |
|
237 if (!iHighSpeedMode || (iHighSpeedMode && iMonochrome)) |
|
238 { |
|
239 // Needs to be the original image/cropped size in correct orientation |
|
240 // and NOT the GetDestinationSize() value |
|
241 requiredSize = sizeToScale; |
|
242 } |
|
243 } |
|
244 } |
|
245 else |
|
246 { |
|
247 // Implicit scaling for compatibility |
|
248 // requiredSize now equals full, cropped or scaled in correct orientation |
|
249 iScalingFactor = ScalingCoefficient(requiredSize, aFrame.SizeInPixels()); |
|
250 if ((iHighSpeedMode && !iMonochrome) || iScalingFactor == -4) |
|
251 { |
|
252 err = GetReducedSize(requiredSize, iScalingFactor, requiredSize); |
|
253 JPEG_LEAVE_IF_ERROR(err, "GetReducedSize failed"); |
|
254 } |
|
255 } |
|
256 |
|
257 if (iScalingFactor == 1) |
|
258 { |
|
259 // For convenience |
|
260 iScalingFactor = -iScalingFactor; |
|
261 } |
|
262 |
|
263 JPEG_DEBUG2(" - iMonochrome = %d", iMonochrome); |
|
264 JPEG_DEBUG2(" - iProgressive = %d", iProgressive); |
|
265 JPEG_DEBUG2(" - iHighSpeedMode = %d", iHighSpeedMode); |
|
266 JPEG_DEBUG2(" - iScalingFactor = %d", iScalingFactor); |
|
267 |
|
268 // "raw" processor is used when we can directly write data in output format rather than TRgb |
|
269 // that provides with saving on "to/from" TRgb conversion and memory bandwidth |
|
270 TBool useRawProc = (!iMonochrome && !iProgressive && |
|
271 (aFrame.DisplayMode() == EColor16M || |
|
272 (aFrame.DisplayMode() == EColor64K && |
|
273 CPluginExtensionManager::ConvertScalingCoeffToReductionFactor(iScalingFactor) == 3)) |
|
274 ); |
|
275 |
|
276 // defaults which are equal to legacy behaviour |
|
277 iMcuWriteFunc = (iMonochrome ? &CJpgReadCodec::WriteMonoMCU : &CJpgReadCodec::WriteUnScaledMCU); |
|
278 |
|
279 iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize; |
|
280 iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize; |
|
281 iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize; |
|
282 |
|
283 TInt reductionFactor = 0; |
|
284 switch (iScalingFactor) |
|
285 { |
|
286 case -1: |
|
287 reductionFactor = 0; |
|
288 iCompConf[KYComp].iDCT = &iFullDCT; |
|
289 iCompConf[KUComp].iDCT = &iFullDCT; |
|
290 iCompConf[KVComp].iDCT = &iFullDCT; |
|
291 |
|
292 if (iMonochrome) |
|
293 { |
|
294 iMcuWriteFunc = &CJpgReadCodec::WriteMonoMCU; |
|
295 JPEG_DEBUG1(" - Using Mono function"); |
|
296 } |
|
297 else |
|
298 { |
|
299 if (useRawProc) |
|
300 { |
|
301 iMcuWriteFunc = &CJpgReadCodec::WriteUnScaledMCU16M; |
|
302 } |
|
303 else |
|
304 { |
|
305 iMcuWriteFunc = &CJpgReadCodec::WriteUnScaledMCU; |
|
306 } |
|
307 JPEG_DEBUG1(" - Using Unscaled functions"); |
|
308 } |
|
309 break; |
|
310 |
|
311 case -2: |
|
312 reductionFactor = 1; |
|
313 iCompConf[KYComp].iDCT = &iHalfDCT; |
|
314 iCompConf[KUComp].iDCT = &iHalfDCT; |
|
315 iCompConf[KVComp].iDCT = &iHalfDCT; |
|
316 if (!iMonochrome && iHighSpeedMode) // we do not support fast scaling for monochrome |
|
317 { |
|
318 reductionFactor = 0; |
|
319 if (useRawProc) |
|
320 { |
|
321 iMcuWriteFunc = &CJpgReadCodec::WriteDiv2ScaledMCU16M; |
|
322 } |
|
323 else |
|
324 { |
|
325 iMcuWriteFunc = &CJpgReadCodec::WriteDiv2ScaledMCU; |
|
326 } |
|
327 JPEG_DEBUG1(" - Using Div2 functions"); |
|
328 |
|
329 iCompConf[KYComp].iDCT = &iFastHalfDCT; |
|
330 iCompConf[KYComp].iDequantFunc = &TQTable::FastHalfDeQuantize; |
|
331 ConfigureUVComponentDCT(KUComp); |
|
332 ConfigureUVComponentDCT(KVComp); |
|
333 } |
|
334 else |
|
335 { |
|
336 iScalingFactor = -1; |
|
337 useRawProc = EFalse; |
|
338 } |
|
339 break; |
|
340 |
|
341 case -3: |
|
342 reductionFactor = 2; |
|
343 iCompConf[KYComp].iDCT = &iQuarterDCT; |
|
344 iCompConf[KUComp].iDCT = &iQuarterDCT; |
|
345 iCompConf[KVComp].iDCT = &iQuarterDCT; |
|
346 if (!iMonochrome && iHighSpeedMode) // we do not support fast scaling for monochrome |
|
347 { |
|
348 reductionFactor = 0; |
|
349 if (useRawProc) |
|
350 { |
|
351 iMcuWriteFunc = &CJpgReadCodec::WriteDiv4ScaledMCU16M; |
|
352 } |
|
353 else |
|
354 { |
|
355 iMcuWriteFunc = &CJpgReadCodec::WriteDiv4ScaledMCU; |
|
356 } |
|
357 JPEG_DEBUG1(" - Using Div4 functions"); |
|
358 |
|
359 iCompConf[KYComp].iDCT = &iFastQuarterDCT; |
|
360 iCompConf[KYComp].iDequantFunc = &TQTable::FastQuarterDeQuantize; |
|
361 ConfigureUVComponentDCT(KUComp); |
|
362 ConfigureUVComponentDCT(KVComp); |
|
363 } |
|
364 else |
|
365 { |
|
366 iScalingFactor = -1; |
|
367 useRawProc = EFalse; |
|
368 } |
|
369 break; |
|
370 |
|
371 case -4: |
|
372 iCompConf[KYComp].iDCT = &iEighthDCT; |
|
373 iCompConf[KUComp].iDCT = &iEighthDCT; |
|
374 iCompConf[KVComp].iDCT = &iEighthDCT; |
|
375 iCompConf[KYComp].iDequantFunc = &TQTable::Fast18DeQuantize; |
|
376 iCompConf[KUComp].iDequantFunc = &TQTable::Fast18DeQuantize; |
|
377 iCompConf[KVComp].iDequantFunc = &TQTable::Fast18DeQuantize; |
|
378 reductionFactor = 0; |
|
379 if (!iMonochrome) // 1/8 Mono has got its own fast 1/8 inside the function |
|
380 { |
|
381 iMcuWriteFunc = useRawProc? (aFrame.DisplayMode()==EColor16M ? &CJpgReadCodec::WriteDiv8ScaledMCU16M : &CJpgReadCodec::WriteDiv8ScaledMCU64K) |
|
382 : &CJpgReadCodec::WriteDiv8ScaledMCU; |
|
383 JPEG_DEBUG1(" - Using Div8 functions"); |
|
384 } |
|
385 break; |
|
386 |
|
387 default: |
|
388 JPEG_LEAVE(KErrArgument, "Bad scaling factor"); |
|
389 break; |
|
390 } |
|
391 |
|
392 iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
393 iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
394 iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
395 |
|
396 if (!iMonochrome) |
|
397 { |
|
398 CalculateRgbIndeces(); |
|
399 } |
|
400 |
|
401 if (iProgressive) |
|
402 { |
|
403 iFrameInfo.iMCUBlocksPerLine = 1; |
|
404 } |
|
405 else |
|
406 { |
|
407 TInt mcuWidth = iFrameInfo.MCUWidthInPixels(); |
|
408 iFrameInfo.iMCUBlocksPerLine = (iFrameInfo.iSizeInPixels.iWidth + mcuWidth - 1) / mcuWidth; |
|
409 } |
|
410 |
|
411 // Allocate the intermediate buffer. |
|
412 iPixelSize = useRawProc ? TDisplayModeUtils::NumDisplayModeBitsPerPixel(aFrame.DisplayMode()) / 8 : sizeof(TRgb); |
|
413 |
|
414 TInt scaleDivisor = CJpgReadCodec::ScaleFactorToDivisorL(iScalingFactor); |
|
415 ConfigureAndAllocateBufferL(scaleDivisor); |
|
416 |
|
417 CImageProcessorExtension* imageProc = NULL; |
|
418 if (useRawProc) |
|
419 { |
|
420 JPEG_DEBUG1(" - Using raw processor"); |
|
421 imageProc = CRawColorProcessor::NewL(); |
|
422 } |
|
423 else |
|
424 { |
|
425 JPEG_DEBUG2(" - Using stock processor, reductionFactor=%d", reductionFactor); |
|
426 imageProc = ImageProcessorUtility::NewImageProcessorExtensionL( |
|
427 aFrame, |
|
428 reductionFactor, |
|
429 iMonochrome ? EGray256 : ERgb, |
|
430 aDisableErrorDiffusion || iHighSpeedMode); |
|
431 } |
|
432 |
|
433 ConfigureImageProcessorL(imageProc, aFrame, scaleDivisor, requiredSize); |
|
434 CalculateRenderingParams(scaleDivisor); |
|
435 PostInitFrameL(); |
|
436 } |
|
437 |
|
438 // |
|
439 // Configures the image processor that has been created. |
|
440 // This function does not take ownership of the image processor. |
|
441 // |
|
442 void CJpgReadCodec::ConfigureImageProcessorL(CImageProcessorExtension* aImageProc, CFbsBitmap& aFrame, const TInt aScaleDivisor, const TSize& aPrepareLSize) |
|
443 { |
|
444 JPEG_DEBUG2("ConfigureImageProcessorL(aScaleDivisor=%d)", aScaleDivisor); |
|
445 JPEG_ASSERT(aImageProc); |
|
446 JPEG_ASSERT(iExtensionManager); |
|
447 JPEG_ASSERT(aScaleDivisor > 0); |
|
448 JPEG_ASSERT(aPrepareLSize.iWidth > 0); |
|
449 JPEG_ASSERT(aPrepareLSize.iHeight > 0); |
|
450 |
|
451 |
|
452 #ifdef JPEG_DEBUG_OUTPUT |
|
453 TRAPD(err, iExtensionManager->TransferExtensionDataL(aImageProc)); |
|
454 JPEG_LEAVE_IF_ERROR(err, "TransferExtensionDataL"); |
|
455 #else |
|
456 iExtensionManager->TransferExtensionDataL(aImageProc); |
|
457 #endif |
|
458 |
|
459 SetImageProcessor(aImageProc); |
|
460 |
|
461 // Set the padding variables. |
|
462 TRect clip = iExtensionManager->ClippingRect(); |
|
463 TInt left = (clip.iTl.iX - iMCUClipRect.iTl.iX) / aScaleDivisor; |
|
464 TInt top = (clip.iTl.iY - iMCUClipRect.iTl.iY) / aScaleDivisor; |
|
465 TInt bottom = (iMCUClipRect.iBr.iY - clip.iBr.iY) / aScaleDivisor; |
|
466 TInt right = (iMCUClipRect.iBr.iX - clip.iBr.iX) / aScaleDivisor; |
|
467 |
|
468 JPEG_DEBUG1(" - clipping rect offsets (scaled):"); |
|
469 JPEG_DEBUG2(" - top: %d", top); |
|
470 JPEG_DEBUG2(" - left: %d", left); |
|
471 JPEG_DEBUG2(" - bottom: %d", bottom); |
|
472 JPEG_DEBUG2(" - right: %d", right); |
|
473 JPEG_DEBUG3(" - Output size: %d x %d", aPrepareLSize.iWidth, aPrepareLSize.iHeight); |
|
474 |
|
475 //TBool bottomUp = ETrue; |
|
476 TInt initialPadding = 0; |
|
477 TInt padding = 0; |
|
478 |
|
479 // iRubbish is only valid for non-clipped images. |
|
480 switch (iOperation) |
|
481 { |
|
482 case EDecodeNormal: |
|
483 case EDecodeHorizontalFlip: |
|
484 initialPadding = (iUseClipRect ? top : 0); |
|
485 padding = (iUseClipRect ? left : 0); |
|
486 break; |
|
487 |
|
488 case EDecodeVerticalFlip: |
|
489 case EDecodeRotate180: |
|
490 initialPadding = (iUseClipRect ? top : 0); |
|
491 padding = (iUseClipRect ? right : iRubbish.iWidth); |
|
492 break; |
|
493 |
|
494 case EDecodeRotate90: |
|
495 case EDecodeVerticalFlipRotate90: |
|
496 initialPadding = (iUseClipRect ? left : 0); |
|
497 padding = (iUseClipRect ? bottom : iRubbish.iHeight); |
|
498 break; |
|
499 |
|
500 case EDecodeHorizontalFlipRotate90: |
|
501 case EDecodeRotate270: |
|
502 initialPadding = (iUseClipRect ? left : 0); |
|
503 padding = (iUseClipRect ? top : 0); |
|
504 break; |
|
505 |
|
506 default: |
|
507 ASSERT(EFalse); |
|
508 } |
|
509 |
|
510 JPEG_DEBUG2(" - initialPadding = %d", initialPadding); |
|
511 JPEG_DEBUG2(" - padding = %d", padding); |
|
512 |
|
513 JPEG_ASSERT(aImageProc); |
|
514 |
|
515 aImageProc->SetInitialScanlineSkipPadding(initialPadding); |
|
516 aImageProc->SetPixelPadding(padding); |
|
517 aImageProc->PrepareL(aFrame, aPrepareLSize, iBufSize); |
|
518 } |
|
519 |
|
520 // |
|
521 // |
|
522 // |
|
523 TInt CJpgReadCodec::ScaleFactorToDivisorL(TInt aScalingFactor) |
|
524 { |
|
525 switch (aScalingFactor) |
|
526 { |
|
527 case 1: |
|
528 case -1: |
|
529 return 1; |
|
530 |
|
531 case -2: |
|
532 return 2; |
|
533 |
|
534 case -3: |
|
535 return 4; |
|
536 |
|
537 case -4: |
|
538 return 8; |
|
539 |
|
540 default: |
|
541 break; |
|
542 } |
|
543 |
|
544 // Keep the compiler happy. |
|
545 JPEG_LEAVE(KErrArgument, "Bad scaling factor"); |
|
546 return 0; |
|
547 } |
|
548 |
|
549 // |
|
550 // Calculates the necessary intermediate buffer size and allocates it. |
|
551 // It also sets how many MCUs are contained in the buffer (iMCUsPerBuffer). |
|
552 // |
|
553 void CJpgReadCodec::ConfigureAndAllocateBufferL(const TInt aScale) |
|
554 { |
|
555 JPEG_DEBUG2("ConfigureAndAllocateBufferL(aScale=%d)", aScale); |
|
556 JPEG_ASSERT(aScale > 0); |
|
557 |
|
558 TInt horizMCUs = 0; |
|
559 TInt vertMCUs = 0; |
|
560 |
|
561 if (iUseClipRect) |
|
562 { |
|
563 // We need to translate the clipping rect from pixels to MCU space. |
|
564 // Clipping is done before any rotation. |
|
565 JPEG_ASSERT(!iProgressive); |
|
566 |
|
567 CalculateMCUBoundingRectL(iFrameInfo.iMCUBlocksPerLine); |
|
568 horizMCUs = iMCUClipRect.Width() / iFrameInfo.MCUWidthInPixels(); |
|
569 vertMCUs = iMCUClipRect.Height() / iFrameInfo.MCUHeightInPixels(); |
|
570 } |
|
571 else |
|
572 { |
|
573 if (iProgressive) |
|
574 { |
|
575 JPEG_ASSERT(aScale == 1); |
|
576 JPEG_ASSERT(iOperation == EDecodeNormal); |
|
577 |
|
578 horizMCUs = 1; |
|
579 vertMCUs = 1; |
|
580 } |
|
581 else |
|
582 { |
|
583 horizMCUs = iFrameInfo.iMCUBlocksPerLine; |
|
584 vertMCUs = iFrameInfo.iMCUBlocksPerColumn; |
|
585 |
|
586 iRubbish.iWidth = ((horizMCUs * iFrameInfo.MCUWidthInPixels()) - iFrameInfo.iSizeInPixels.iWidth) / aScale; |
|
587 iRubbish.iHeight = ((vertMCUs * iFrameInfo.MCUHeightInPixels()) - iFrameInfo.iSizeInPixels.iHeight) / aScale; |
|
588 |
|
589 JPEG_DEBUG3(" - iRubbish: %d x %d (scaled)", iRubbish.iWidth, iRubbish.iHeight); |
|
590 JPEG_ASSERT(iRubbish.iWidth >= 0); |
|
591 JPEG_ASSERT(iRubbish.iHeight >= 0); |
|
592 } |
|
593 } |
|
594 |
|
595 // We may need to swap dimensions for some rotates. |
|
596 switch (iOperation) |
|
597 { |
|
598 case EDecodeRotate90: |
|
599 case EDecodeRotate270: |
|
600 case EDecodeHorizontalFlipRotate90: |
|
601 case EDecodeVerticalFlipRotate90: |
|
602 iMCUsPerBuffer = vertMCUs; |
|
603 iBufSize.iWidth = vertMCUs * iFrameInfo.MCUHeightInPixels(); |
|
604 iBufSize.iHeight = iFrameInfo.MCUWidthInPixels(); |
|
605 break; |
|
606 |
|
607 default: |
|
608 iMCUsPerBuffer = horizMCUs; |
|
609 iBufSize.iWidth = horizMCUs * iFrameInfo.MCUWidthInPixels(); |
|
610 iBufSize.iHeight = iFrameInfo.MCUHeightInPixels(); |
|
611 } |
|
612 |
|
613 iBufSize.iWidth /= aScale; |
|
614 iBufSize.iHeight /= aScale; |
|
615 |
|
616 // Because JPEG doesn't round up with scaling it is possible to have a scaled image that 0x0 in size. |
|
617 // Things are ok for now because a 1x1 image is actually an 8x8 image and the maximum reduction factor |
|
618 // supported is -4 (divide by 8). It is possible that larger reduction factors will be supported in |
|
619 // the future as cameras take larger pictures. In this case an 8x8 image will scale to 0x0. |
|
620 JPEG_DEBUG3(" - scaled buffer dimensions: %d x %d", iBufSize.iWidth, iBufSize.iHeight); |
|
621 JPEG_ASSERT(iBufSize.iWidth > 0); |
|
622 JPEG_ASSERT(iBufSize.iHeight > 0); |
|
623 JPEG_ASSERT(iPixelSize > 0); |
|
624 |
|
625 TInt bufSize = iBufSize.iWidth * iBufSize.iHeight * iPixelSize; |
|
626 |
|
627 User::Free(iRgbBuffer); |
|
628 iRgbBuffer = NULL; |
|
629 iRgbBuffer = reinterpret_cast<TRgb*>(User::AllocL(bufSize)); |
|
630 } |
|
631 |
|
632 |
|
633 // |
|
634 // Sets up the fields that control where the pixels are |
|
635 // drawn into the intermediate buffer. |
|
636 // |
|
637 void CJpgReadCodec::CalculateRenderingParams(const TInt aScale) |
|
638 { |
|
639 JPEG_DEBUG1("CalculateRenderingParams()"); |
|
640 |
|
641 JPEG_ASSERT(aScale > 0); |
|
642 |
|
643 TInt mcuPixelWidth = iFrameInfo.MCUWidthInPixels() / aScale; |
|
644 TInt mcuPixelHeight = iFrameInfo.MCUHeightInPixels() / aScale; |
|
645 |
|
646 switch (iOperation) |
|
647 { |
|
648 case EDecodeNormal: |
|
649 case EDecodeHorizontalFlip: |
|
650 // These are the same except FlipHorizontal will draw from bottom up. |
|
651 iFirstPixelOffset = 0; |
|
652 iPixelIncrement = 1; |
|
653 iRgbBufNextLineOffs = iBufSize.iWidth - mcuPixelWidth; |
|
654 iFillBufferBackwards = EFalse; |
|
655 iMCUHorizExtent = mcuPixelWidth; |
|
656 break; |
|
657 |
|
658 case EDecodeVerticalFlip: |
|
659 case EDecodeRotate180: |
|
660 iFirstPixelOffset = mcuPixelWidth - 1; |
|
661 iPixelIncrement = -1; |
|
662 iRgbBufNextLineOffs = iBufSize.iWidth + mcuPixelWidth; |
|
663 iFillBufferBackwards = ETrue; |
|
664 iMCUHorizExtent = mcuPixelWidth; |
|
665 break; |
|
666 |
|
667 case EDecodeRotate90: |
|
668 case EDecodeVerticalFlipRotate90: |
|
669 // These differ only in the direction the buffer is copied to the bitmap. |
|
670 iFirstPixelOffset = mcuPixelHeight - 1; |
|
671 iPixelIncrement = iBufSize.iWidth; |
|
672 iRgbBufNextLineOffs = -((iBufSize.iWidth * mcuPixelWidth) + 1); |
|
673 iFillBufferBackwards = ETrue; |
|
674 iMCUHorizExtent = mcuPixelHeight; |
|
675 break; |
|
676 |
|
677 case EDecodeRotate270: |
|
678 case EDecodeHorizontalFlipRotate90: |
|
679 // These differ only in the direction the buffer is copied to the bitmap. |
|
680 iFirstPixelOffset = 0; |
|
681 iPixelIncrement = iBufSize.iWidth; |
|
682 iRgbBufNextLineOffs = -(iBufSize.iWidth * mcuPixelWidth) + 1; |
|
683 iFillBufferBackwards = EFalse; |
|
684 iMCUHorizExtent = mcuPixelHeight; |
|
685 break; |
|
686 |
|
687 default: |
|
688 // Bad operation. |
|
689 ASSERT(EFalse); |
|
690 } |
|
691 |
|
692 JPEG_DEBUG2(" - iFirstPixelOffset = %d", iFirstPixelOffset); |
|
693 JPEG_DEBUG2(" - iPixelIncrement = %d", iPixelIncrement); |
|
694 JPEG_DEBUG2(" - iRgbBufNextLineOffs = %d", iRgbBufNextLineOffs); |
|
695 JPEG_DEBUG2(" - iFillBufferBackwards = %d", iFillBufferBackwards); |
|
696 JPEG_DEBUG2(" - iMCUHorizExtent = %d", iMCUHorizExtent); |
|
697 } |
|
698 |
|
699 // |
|
700 // This is called when a clipping rectangle has been set. |
|
701 // Subclasses that support clipping must provide a way of |
|
702 // mapping the clip rect pixel coordinates to MCUs. |
|
703 // |
|
704 void CJpgReadCodec::CalculateMCUBoundingRectL(TInt /*aMCUsPerLine*/) |
|
705 { |
|
706 JPEG_LEAVE(KErrNotSupported, "CalculateMCUBoundingRectL"); |
|
707 } |
|
708 |
|
709 /** |
|
710 we would go across the whole block top-to-bottom left-to-right |
|
711 */ |
|
712 void CJpgReadCodec::CalculateRgbIndeces() |
|
713 { |
|
714 TUVidxElemType* pixIdxPtr=iUVIndeces; |
|
715 |
|
716 TUint offsMask=iMaxVertSampleFactor*iMaxHorzSampleFactor*KJpgDCTBlockSize -1; |
|
717 TInt vertStep=1; |
|
718 |
|
719 switch (iScalingFactor) |
|
720 { |
|
721 case -4: |
|
722 offsMask &= ~TUint(KJpgDCTBlockSize - 1); |
|
723 break; |
|
724 |
|
725 case -3: |
|
726 vertStep = 4; |
|
727 break; |
|
728 |
|
729 case -2: |
|
730 vertStep = 2; |
|
731 break; |
|
732 |
|
733 default: |
|
734 ASSERT((iScalingFactor == 1) || (iScalingFactor == -1)); |
|
735 } |
|
736 |
|
737 for (TInt j = 0; j < iMaxVertSampleFactor*KJpgDCTBlockWidth; j+=vertStep) |
|
738 { |
|
739 |
|
740 for (TInt i = 0; i < iMaxHorzSampleFactor; i++) |
|
741 { |
|
742 for (TInt k=0; k<2; ++k) |
|
743 { |
|
744 const TInt shiftIdx=k; |
|
745 const TInt comp=k+1; |
|
746 TInt hOffs =((i*KJpgDCTBlockWidth)>>iHorzSampleRatioSh[shiftIdx])&7; |
|
747 TInt hBlkOffs =(i>>iHorzSampleRatioSh[shiftIdx]) *KJpgDCTBlockSize; |
|
748 |
|
749 TInt vOffs =((j>>iVertSampleRatioSh[shiftIdx]&7))*KJpgDCTBlockWidth; |
|
750 |
|
751 TInt vBlkOffs =((j/KJpgDCTBlockWidth) >>iVertSampleRatioSh[shiftIdx]) *KJpgDCTBlockSize*iHorzSampleFactor[comp]; |
|
752 |
|
753 *pixIdxPtr++ = offsMask & (hOffs+ hBlkOffs + vOffs + vBlkOffs); |
|
754 } |
|
755 |
|
756 if (iScalingFactor == -3) |
|
757 { |
|
758 // for this factor we have 1 more entry per horizontal line |
|
759 // which is offset against previous pixel i.e. (4>>iHorzSampleRatioSh[Comp]) |
|
760 *pixIdxPtr++ = vertStep>>iHorzSampleRatioSh[KUShiftIdx]; |
|
761 *pixIdxPtr++ = vertStep>>iHorzSampleRatioSh[KVShiftIdx]; |
|
762 } |
|
763 } |
|
764 } |
|
765 ASSERT(pixIdxPtr-iUVIndeces <= sizeof(iUVIndeces)/sizeof(iUVIndeces[0]) ); |
|
766 } |
|
767 |
|
768 void CJpgReadCodec::InitFrameL(CImageFrame& aDest) |
|
769 { |
|
770 JPEG_DEBUG1("CJpgReadCodec::InitFrameL(CImageFrame)"); |
|
771 |
|
772 PreInitFrameL(); |
|
773 |
|
774 // This JPEG codec does not support scaling when using destination of type CImageFrame |
|
775 // It leaves if scaling has been requested. |
|
776 //TInt reductionFactor = 0; |
|
777 |
|
778 if (iOperation != EDecodeNormal) |
|
779 { |
|
780 JPEG_LEAVE(KErrNotSupported, "No operations on CImageFrame"); |
|
781 } |
|
782 |
|
783 if (iExtensionManager->ScalerExtensionRequested()) |
|
784 { |
|
785 JPEG_LEAVE(KErrNotSupported, "No scaling on CImageFrame"); |
|
786 } |
|
787 |
|
788 if (iUseClipRect) |
|
789 { |
|
790 JPEG_LEAVE(KErrNotSupported, "No clipping on CImageFrame"); |
|
791 } |
|
792 |
|
793 // Check for implicit scaling. |
|
794 TInt reductionFactor = 0; |
|
795 if (!iUseClipRect) |
|
796 { |
|
797 reductionFactor = ReductionFactor(iFrameInfo.iSizeInPixels, aDest.FrameSizeInPixels()); |
|
798 } |
|
799 |
|
800 if (reductionFactor != 0) |
|
801 { |
|
802 JPEG_DEBUG2(" - reductionFactor = %d", reductionFactor); |
|
803 JPEG_LEAVE(KErrNotSupported, "Bad reductionFactor"); |
|
804 } |
|
805 |
|
806 InitComponentsL(); |
|
807 |
|
808 iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize; |
|
809 iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize; |
|
810 iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize; |
|
811 |
|
812 iCompConf[KYComp].iDCT = &iFullDCT; |
|
813 iCompConf[KUComp].iDCT = &iFullDCT; |
|
814 iCompConf[KVComp].iDCT = &iFullDCT; |
|
815 |
|
816 iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
817 iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
818 iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
819 |
|
820 // Create JPEG read codec extension and the appropriate image processor |
|
821 ASSERT(iImageFrameCodecPtr == NULL); |
|
822 delete iImageFrameCodecPtr; |
|
823 iImageFrameCodecPtr = NULL; |
|
824 iImageFrameCodecPtr = CJpgImageFrameReadCodec::NewL(&aDest); |
|
825 iImageFrameCodecPtr->CreateImageProcessorL(iFrameInfo); |
|
826 |
|
827 PostInitFrameL(); |
|
828 } |
|
829 |
|
830 //initialization for streaming |
|
831 void CJpgReadCodec::InitFrameL(TUid aFormat, TDecodeStreamCaps::TNavigation aNavigation) |
|
832 { |
|
833 JPEG_DEBUG1("InitFrameL(TUid)"); |
|
834 |
|
835 //validate format with frameinfo |
|
836 PreInitFrameL(); |
|
837 |
|
838 ValidateFormatL(iFrameInfo, aFormat); |
|
839 |
|
840 iIsBlockStreaming = ETrue; |
|
841 |
|
842 iStreamFormat = aFormat; |
|
843 iNavigation = aNavigation; |
|
844 |
|
845 InitComponentsL(); |
|
846 |
|
847 iCompConf[KYComp].iDequantFunc = &TQTable::DeQuantize; |
|
848 iCompConf[KUComp].iDequantFunc = &TQTable::DeQuantize; |
|
849 iCompConf[KVComp].iDequantFunc = &TQTable::DeQuantize; |
|
850 |
|
851 iCompConf[KYComp].iDCT = &iFullDCT; |
|
852 iCompConf[KUComp].iDCT = &iFullDCT; |
|
853 iCompConf[KVComp].iDCT = &iFullDCT; |
|
854 |
|
855 iCompConf[KYComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
856 iCompConf[KUComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
857 iCompConf[KVComp].iDCT->SetPrecision(iFrameInfo.iSamplePrecision); |
|
858 |
|
859 // Create JPEG read codec extension and the appropriate image processor |
|
860 delete iImageFrameCodecPtr; |
|
861 iImageFrameCodecPtr = NULL; |
|
862 iImageFrameCodecPtr = CJpgImageFrameReadCodec::NewL(NULL); |
|
863 |
|
864 PostInitFrameL(); |
|
865 } |
|
866 |
|
867 #if defined(__ARMCC__) |
|
868 #pragma pop |
|
869 #endif |
|
870 |
|
871 //get blocks for streaming |
|
872 void CJpgReadCodec::GetBlocksL(CImageFrame* aFrame, TInt aSeqPosition, TInt aNumBlocksToGet, TInt* aNumBlocksRead) |
|
873 { |
|
874 ASSERT(aNumBlocksRead); |
|
875 |
|
876 if(aFrame == NULL || !(iNavigation == TDecodeStreamCaps::ENavigationRandomForward || iNavigation == TDecodeStreamCaps::ENavigationRandomBackwards)) |
|
877 { |
|
878 JPEG_LEAVE(KErrArgument, "GetBlocks - bad params"); |
|
879 } |
|
880 |
|
881 ValidateImageFrameBlockL(aFrame); |
|
882 |
|
883 iImageFrameCodecPtr->SetImageFrameBlocksL(aFrame, iFrameInfo); |
|
884 |
|
885 *aNumBlocksRead = 0; |
|
886 iStreamDecodeConfig.iSeqPosition = aSeqPosition; |
|
887 iStreamDecodeConfig.iNumBlocksToGet = aNumBlocksToGet; |
|
888 iStreamDecodeConfig.iNumBlocksRead = aNumBlocksRead; |
|
889 } |
|
890 |
|
891 //get blocks for streaming |
|
892 void CSequentialJpgReadCodec::GetBlocksL(CImageFrame* aFrame, TInt aSeqPosition, TInt aNumBlocksToGet, TInt* aNumBlocksRead) |
|
893 { |
|
894 if (aSeqPosition < 0) |
|
895 { |
|
896 JPEG_LEAVE(KErrArgument, "GetBlocksL - bad aSeqPosition"); |
|
897 } |
|
898 |
|
899 iNeededMCU = aSeqPosition; |
|
900 |
|
901 CJpgReadCodec::GetBlocksL(aFrame, aSeqPosition, aNumBlocksToGet, aNumBlocksRead); |
|
902 } |
|
903 |
|
904 //get blocks for streaming |
|
905 void CJpgReadCodec::GetNextBlocksL(CImageFrame* aFrame, TInt aNumBlocksToGet, TInt* aNumBlocksRead, TBool* aHaveMoreBlocks) |
|
906 { |
|
907 ASSERT(aNumBlocksRead); |
|
908 ASSERT(aHaveMoreBlocks); |
|
909 |
|
910 if (aFrame == NULL || iNavigation != TDecodeStreamCaps::ENavigationSequentialForward) |
|
911 { |
|
912 JPEG_LEAVE(KErrArgument, "GetNextBlocksL - bad params"); |
|
913 } |
|
914 |
|
915 ValidateImageFrameBlockL(aFrame); |
|
916 |
|
917 iImageFrameCodecPtr->SetImageFrameBlocksL(aFrame, iFrameInfo); |
|
918 |
|
919 *aNumBlocksRead = 0; |
|
920 *aHaveMoreBlocks = ETrue; |
|
921 iStreamDecodeConfig.iNumBlocksToGet = aNumBlocksToGet; |
|
922 iStreamDecodeConfig.iNumBlocksRead = aNumBlocksRead; |
|
923 iStreamDecodeConfig.iHaveMoreBlocks = aHaveMoreBlocks; |
|
924 } |
|
925 |
|
926 //validates the blocks passed. |
|
927 void CJpgReadCodec::ValidateImageFrameBlockL(CImageFrame* aFrame) |
|
928 { |
|
929 ASSERT(aFrame); |
|
930 |
|
931 TSize aBlockSizeInPixels = aFrame->FrameSizeInPixels(); |
|
932 TSize aRefSizeInPixels = TSize(iFrameInfo.MCUWidthInPixels(), iFrameInfo.MCUHeightInPixels()); |
|
933 |
|
934 const TFrameFormat& format = static_cast<const TFrameFormat&>(aFrame->FrameFormat()); |
|
935 TUid imageFrameFormatCode = format.FormatCode(); |
|
936 |
|
937 TInt oddPixelsWidth = aBlockSizeInPixels.iWidth % aRefSizeInPixels.iWidth; |
|
938 TInt oddPixelsHeight = aBlockSizeInPixels.iHeight % aRefSizeInPixels.iHeight; |
|
939 |
|
940 if (oddPixelsWidth != 0 || oddPixelsHeight != 0 || aBlockSizeInPixels.iHeight != aRefSizeInPixels.iHeight) |
|
941 { |
|
942 User::Leave(KErrNotSupported); |
|
943 } |
|
944 |
|
945 if(iIsBlockStreaming == EFalse) |
|
946 { |
|
947 User::Leave(KErrNotReady); |
|
948 } |
|
949 |
|
950 if(imageFrameFormatCode != KNullUid) |
|
951 { |
|
952 if(imageFrameFormatCode != iStreamFormat) |
|
953 { |
|
954 User::Leave(KErrArgument); |
|
955 } |
|
956 } |
|
957 } |
|
958 |
|
959 //get buffer and blockSizeInPix for streaming |
|
960 TInt CJpgReadCodec::GetStreamBufferSizeL(TUid aFormatCode, TSize& aBlockSizeInPixels, TInt aNumBlocks) |
|
961 { |
|
962 return CJpgImageFrameProcessorUtility::RecommendedStreamBufferSizeL(iFrameInfo, aFormatCode, aBlockSizeInPixels, aNumBlocks); |
|
963 } |
|
964 |
|
965 //validate format |
|
966 void CJpgReadCodec::ValidateFormatL(const TJpgFrameInfo& aFrameInfo, TUid aFormatCode) |
|
967 { |
|
968 TInt dataUnitCount=0; |
|
969 |
|
970 if (aFrameInfo.iNumberOfComponents == 1) |
|
971 { |
|
972 dataUnitCount = 1; |
|
973 } |
|
974 else |
|
975 { |
|
976 dataUnitCount = 0; |
|
977 for (TInt index = 0; index < aFrameInfo.iNumberOfComponents; index++) |
|
978 { |
|
979 dataUnitCount += aFrameInfo.iComponent[index].iHorzSampleFactor * |
|
980 aFrameInfo.iComponent[index].iVertSampleFactor; |
|
981 } |
|
982 } |
|
983 |
|
984 switch (dataUnitCount) |
|
985 { |
|
986 |
|
987 case 1: // Monochrome |
|
988 { |
|
989 if (aFormatCode != KUidFormatYUVMonochrome) |
|
990 { |
|
991 // error transcoding not supported |
|
992 User::Leave(KErrNotSupported); |
|
993 } |
|
994 break; |
|
995 } |
|
996 |
|
997 case 4: // 4:2:2 |
|
998 { |
|
999 if (aFormatCode != KUidFormatYUV422Interleaved) |
|
1000 { |
|
1001 // error transcoding not supported |
|
1002 User::Leave(KErrNotSupported); |
|
1003 } |
|
1004 break; |
|
1005 } |
|
1006 |
|
1007 case 6: // 4:2:0 |
|
1008 { |
|
1009 if (!(aFormatCode == KUidFormatYUV420Planar || aFormatCode == KUidFormatYUV420PlanarReversed)) |
|
1010 { |
|
1011 // error transcoding not supported |
|
1012 User::Leave(KErrNotSupported); |
|
1013 } |
|
1014 break; |
|
1015 } |
|
1016 |
|
1017 default: |
|
1018 { |
|
1019 User::Leave(KErrNotSupported); |
|
1020 break; |
|
1021 } |
|
1022 } |
|
1023 } |
|
1024 |
|
1025 // |
|
1026 // This function should be called at beginning of the |
|
1027 // various InitFrameL versions. It performs initialisation |
|
1028 // that's common to all forms of image. |
|
1029 // |
|
1030 void CJpgReadCodec::PreInitFrameL() |
|
1031 { |
|
1032 JPEG_DEBUG1("PreInitFrameL()"); |
|
1033 JPEG_DEBUG2(" - MCU pixel width: %d", iFrameInfo.MCUWidthInPixels()); |
|
1034 JPEG_DEBUG2(" - MCU pixel height: %d", iFrameInfo.MCUHeightInPixels()); |
|
1035 |
|
1036 iHorzMCUBlkCount = 0; |
|
1037 iScalingFactor = 1; |
|
1038 iMCUsPerBuffer = (iFrameInfo.iProgressive ? 1 : iFrameInfo.iMCUBlocksPerLine); |
|
1039 ASSERT(iMCUsPerBuffer > 0); |
|
1040 |
|
1041 iMonochrome = (iFrameInfo.iNumberOfComponents == 1); |
|
1042 |
|
1043 TInt interval = iFrameInfo.iRestartInterval; |
|
1044 iRestartMCUCount = (interval > 0 ? interval : KErrNotFound); |
|
1045 JPEG_DEBUG2(" - iRestartMCUCount = %d", iRestartMCUCount); |
|
1046 |
|
1047 iMaxHorzSampleFactor = iFrameInfo.iMaxHorzSampleFactor; |
|
1048 iMaxVertSampleFactor = iFrameInfo.iMaxVertSampleFactor; |
|
1049 JPEG_DEBUG2(" - iMaxHorzSampleFactor = %d", iMaxHorzSampleFactor); |
|
1050 JPEG_DEBUG2(" - iMaxVertSampleFactor = %d", iMaxVertSampleFactor); |
|
1051 |
|
1052 // Get info from the extension manager. The InitFrameL function can |
|
1053 // decide whether or not the operation is supported. |
|
1054 ASSERT(iExtensionManager); |
|
1055 |
|
1056 if (iAutoRotateFlag > 1 && iAutoRotateFlag < 9) |
|
1057 { |
|
1058 // To ensure operation extension is created |
|
1059 iExtensionManager->CreateExtensionForAutoRotateL(); |
|
1060 iOperation = iExtensionManager->OperationL(iAutoRotateFlag); |
|
1061 } |
|
1062 else |
|
1063 { |
|
1064 iOperation = iExtensionManager->Operation(); |
|
1065 } |
|
1066 |
|
1067 // check out if we need to clip. |
|
1068 iUseClipRect = EFalse; |
|
1069 if (iExtensionManager->ClippingRectExtensionRequested()) |
|
1070 { |
|
1071 iUseClipRect = ETrue; |
|
1072 } |
|
1073 |
|
1074 ResetState(); |
|
1075 } |
|
1076 |
|
1077 // |
|
1078 // |
|
1079 // |
|
1080 void CJpgReadCodec::PostInitFrameL() |
|
1081 { |
|
1082 // Default implementation does nothing. |
|
1083 } |
|
1084 |
|
1085 // |
|
1086 // |
|
1087 // |
|
1088 void CJpgReadCodec::StoreState() |
|
1089 { |
|
1090 iInitialDataPtr = iDataPtr; |
|
1091 iInitialDataValue = iDataValue; |
|
1092 iInitialBitsLeft = iBitsLeft; |
|
1093 iBitBufferPtrLimit = NULL; |
|
1094 |
|
1095 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
1096 { |
|
1097 iInitialDCPredictor[i] = iDCPredictor[i]; |
|
1098 } |
|
1099 } |
|
1100 |
|
1101 // |
|
1102 // |
|
1103 // |
|
1104 void CJpgReadCodec::RestoreState() |
|
1105 { |
|
1106 iDataPtr = iInitialDataPtr; |
|
1107 iBitBufferPtrLimit = NULL; |
|
1108 iDataValue = iInitialDataValue; |
|
1109 iBitsLeft = iInitialBitsLeft; |
|
1110 |
|
1111 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
1112 { |
|
1113 iDCPredictor[i] = iInitialDCPredictor[i]; |
|
1114 } |
|
1115 } |
|
1116 |
|
1117 // |
|
1118 // |
|
1119 // |
|
1120 void CJpgReadCodec::ResetState() |
|
1121 { |
|
1122 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
1123 { |
|
1124 iDCPredictor[i] = 0; |
|
1125 } |
|
1126 |
|
1127 iBitsLeft = 0; |
|
1128 iBitBufferPtrLimit = NULL; |
|
1129 } |
|
1130 |
|
1131 // |
|
1132 // Returns the number of bytes that had to be skipped before the restart marker was found. |
|
1133 // |
|
1134 TInt CJpgReadCodec::RestartStateL() |
|
1135 { |
|
1136 const TUint8* startPtr = iDataPtr; |
|
1137 const TUint8* readLimit = iDataPtrLimit - 2; |
|
1138 |
|
1139 // skip the data until the marker is found |
|
1140 while (*iDataPtr != 0xff && iDataPtr < readLimit) |
|
1141 { |
|
1142 iDataPtr++; |
|
1143 } |
|
1144 |
|
1145 if (*iDataPtr != 0xff) |
|
1146 { |
|
1147 User::Leave(KErrCompletion); |
|
1148 } |
|
1149 |
|
1150 iDataPtr++; |
|
1151 |
|
1152 TInt marker = *iDataPtr++; |
|
1153 |
|
1154 if (marker == (KJpgEOISignature & 0x00ff)) |
|
1155 { |
|
1156 User::Leave(KErrEof); |
|
1157 } |
|
1158 else if ((marker & 0xf0) != 0xd0) |
|
1159 { |
|
1160 #if !defined(RELAX_JPEG_STRICTNESS) |
|
1161 User::Leave(KErrCorrupt); |
|
1162 #endif |
|
1163 } |
|
1164 |
|
1165 // if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL |
|
1166 // This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame |
|
1167 iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound; |
|
1168 ResetState(); |
|
1169 StoreState(); |
|
1170 |
|
1171 return iDataPtr - startPtr; |
|
1172 } |
|
1173 |
|
1174 CJpgImageFrameReadCodec* CJpgReadCodec::ImageFrameCodec() |
|
1175 { |
|
1176 return iImageFrameCodecPtr; |
|
1177 } |
|
1178 |
|
1179 TInt CJpgReadCodec::ReducedSize(const TSize& aOriginalSize, TInt aReductionFactor, TSize& aReducedSize) const |
|
1180 { |
|
1181 aReducedSize = aOriginalSize; |
|
1182 if (aReductionFactor < 0 || aReductionFactor > 3) |
|
1183 { |
|
1184 return KErrArgument; |
|
1185 } |
|
1186 else |
|
1187 { |
|
1188 return CImageReadCodec::ReducedSize(aOriginalSize, aReductionFactor, aReducedSize); |
|
1189 } |
|
1190 } |
|
1191 |
|
1192 #if defined(__ARMCC__) |
|
1193 // use ARM instruction for performance-critical code |
|
1194 #pragma push |
|
1195 #pragma arm |
|
1196 #pragma O3 |
|
1197 #pragma Otime |
|
1198 #endif |
|
1199 |
|
1200 TInt CJpgReadCodec::FillBitBufferL(TInt aBLeft) |
|
1201 { |
|
1202 const TInt KBytesToFetch= 4; |
|
1203 const TUint8* dataPtr = iDataPtr; |
|
1204 |
|
1205 const TUint8* bitBufLim = iBitBufferPtrLimit; |
|
1206 if (dataPtr + KBytesToFetch >= bitBufLim) |
|
1207 { |
|
1208 bitBufLim = JpegFillBuffer(dataPtr); |
|
1209 } |
|
1210 |
|
1211 register TUint dataValue = iDataValue; |
|
1212 |
|
1213 if (dataPtr + KBytesToFetch < bitBufLim ) |
|
1214 { |
|
1215 if (aBLeft == 0) |
|
1216 { |
|
1217 aBLeft = 8; |
|
1218 dataValue = (*dataPtr++); |
|
1219 } |
|
1220 dataValue = (dataValue<<8) | (*dataPtr++); |
|
1221 dataValue = (dataValue<<8) | (*dataPtr++); |
|
1222 dataValue = (dataValue<<8) | (*dataPtr++); |
|
1223 |
|
1224 iBitsLeft = aBLeft + (KBytesToFetch-1) * 8; |
|
1225 |
|
1226 iDataValue= dataValue; |
|
1227 iDataPtr = dataPtr; |
|
1228 |
|
1229 return iBitsLeft; |
|
1230 } |
|
1231 |
|
1232 if (dataPtr == iDataPtrLimit) // no more data available |
|
1233 { |
|
1234 if (aBLeft) // there are some bits left so make use of them |
|
1235 { |
|
1236 return (iBitsLeft = aBLeft); |
|
1237 } |
|
1238 // no more data in buffer - signal that |
|
1239 User::Leave(KErrCompletion); |
|
1240 } |
|
1241 |
|
1242 iDataValue = (dataValue<<8) | (*iDataPtr++); |
|
1243 iBitsLeft = aBLeft + 8; |
|
1244 |
|
1245 if ((iDataValue & 0xFF) == 0xFF) |
|
1246 { |
|
1247 if (iDataPtr == iDataPtrLimit) |
|
1248 { |
|
1249 // ----+ +------- |
|
1250 // |FF| |??|??| |
|
1251 // ----+ +------- |
|
1252 --iDataPtr; |
|
1253 User::Leave(KErrCompletion); |
|
1254 } |
|
1255 |
|
1256 // When the byte sequence 0xFF occurs in encoded image data it must be followed |
|
1257 // by 0x00 or the decoder will consider it a marker. The 0x00 is ignored |
|
1258 // by the decoder. |
|
1259 |
|
1260 // --------... |
|
1261 // |FF|??| |
|
1262 // --------... |
|
1263 TInt marker = *iDataPtr++; |
|
1264 if (marker)//Since (FF,00) stream is valid we send it.For a Non-Zero marker we need to do something |
|
1265 { |
|
1266 // It's a proper marker |
|
1267 if (iBitsLeft > 8) // there are stiil some bits to decode |
|
1268 { |
|
1269 // Before: iDataValue = [xxxxxxxx][xxxxxxxx][xxxxxxxx][ffffffff] |
|
1270 iBitsLeft-=8; |
|
1271 iDataValue >>=8; |
|
1272 iDataPtr-=2; |
|
1273 // After: iDataValue = [00000000][xxxxxxxx][xxxxxxxxx][xxxxxxxx] |
|
1274 return iBitsLeft; |
|
1275 } |
|
1276 // End of encoded image data stream? |
|
1277 if (marker == (KJpgEOISignature&0xFF)) //Allow 0xFF as a valid marker only report KErrEof in case of EOI marker |
|
1278 { |
|
1279 User::Leave(KErrEof); // we've reached the end of the file |
|
1280 } |
|
1281 else |
|
1282 { |
|
1283 //If marker is a special marker like 0xFF we need to give a valid iDataValue.. |
|
1284 if(marker == KJpgMarkerByte) |
|
1285 { |
|
1286 while(iDataPtr<iDataPtrLimit && *iDataPtr == KJpgMarkerByte) |
|
1287 { |
|
1288 iDataPtr++; |
|
1289 } |
|
1290 |
|
1291 if (iDataPtr==iDataPtrLimit) |
|
1292 { |
|
1293 --iDataPtr; |
|
1294 User::Leave(KErrCompletion); |
|
1295 } |
|
1296 else |
|
1297 { |
|
1298 //Check for 0x00 marker since (0xFF,0x00) is a valid stream |
|
1299 if(*iDataPtr==0x00) |
|
1300 { |
|
1301 iDataPtr+=1; |
|
1302 return iBitsLeft; |
|
1303 } |
|
1304 } |
|
1305 } |
|
1306 iDataPtr-=1; // we'd accept some malformed files, otherwise User::Leave(KErr) |
|
1307 } |
|
1308 } |
|
1309 } |
|
1310 return iBitsLeft; |
|
1311 } |
|
1312 |
|
1313 // |
|
1314 // Examine the buffer given by ProcessL for 0xFF sequences. |
|
1315 // This allows for less checking in the FillBitBufferL function. |
|
1316 // |
|
1317 inline const TUint8* CJpgReadCodec::JpegFillBuffer(const TUint8* aDataPtr) |
|
1318 { |
|
1319 register const TUint8* limit = Min(iDataPtrLimit - 1, aDataPtr + KMarkerLookAhead + 1); |
|
1320 |
|
1321 // Try to ignore markers that are at the start of the buffer, except for EOI. |
|
1322 while ((aDataPtr < limit) && (*aDataPtr != 0xFF)) |
|
1323 { |
|
1324 ++aDataPtr; |
|
1325 } |
|
1326 |
|
1327 return (iBitBufferPtrLimit = (aDataPtr - 1)); |
|
1328 } |
|
1329 |
|
1330 FORCEDINLINE TBool CJpgReadCodec::NextBitL() |
|
1331 { |
|
1332 if (iBitsLeft == 0) |
|
1333 { |
|
1334 FillBitBufferL(0); |
|
1335 } |
|
1336 return (iDataValue & (1 << --iBitsLeft)); |
|
1337 } |
|
1338 |
|
1339 void CJpgReadCodec::SetAutoRotateFlag(TUint16 aAutoRotateFlag) |
|
1340 { |
|
1341 iAutoRotateFlag = aAutoRotateFlag; |
|
1342 } |
|
1343 |
|
1344 void CJpgReadCodec::GetComponentBlockL(TDataUnit& aDestination,TInt& aNumValues,TInt& aDCPrediction,const TDecHuffmanTable& aDCTable,const TDecHuffmanTable& aACTable) |
|
1345 { |
|
1346 TInt size = GetHuffmanCodeL(aDCTable); |
|
1347 TInt amplitude = (size > 0) ? GetBinaryNumberL( size & 0x1F ) : 0; |
|
1348 aDCPrediction += amplitude; |
|
1349 |
|
1350 if (aDCPrediction > KMaxTInt16 || aDCPrediction < KMinTInt16) |
|
1351 { |
|
1352 JPEG_LEAVE(KErrCorrupt, "Bad component block"); |
|
1353 } |
|
1354 |
|
1355 if (iScalingFactor != -4) |
|
1356 { |
|
1357 FillCompZ(aDestination, KJpgDCTBlockSize); |
|
1358 TInt16* valuePtr = aDestination.iCoeff; |
|
1359 TInt16* valuePtrLimit = valuePtr + KJpgDCTBlockSize; |
|
1360 |
|
1361 *valuePtr++ = TInt16(aDCPrediction); |
|
1362 |
|
1363 while (valuePtr < valuePtrLimit) |
|
1364 { |
|
1365 TInt s = GetHuffmanCodeL(aACTable); |
|
1366 if (s == 0) // End of block |
|
1367 { |
|
1368 break; |
|
1369 } |
|
1370 else |
|
1371 { |
|
1372 TInt r = s >> 4; |
|
1373 s &= 0x0f; |
|
1374 if (s > 0) |
|
1375 { |
|
1376 valuePtr += r; |
|
1377 |
|
1378 if (valuePtr < valuePtrLimit) |
|
1379 { |
|
1380 *valuePtr++ = GetBinaryNumberL(s); |
|
1381 } |
|
1382 } |
|
1383 else if (r == 15) // Zero run length |
|
1384 { |
|
1385 valuePtr += 16; |
|
1386 } |
|
1387 } |
|
1388 } |
|
1389 |
|
1390 if (valuePtr > valuePtrLimit) |
|
1391 { |
|
1392 valuePtr = valuePtrLimit; |
|
1393 } |
|
1394 |
|
1395 aNumValues = valuePtr - aDestination.iCoeff; |
|
1396 } |
|
1397 else // for 1/8 scaling we need only DC value, so perform fast block skipping |
|
1398 { |
|
1399 aNumValues = 1; |
|
1400 |
|
1401 aDestination.iCoeff[0] = TInt16(aDCPrediction); |
|
1402 TInt numValuesRead = 1; //we've already got DC value |
|
1403 do |
|
1404 { |
|
1405 TInt s = GetHuffmanCodeL(aACTable); |
|
1406 if (s == 0) // End of block |
|
1407 { |
|
1408 break; |
|
1409 } |
|
1410 else |
|
1411 { |
|
1412 TInt r = s >> 4; |
|
1413 s &= 0x0f; |
|
1414 if (s > 0) |
|
1415 { |
|
1416 numValuesRead += r; |
|
1417 |
|
1418 if (numValuesRead < KJpgDCTBlockSize) |
|
1419 { |
|
1420 numValuesRead++; |
|
1421 SkipBitsQuickL(s); |
|
1422 } |
|
1423 } |
|
1424 else if (r == 15) // Zero run length |
|
1425 { |
|
1426 numValuesRead += 16; |
|
1427 } |
|
1428 } |
|
1429 } while (numValuesRead < KJpgDCTBlockSize); |
|
1430 } |
|
1431 } |
|
1432 |
|
1433 TInt CJpgReadCodec::GetHuffmanCodeL(const TDecHuffmanTable& aTable) |
|
1434 { |
|
1435 TInt bLeft = iBitsLeft; |
|
1436 if (bLeft < KJpgHuffmanLookAhead) |
|
1437 { |
|
1438 bLeft = FillBitBufferL(bLeft); |
|
1439 } |
|
1440 |
|
1441 TUint dv = iDataValue; |
|
1442 |
|
1443 TInt nb=1; |
|
1444 // |
|
1445 if (bLeft >= KJpgHuffmanLookAhead) |
|
1446 { |
|
1447 |
|
1448 TUint32 fastLook = (dv >> (bLeft - KJpgHuffmanLookAhead)) & KJpgHuffmanLookAheadMask; |
|
1449 register TUint32 lookupEntry = aTable.GetLookupEntry(fastLook); |
|
1450 if (aTable.Found(lookupEntry)) |
|
1451 { |
|
1452 iBitsLeft = (bLeft - aTable.GetSize(lookupEntry)); |
|
1453 return aTable.GetCode(lookupEntry); |
|
1454 } |
|
1455 else |
|
1456 { |
|
1457 nb = (KJpgHuffmanLookAhead+1 > bLeft)? bLeft : KJpgHuffmanLookAhead+1; |
|
1458 } |
|
1459 } |
|
1460 |
|
1461 register TUint index = 0; |
|
1462 TInt bitCount = 0; |
|
1463 |
|
1464 ASSERT(nb>0); |
|
1465 register TUint32 look = dv << (32 - bLeft); |
|
1466 iBitsLeft -= nb; |
|
1467 do |
|
1468 { |
|
1469 index = (index << 1) + 1; |
|
1470 index +=((look & TUint(1<<31)) != 0); |
|
1471 look<<=1; |
|
1472 } while (++bitCount < nb); |
|
1473 |
|
1474 const TUint8* codeIdxHash = aTable.GetCodeIdxHash(); |
|
1475 |
|
1476 for (; bitCount <= 16; bitCount++) |
|
1477 { |
|
1478 TInt first = codeIdxHash[bitCount]; |
|
1479 TInt last = codeIdxHash[bitCount+1]; |
|
1480 while (last >= first) |
|
1481 { |
|
1482 register TInt notFoundPosition = (first + last) >> 1; |
|
1483 TInt codeIndex = aTable.GetIndex(notFoundPosition); |
|
1484 |
|
1485 if (index < codeIndex) |
|
1486 { |
|
1487 last = notFoundPosition - 1; |
|
1488 } |
|
1489 else if (index > codeIndex) |
|
1490 { |
|
1491 first = notFoundPosition + 1; |
|
1492 } |
|
1493 else |
|
1494 { |
|
1495 return aTable.GetIndexedCode(notFoundPosition); |
|
1496 } |
|
1497 } |
|
1498 |
|
1499 index = (index << 1) + 1; |
|
1500 index += (NextBitL()!=0); |
|
1501 } |
|
1502 |
|
1503 #if !defined(RELAX_JPEG_STRICTNESS) |
|
1504 User::Leave(KErrCorrupt); |
|
1505 #endif |
|
1506 |
|
1507 return aTable.GetIndexedCode(0); |
|
1508 } |
|
1509 |
|
1510 FORCEDINLINE void CJpgReadCodec::SkipBitsQuickL(TInt aNumOfBits) |
|
1511 { |
|
1512 TInt bLeft = iBitsLeft; |
|
1513 |
|
1514 FOREVER |
|
1515 { |
|
1516 bLeft -= aNumOfBits; |
|
1517 if (bLeft >= 0) |
|
1518 { |
|
1519 iBitsLeft = bLeft; |
|
1520 return; |
|
1521 } |
|
1522 aNumOfBits = -bLeft; |
|
1523 iBitsLeft = 0; |
|
1524 bLeft = FillBitBufferL(0); |
|
1525 } |
|
1526 } |
|
1527 |
|
1528 FORCEDINLINE TInt CJpgReadCodec::GetBinaryNumberQuickL(TInt aLength) |
|
1529 { |
|
1530 register TInt bLeft = iBitsLeft; |
|
1531 register TUint number = 0; |
|
1532 register TBitBuffer bitBuf; |
|
1533 |
|
1534 FOREVER |
|
1535 { |
|
1536 bitBuf = iDataValue; |
|
1537 |
|
1538 bLeft -= aLength; |
|
1539 if (bLeft >= 0) |
|
1540 { |
|
1541 break; |
|
1542 } |
|
1543 bLeft += aLength; |
|
1544 aLength -= bLeft; |
|
1545 number |= ((bitBuf & ((1<<bLeft)-1)) << aLength); |
|
1546 |
|
1547 bLeft = FillBitBufferL(0); |
|
1548 } |
|
1549 |
|
1550 iBitsLeft = bLeft; |
|
1551 |
|
1552 number |= ((bitBuf>>bLeft) & ((1<<aLength)-1)); |
|
1553 return number; |
|
1554 } |
|
1555 |
|
1556 FORCEDINLINE TInt16 CJpgReadCodec::GetPositiveBinaryNumberL(TInt aLength) |
|
1557 { |
|
1558 return TInt16( GetBinaryNumberQuickL(aLength) ); |
|
1559 } |
|
1560 |
|
1561 FORCEDINLINE TInt16 CJpgReadCodec::GetBinaryNumberL(TInt aLength) |
|
1562 { |
|
1563 TInt mask = (-1) << (aLength - 1); |
|
1564 TInt number = GetBinaryNumberQuickL(aLength); |
|
1565 return TInt16( (number & mask)? number : number + ( mask<<1 ) + 1); |
|
1566 } |
|
1567 |
|
1568 /** |
|
1569 This class is to provide with "write pixel" functionality |
|
1570 for writting pixels into TRgb-type buffer |
|
1571 */ |
|
1572 class TRgbWriter |
|
1573 { |
|
1574 public: |
|
1575 inline |
|
1576 static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV) |
|
1577 { |
|
1578 *aPtr = TYCbCr::YCbCrtoRGB(aY, aU, aV); |
|
1579 } |
|
1580 inline |
|
1581 static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs) |
|
1582 { |
|
1583 return aPtr + aUnitsOffs; |
|
1584 } |
|
1585 }; |
|
1586 |
|
1587 /** |
|
1588 This class is to provide with "write pixel" functionality |
|
1589 for writting pixels into EColor16M-type buffer i.e. 3 bytes per pixel |
|
1590 */ |
|
1591 class TRawWriter |
|
1592 { |
|
1593 public: |
|
1594 inline |
|
1595 static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV) |
|
1596 { |
|
1597 TYCbCr::YCbCrtoRawRGB(aY, aU, aV, aPtr); |
|
1598 } |
|
1599 inline |
|
1600 static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs) |
|
1601 { |
|
1602 return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) + aUnitsOffs); |
|
1603 } |
|
1604 }; |
|
1605 |
|
1606 /** |
|
1607 This class is to provide with "write pixel" functionality |
|
1608 for writting pixels into EColor16M-type buffer i.e. 3 bytes per pixel |
|
1609 It is similar to the TRawWriter but uses inline version of YUV->RGB |
|
1610 conversion function |
|
1611 */ |
|
1612 class TRawInlineWriter |
|
1613 { |
|
1614 public: |
|
1615 inline |
|
1616 static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV) |
|
1617 { |
|
1618 TYCbCr::YCbCrtoRawRGBInl(aY, aU, aV, aPtr); |
|
1619 } |
|
1620 inline |
|
1621 static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs) |
|
1622 { |
|
1623 return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) + aUnitsOffs); |
|
1624 } |
|
1625 }; |
|
1626 |
|
1627 /** |
|
1628 This class is to provide with "write pixel" functionality |
|
1629 for writting pixels into EColor64K-type buffer i.e. 2 bytes per pixel |
|
1630 */ |
|
1631 class TRaw64KColorWriter |
|
1632 { |
|
1633 public: |
|
1634 inline |
|
1635 static void WritePixel(TRgb* aPtr, TInt aY, TInt aU, TInt aV) |
|
1636 { |
|
1637 TYCbCr::YCbCrtoRaw64K(aY, aU, aV, aPtr); |
|
1638 } |
|
1639 inline |
|
1640 static TRgb* ShiftPtr(TRgb* aPtr, TInt aUnitsOffs) |
|
1641 { |
|
1642 return reinterpret_cast<TRgb*>(reinterpret_cast<TUint8*>(aPtr) + (aUnitsOffs<<1) ); |
|
1643 } |
|
1644 }; |
|
1645 |
|
1646 inline void CJpgReadCodec::WriteMCU() |
|
1647 { |
|
1648 JPEG_ASSERT(iMcuWriteFunc); |
|
1649 (this->*iMcuWriteFunc)(); |
|
1650 } |
|
1651 |
|
1652 // |
|
1653 // Calculate where in the intermediate buffer this MCU should be drawn. |
|
1654 // |
|
1655 TInt CJpgReadCodec::GetMCURenderOffset() |
|
1656 { |
|
1657 TInt mcuPos; |
|
1658 |
|
1659 JPEG_ASSERT(iMCUHorizExtent > 0); |
|
1660 |
|
1661 if (iFillBufferBackwards) |
|
1662 { |
|
1663 JPEG_ASSERT(!iProgressive); |
|
1664 mcuPos = iMCUsPerBuffer - iHorzMCUBlkCount - 1; |
|
1665 } |
|
1666 else |
|
1667 { |
|
1668 // Fill from left to right. |
|
1669 mcuPos = iHorzMCUBlkCount; |
|
1670 } |
|
1671 |
|
1672 JPEG_ASSERT(mcuPos >= 0); |
|
1673 |
|
1674 // iMCUHorizExtent has already been scaled by CalculateRenderingParams(). |
|
1675 return (mcuPos * iMCUHorizExtent); |
|
1676 |
|
1677 } |
|
1678 |
|
1679 // |
|
1680 // Writes a monochrome MCU. |
|
1681 // |
|
1682 void CJpgReadCodec::WriteMonoMCU() |
|
1683 { |
|
1684 const TInt16* yComp = iComponent[KYComp]->iCoeff; |
|
1685 |
|
1686 if (iScalingFactor == -4) |
|
1687 { |
|
1688 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1689 TRgb* writeAddress = iRgbBuffer + pixelsToSkip; |
|
1690 /* Coverity may flag as overrun of array yComp by indexing, which is false positive. There is more than one TDataUnit object pointed to by |
|
1691 iComponent[KYComp], which Coverity may fail to take into account */ |
|
1692 for (TInt j = 0; j < iMaxVertSampleFactor; j++) |
|
1693 { |
|
1694 for (TInt i = 0; i < iMaxHorzSampleFactor; i++) |
|
1695 { |
|
1696 *writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(yComp[0])); |
|
1697 writeAddress += iPixelIncrement; |
|
1698 yComp += KJpgDCTBlockSize; |
|
1699 } |
|
1700 writeAddress += iRgbBufNextLineOffs; |
|
1701 } |
|
1702 } |
|
1703 else |
|
1704 { |
|
1705 const TInt KYBlockOffset = KJpgDCTBlockWidth-(iMaxHorzSampleFactor * KJpgDCTBlockSize); |
|
1706 |
|
1707 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1708 TRgb* writeAddress = iRgbBuffer + pixelsToSkip; |
|
1709 |
|
1710 for (TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth; sf;) |
|
1711 { |
|
1712 TInt hsf = iMaxHorzSampleFactor; |
|
1713 do |
|
1714 { |
|
1715 TInt i = KJpgDCTBlockWidth / 2; |
|
1716 do |
|
1717 { |
|
1718 *writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(*yComp++)); |
|
1719 writeAddress += iPixelIncrement; |
|
1720 *writeAddress = TRgb::Gray256(ColorCcomponent::ClampColorComponent(*yComp++)); |
|
1721 writeAddress += iPixelIncrement; |
|
1722 } |
|
1723 while (--i); |
|
1724 |
|
1725 yComp += (KJpgDCTBlockSize - KJpgDCTBlockWidth); |
|
1726 } |
|
1727 while (--hsf); |
|
1728 |
|
1729 --sf; |
|
1730 yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: -(KJpgDCTBlockSize-KJpgDCTBlockWidth); |
|
1731 writeAddress += iRgbBufNextLineOffs; |
|
1732 } |
|
1733 } |
|
1734 } |
|
1735 |
|
1736 void CJpgReadCodec::WriteDiv8ScaledMCU16M() |
|
1737 { |
|
1738 WriteDiv8MCUImpl<TRawWriter>(); |
|
1739 } |
|
1740 |
|
1741 void CJpgReadCodec::WriteDiv8ScaledMCU() |
|
1742 { |
|
1743 WriteDiv8MCUImpl<TRgbWriter>(); |
|
1744 } |
|
1745 |
|
1746 void CJpgReadCodec::WriteDiv8ScaledMCU64K() |
|
1747 { |
|
1748 WriteDiv8MCUImpl<TRaw64KColorWriter>(); |
|
1749 } |
|
1750 |
|
1751 template <class T> |
|
1752 inline void CJpgReadCodec::WriteDiv8MCUImpl() |
|
1753 { |
|
1754 ASSERT(iScalingFactor == -4); |
|
1755 |
|
1756 TInt16* yComp = iComponent[0]->iCoeff; |
|
1757 |
|
1758 TUVidxElemType* uVIndeces = iUVIndeces; |
|
1759 |
|
1760 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1761 TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip); |
|
1762 |
|
1763 const TInt16* uComp = iComponent[KUComp]->iCoeff; |
|
1764 const TInt16* vComp = iComponent[KVComp]->iCoeff; |
|
1765 |
|
1766 TInt hsf = iMaxHorzSampleFactor; |
|
1767 TInt vsf = iMaxVertSampleFactor; |
|
1768 /* Coverity may flag as overrun of array on indexing yComp. This is false positive. Coverity doesn't take into account that |
|
1769 iComponent[0] can point to more than one TDataUnit. |
|
1770 */ |
|
1771 do |
|
1772 { |
|
1773 do |
|
1774 { |
|
1775 const TInt16 uValue = uComp[*uVIndeces]; |
|
1776 uVIndeces++; |
|
1777 const TInt16 vValue = vComp[*uVIndeces]; |
|
1778 uVIndeces++; |
|
1779 T::WritePixel(writeAddress, *yComp, uValue, vValue); |
|
1780 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1781 |
|
1782 yComp += KJpgDCTBlockSize; |
|
1783 } |
|
1784 while (--hsf); |
|
1785 |
|
1786 hsf = iMaxHorzSampleFactor; |
|
1787 uVIndeces += (hsf << 4); // 2 * hsf * KJpgBlockWidth |
|
1788 writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs); |
|
1789 } |
|
1790 while (--vsf); |
|
1791 } |
|
1792 |
|
1793 void CJpgReadCodec::WriteUnScaledMCU16M() |
|
1794 { |
|
1795 WriteUnScaledMCUImpl<TRawWriter>(); |
|
1796 } |
|
1797 |
|
1798 void CJpgReadCodec::WriteUnScaledMCU() |
|
1799 { |
|
1800 WriteUnScaledMCUImpl<TRgbWriter>(); |
|
1801 } |
|
1802 |
|
1803 template <class T> |
|
1804 inline void CJpgReadCodec::WriteUnScaledMCUImpl() |
|
1805 { |
|
1806 ASSERT((iScalingFactor == 1) || (iScalingFactor == -1)); |
|
1807 |
|
1808 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1809 TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip); |
|
1810 |
|
1811 const TInt KYBlockOffset = KJpgDCTBlockWidth - (iFrameInfo.MCUWidthInPixels() * 8); |
|
1812 |
|
1813 register const TInt ush = iHorzSampleRatioSh[KUShiftIdx]; |
|
1814 register const TInt vsh = iHorzSampleRatioSh[KVShiftIdx]; |
|
1815 const TInt16* yComp = iComponent[KYComp]->iCoeff; |
|
1816 const TUVidxElemType* pixIdx = iUVIndeces; |
|
1817 |
|
1818 TInt sf = iFrameInfo.MCUHeightInPixels(); |
|
1819 do |
|
1820 { |
|
1821 TInt hsf = iMaxHorzSampleFactor; |
|
1822 do |
|
1823 { |
|
1824 const TInt16* const u_base = iComponent[KUComp]->iCoeff + *pixIdx++; |
|
1825 const TInt16* const v_base = iComponent[KVComp]->iCoeff + *pixIdx++; |
|
1826 |
|
1827 #if defined(JPEG_OPTIMIZE_FOR_PERFORMCE) |
|
1828 |
|
1829 T::WritePixel(writeAddress, *yComp++, u_base[0], v_base[0]); |
|
1830 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1831 |
|
1832 register TInt p=1; |
|
1833 |
|
1834 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1835 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1836 ++p; |
|
1837 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1838 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1839 ++p; |
|
1840 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1841 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1842 ++p; |
|
1843 |
|
1844 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1845 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1846 ++p; |
|
1847 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1848 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1849 ++p; |
|
1850 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1851 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1852 ++p; |
|
1853 T::WritePixel(writeAddress, *yComp++, u_base [(p>>ush)], v_base [(p>>vsh)]); |
|
1854 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1855 #else |
|
1856 |
|
1857 register TInt p = 0; |
|
1858 do |
|
1859 { |
|
1860 TInt y = *yComp++; |
|
1861 TInt u = u_base[(p >> ush)]; |
|
1862 TInt v = v_base[(p >> vsh)]; |
|
1863 |
|
1864 T::WritePixel(writeAddress, y, u, v); |
|
1865 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1866 } |
|
1867 while (++p < 8); |
|
1868 #endif |
|
1869 yComp += (KJpgDCTBlockSize - KJpgDCTBlockWidth); |
|
1870 } |
|
1871 while (--hsf); |
|
1872 |
|
1873 --sf; |
|
1874 yComp += (sf & (KJpgDCTBlockWidth - 1)) ? KYBlockOffset : -(KJpgDCTBlockSize - KJpgDCTBlockWidth); |
|
1875 writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs); |
|
1876 } |
|
1877 while (sf); |
|
1878 } |
|
1879 |
|
1880 void CJpgReadCodec::WriteDiv2ScaledMCU() |
|
1881 { |
|
1882 WriteDiv2ScaledMCUImpl<TRgbWriter>(); |
|
1883 } |
|
1884 |
|
1885 void CJpgReadCodec::WriteDiv2ScaledMCU16M() |
|
1886 { |
|
1887 WriteDiv2ScaledMCUImpl<TRawWriter>(); |
|
1888 } |
|
1889 |
|
1890 template <class T> |
|
1891 inline void CJpgReadCodec::WriteDiv2ScaledMCUImpl() |
|
1892 { |
|
1893 ASSERT(iScalingFactor == -2); |
|
1894 |
|
1895 const TInt KScalingFactor = 2; |
|
1896 const TInt KYBlockOffset = KJpgDCTBlockWidth - |
|
1897 (iMaxHorzSampleFactor * KJpgDCTBlockSize) + |
|
1898 (KScalingFactor - 1) * KJpgDCTBlockWidth; |
|
1899 |
|
1900 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1901 TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip); |
|
1902 |
|
1903 const TInt16* yComp = iComponent[KYComp]->iCoeff; |
|
1904 const TUVidxElemType* pixIdx = iUVIndeces; |
|
1905 register const TInt ush = iHorzSampleRatioSh[KUShiftIdx]; |
|
1906 register const TInt vsh = iHorzSampleRatioSh[KVShiftIdx]; |
|
1907 |
|
1908 TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth; |
|
1909 /* Coverity may flag as overrun of array by accessing yComp. This is false positive. Coverity doesn't take into account that |
|
1910 iComponent[KYComp] can point to more than one TDataUnit. |
|
1911 */ |
|
1912 do |
|
1913 { |
|
1914 TInt hsf = iMaxHorzSampleFactor; |
|
1915 do |
|
1916 { |
|
1917 const TInt16* const u_base = iComponent[KUComp]->iCoeff + *pixIdx++; |
|
1918 const TInt16* const v_base = iComponent[KVComp]->iCoeff + *pixIdx++; |
|
1919 |
|
1920 T::WritePixel(writeAddress, *yComp, u_base[0], v_base[0]); |
|
1921 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1922 yComp += KScalingFactor; |
|
1923 |
|
1924 T::WritePixel(writeAddress, *yComp, u_base[KScalingFactor >> ush], v_base[KScalingFactor >> vsh]); |
|
1925 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1926 yComp += KScalingFactor; |
|
1927 |
|
1928 T::WritePixel(writeAddress, *yComp, u_base[2 * KScalingFactor >> ush], v_base[2 * KScalingFactor >> vsh]); |
|
1929 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1930 yComp += KScalingFactor; |
|
1931 |
|
1932 T::WritePixel(writeAddress, *yComp, u_base[3 * KScalingFactor >> ush], v_base[3 * KScalingFactor >> vsh]); |
|
1933 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1934 yComp += KScalingFactor + (KJpgDCTBlockSize - KJpgDCTBlockWidth); |
|
1935 } |
|
1936 while (--hsf); |
|
1937 |
|
1938 sf -= KScalingFactor; |
|
1939 yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: KScalingFactor*KJpgDCTBlockWidth-KJpgDCTBlockSize; |
|
1940 writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs); |
|
1941 } |
|
1942 while (sf); |
|
1943 } |
|
1944 |
|
1945 void CJpgReadCodec::WriteDiv4ScaledMCU() |
|
1946 { |
|
1947 WriteDiv4ScaledMCUImpl<TRgbWriter>(); |
|
1948 } |
|
1949 |
|
1950 void CJpgReadCodec::WriteDiv4ScaledMCU16M() |
|
1951 { |
|
1952 WriteDiv4ScaledMCUImpl<TRawInlineWriter>(); |
|
1953 } |
|
1954 |
|
1955 template <class T> |
|
1956 inline void CJpgReadCodec::WriteDiv4ScaledMCUImpl() |
|
1957 { |
|
1958 ASSERT(iScalingFactor == -3); |
|
1959 |
|
1960 const TInt KScalingFactor = 4; |
|
1961 const TInt KYBlockOffset = KJpgDCTBlockWidth - |
|
1962 (iMaxHorzSampleFactor * KJpgDCTBlockSize) + |
|
1963 (KScalingFactor - 1) * KJpgDCTBlockWidth; |
|
1964 |
|
1965 TInt pixelsToSkip = GetMCURenderOffset() + iFirstPixelOffset; |
|
1966 TRgb* writeAddress = T::ShiftPtr(iRgbBuffer, pixelsToSkip); |
|
1967 |
|
1968 const TInt16* yComp = iComponent[KYComp]->iCoeff; |
|
1969 const TUVidxElemType* pixIdx=iUVIndeces; |
|
1970 |
|
1971 TInt sf = iMaxVertSampleFactor * KJpgDCTBlockWidth; |
|
1972 /* Coverity may flag as overrun of array on accessing yComp. This is false positive. Coverity doesn't take into account that |
|
1973 iComponent[KYComp] can point to more than one TDataUnit. |
|
1974 */ |
|
1975 do |
|
1976 { |
|
1977 TInt hsf = iMaxHorzSampleFactor; |
|
1978 do |
|
1979 { |
|
1980 const TInt16* const u_base1 = iComponent[KUComp]->iCoeff + *pixIdx; |
|
1981 pixIdx++; |
|
1982 const TInt16* const v_base1 = iComponent[KVComp]->iCoeff + *pixIdx; |
|
1983 pixIdx++; |
|
1984 |
|
1985 T::WritePixel(writeAddress, *yComp, u_base1[0], v_base1[0]); |
|
1986 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1987 yComp += KScalingFactor; |
|
1988 |
|
1989 const TInt16 u_base2 = u_base1[*pixIdx]; |
|
1990 pixIdx++; |
|
1991 const TInt16 v_base2 = v_base1[*pixIdx]; |
|
1992 pixIdx++; |
|
1993 |
|
1994 T::WritePixel(writeAddress, *yComp, u_base2, v_base2); |
|
1995 writeAddress = T::ShiftPtr(writeAddress, iPixelIncrement); |
|
1996 yComp += KScalingFactor + (KJpgDCTBlockSize - KJpgDCTBlockWidth); |
|
1997 } |
|
1998 while (--hsf); |
|
1999 |
|
2000 sf -= KScalingFactor; |
|
2001 yComp += (sf & (KJpgDCTBlockWidth-1))? KYBlockOffset: KScalingFactor*KJpgDCTBlockWidth-KJpgDCTBlockSize; |
|
2002 writeAddress = T::ShiftPtr(writeAddress, iRgbBufNextLineOffs); |
|
2003 } |
|
2004 while (sf); |
|
2005 } |
|
2006 |
|
2007 |
|
2008 TInt CJpgReadCodec::ComponentIndexL(TInt aComponentId) const |
|
2009 { |
|
2010 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
2011 { |
|
2012 if (iFrameInfo.iComponent[count].iId == aComponentId) |
|
2013 return count; |
|
2014 } |
|
2015 |
|
2016 User::Leave(KErrCorrupt); |
|
2017 return 0; |
|
2018 } |
|
2019 |
|
2020 void CJpgReadCodec::SetYuvDecode(TBool aYuvDecode) |
|
2021 { |
|
2022 iYuvDecode = aYuvDecode; |
|
2023 } |
|
2024 |
|
2025 void CJpgReadCodec::SetHighSpeedMode(TBool aHighSpeedMode) |
|
2026 { |
|
2027 iHighSpeedMode = aHighSpeedMode; |
|
2028 } |
|
2029 |
|
2030 TInt CJpgReadCodec::RecommendBufferSizeL(TUid aFormatCode) |
|
2031 { |
|
2032 return CJpgImageFrameProcessorUtility::RecommendedBufferSizeL(iFrameInfo, aFormatCode); |
|
2033 } |
|
2034 |
|
2035 void CJpgReadCodec::InitDrawFrame() |
|
2036 {//default implementation do nothing |
|
2037 } |
|
2038 |
|
2039 TBool CJpgReadCodec::DrawFrameL() |
|
2040 {//default implementation do nothing |
|
2041 return ETrue; |
|
2042 } |
|
2043 |
|
2044 void CJpgReadCodec::CleanupBuffers() |
|
2045 {//default implementation do nothing |
|
2046 } |
|
2047 |
|
2048 void CJpgReadCodec::InitFrameHeader(TFrameInfo& aFrameInfo, CFrameImageData& /*aFrameData*/) |
|
2049 { |
|
2050 aFrameInfo.SetCurrentFrameState(TFrameInfo::EFrameInfoProcessingComplete); |
|
2051 } |
|
2052 |
|
2053 |
|
2054 TInt CJpgReadCodec::MCUBlockPerRgbBuffer() const |
|
2055 { |
|
2056 return iMCUsPerBuffer; |
|
2057 } |
|
2058 |
|
2059 TInt CJpgReadCodec::GetHorzMCUCount() |
|
2060 { |
|
2061 TInt maxMCUWidth = KJpgDCTBlockWidth * iMaxHorzSampleFactor; |
|
2062 return (iFrameInfo.iSizeInPixels.iWidth + maxMCUWidth - 1) / maxMCUWidth; |
|
2063 } |
|
2064 |
|
2065 TInt CJpgReadCodec::GetVertMCUCount() |
|
2066 { |
|
2067 TInt maxMCUHeight = KJpgDCTBlockWidth * iMaxVertSampleFactor; |
|
2068 return (iFrameInfo.iSizeInPixels.iHeight + maxMCUHeight - 1) / maxMCUHeight; |
|
2069 } |
|
2070 |
|
2071 // |
|
2072 // aExtensionManager is not owned. |
|
2073 // |
|
2074 void CJpgReadCodec::SetExtensionManager(CPluginExtensionManager* aExtensionManager) |
|
2075 { |
|
2076 iExtensionManager = aExtensionManager; |
|
2077 } |
|
2078 |
|
2079 #if defined(__ARMCC__) |
|
2080 #pragma pop |
|
2081 #endif |
|
2082 |
|
2083 #if defined(__ARMCC__) |
|
2084 #pragma push |
|
2085 #pragma thumb |
|
2086 #endif |
|
2087 // |
|
2088 // CSequentialJpgReadCodec |
|
2089 CSequentialJpgReadCodec::CSequentialJpgReadCodec( |
|
2090 const TJpgFrameInfo& aFrameInfo, |
|
2091 const TJpgScanInfo& aScanInfo, |
|
2092 TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables], |
|
2093 TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables], |
|
2094 const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
2095 : CJpgReadCodec(aFrameInfo, aScanInfo), |
|
2096 iDCHuffmanTable(aDCHuffmanTable), |
|
2097 iACHuffmanTable(aACHuffmanTable), |
|
2098 iQTable(aQTable) |
|
2099 { |
|
2100 iProgressive = EFalse; |
|
2101 } |
|
2102 |
|
2103 // |
|
2104 // |
|
2105 // |
|
2106 CSequentialJpgReadCodec::~CSequentialJpgReadCodec() |
|
2107 { |
|
2108 delete iMCUStore; |
|
2109 iMCUStore = NULL; |
|
2110 |
|
2111 User::Free(iMCULookup); |
|
2112 iMCULookup = NULL; |
|
2113 } |
|
2114 |
|
2115 // |
|
2116 // |
|
2117 // |
|
2118 CSequentialJpgReadCodec* CSequentialJpgReadCodec::NewL( |
|
2119 const TJpgFrameInfo& aFrameInfo, |
|
2120 const TJpgScanInfo& aScanInfo, |
|
2121 TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables], |
|
2122 TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables], |
|
2123 const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
2124 { |
|
2125 CSequentialJpgReadCodec* self = new(ELeave) CSequentialJpgReadCodec( |
|
2126 aFrameInfo, |
|
2127 aScanInfo, |
|
2128 aDCHuffmanTable, |
|
2129 aACHuffmanTable, |
|
2130 aQTable); |
|
2131 CleanupStack::PushL(self); |
|
2132 self->ConstructL(); |
|
2133 CleanupStack::Pop(self); |
|
2134 return self; |
|
2135 } |
|
2136 |
|
2137 // |
|
2138 // |
|
2139 // |
|
2140 void CSequentialJpgReadCodec::ConstructL(TBool aUseCache) |
|
2141 { |
|
2142 CJpgReadCodec::ConstructL(); |
|
2143 |
|
2144 ASSERT(iMCULookup == NULL); |
|
2145 |
|
2146 iTotalMCUCount = iFrameInfo.TotalMCUCount(); |
|
2147 |
|
2148 // Make sure iFrameInfo has had its members set. |
|
2149 JPEG_ASSERT(iTotalMCUCount >= 1); |
|
2150 |
|
2151 iMCUStore = CMCUStore::NewL(iFrameInfo); |
|
2152 |
|
2153 // If the allocation of the lookup table fails, continue |
|
2154 // to decode the image as it's not needed for some decodes |
|
2155 // and others should be able to continue without it (with a |
|
2156 // performance hit). |
|
2157 if (aUseCache) |
|
2158 { |
|
2159 JPEG_DEBUG2(" - Cache for %d elements", iTotalMCUCount); |
|
2160 TInt allocSize = iTotalMCUCount * sizeof(TMCUEntry); |
|
2161 iMCULookup = reinterpret_cast<TMCUEntry*>(User::AllocZ(allocSize)); |
|
2162 } |
|
2163 } |
|
2164 |
|
2165 // |
|
2166 // Nothing is guaranteed to be known about the image structure at this point. |
|
2167 // |
|
2168 void CSequentialJpgReadCodec::PreInitFrameL() |
|
2169 { |
|
2170 CJpgReadCodec::PreInitFrameL(); |
|
2171 iMCUStore->Reset(); |
|
2172 } |
|
2173 |
|
2174 |
|
2175 // |
|
2176 // This function is called after the various variants of |
|
2177 // InitFrameL have been called. At this stage enough should |
|
2178 // be known about the image to set several properties. |
|
2179 // |
|
2180 void CSequentialJpgReadCodec::PostInitFrameL() |
|
2181 { |
|
2182 iHorzMCUBlkCount = 0; |
|
2183 iStreamMCU = 0; |
|
2184 iMCUStore->SetMCUsPerBuffer(iMCUsPerBuffer); |
|
2185 iMCUStore->SetOperation(iOperation); |
|
2186 iNeededMCU = iMCUStore->GetNextMCU(); |
|
2187 |
|
2188 // Make sure iScanInfo isn't used before its members have been set. |
|
2189 JPEG_ASSERT(iScanInfo.iImageOffset > 0); |
|
2190 |
|
2191 iCurrentMCUBitOffset = (iScanInfo.iImageOffset * 8); |
|
2192 |
|
2193 CJpgReadCodec::PostInitFrameL(); |
|
2194 } |
|
2195 |
|
2196 // |
|
2197 // This is called by the framework whenever DoProcessL returns EFrameIncompleteRepositionRequest. |
|
2198 // After this function returns the framework should call DoProcessL again. |
|
2199 // |
|
2200 void CSequentialJpgReadCodec::GetNewDataPosition(TInt& aPosition, TInt& /*aLength*/) |
|
2201 { |
|
2202 if (!iMCULookup) |
|
2203 { |
|
2204 // Seek to the start of the image data. |
|
2205 aPosition = iScanInfo.iImageOffset; |
|
2206 iSeekDone = ETrue; |
|
2207 return; |
|
2208 } |
|
2209 |
|
2210 if ((iNeededMCU >= 0) && (iNeededMCU < iTotalMCUCount)) |
|
2211 { |
|
2212 TMCUEntry& entry = iMCULookup[iNeededMCU]; |
|
2213 |
|
2214 aPosition = (entry.iPosition >> 3); |
|
2215 iSeekDone = ETrue; |
|
2216 return; |
|
2217 } |
|
2218 |
|
2219 // The seek shouldn't have been made if iNeededMCU is outside |
|
2220 // the bounds of the lookup table. |
|
2221 ASSERT(EFalse); |
|
2222 } |
|
2223 |
|
2224 #if defined(__ARMCC__) |
|
2225 #pragma pop |
|
2226 #endif |
|
2227 |
|
2228 #if defined(__ARMCC__) |
|
2229 // use ARM instruction for performance-critical code |
|
2230 #pragma push |
|
2231 #pragma arm |
|
2232 #pragma O3 |
|
2233 #pragma Otime |
|
2234 #endif |
|
2235 // |
|
2236 // This will be called by CJpgReadCodec once enough |
|
2237 // data is available to do correct calculations. |
|
2238 // |
|
2239 void CSequentialJpgReadCodec::CalculateMCUBoundingRectL(TInt aMCUsPerLine) |
|
2240 { |
|
2241 JPEG_DEBUG1("CalculateMCUBoundingRectL()"); |
|
2242 |
|
2243 ASSERT(iExtensionManager); |
|
2244 |
|
2245 JPEG_ASSERT(!iIsBlockStreaming); |
|
2246 JPEG_ASSERT(!iProgressive); |
|
2247 JPEG_ASSERT(aMCUsPerLine > 0); |
|
2248 |
|
2249 TRect clipRect; |
|
2250 clipRect = iExtensionManager->ClippingRect(); |
|
2251 |
|
2252 // This function shouldn't be called by InitFrameL |
|
2253 // if no clipping rect has been set. |
|
2254 JPEG_ASSERT(!clipRect.IsEmpty()); |
|
2255 |
|
2256 TInt mcuWidthInPixels = iFrameInfo.MCUWidthInPixels(); |
|
2257 TInt mcuHeightInPixels = iFrameInfo.MCUHeightInPixels(); |
|
2258 JPEG_DEBUG2(" - MCU pixel width: %d", mcuWidthInPixels); |
|
2259 JPEG_DEBUG2(" - MCU pixel height: %d", mcuHeightInPixels); |
|
2260 |
|
2261 // The clipping rect is specified in pixels. We need to |
|
2262 // find out which MCUs contain these pixels. |
|
2263 TInt left = clipRect.iTl.iX / mcuWidthInPixels; |
|
2264 TInt top = clipRect.iTl.iY / mcuHeightInPixels; |
|
2265 TInt right = (clipRect.iBr.iX - 1) / mcuWidthInPixels; |
|
2266 TInt bottom = (clipRect.iBr.iY - 1) / mcuHeightInPixels; |
|
2267 |
|
2268 TInt firstMCU = (top * aMCUsPerLine) + left; |
|
2269 |
|
2270 iMCUClipRect.SetRect(left, top, right + 1, bottom + 1); |
|
2271 |
|
2272 iMCUStore->SetClippingRect(firstMCU, iMCUClipRect.Width() * iMCUClipRect.Height()); |
|
2273 |
|
2274 // Convert back to pixels. |
|
2275 left *= mcuWidthInPixels; |
|
2276 top *= mcuHeightInPixels; |
|
2277 right = (right * mcuWidthInPixels) + mcuWidthInPixels; |
|
2278 bottom = (bottom * mcuHeightInPixels) + mcuHeightInPixels; |
|
2279 |
|
2280 iMCUClipRect.SetRect(left, top, right, bottom); |
|
2281 JPEG_DEBUG5("iMCUClipRect: (%d, %d) - (%d x %d)", |
|
2282 iMCUClipRect.iTl.iX, |
|
2283 iMCUClipRect.iTl.iY, |
|
2284 iMCUClipRect.Width(), |
|
2285 iMCUClipRect.Height()); |
|
2286 } |
|
2287 |
|
2288 // |
|
2289 // |
|
2290 // |
|
2291 void CSequentialJpgReadCodec::CacheMCULocation() |
|
2292 { |
|
2293 JPEG_ASSERT(iStreamMCU >= 0); |
|
2294 JPEG_ASSERT(!iFrameInfo.iMultiScan); |
|
2295 |
|
2296 if (!iMCULookup || (iStreamMCU >= iTotalMCUCount)) |
|
2297 { |
|
2298 return; |
|
2299 } |
|
2300 |
|
2301 TMCUEntry& entry = iMCULookup[iStreamMCU]; |
|
2302 |
|
2303 if (entry.iPosition != 0) |
|
2304 { |
|
2305 for (TInt i = 0; i < 3; i++) |
|
2306 { |
|
2307 JPEG_ASSERT(entry.iDCPredictor[i] == iDCPredictor[i]); |
|
2308 } |
|
2309 } |
|
2310 else |
|
2311 { |
|
2312 entry.iPosition = iCurrentMCUBitOffset; |
|
2313 if (iEscapeAtEnd) |
|
2314 { |
|
2315 entry.iPosition -= 8; // Go back a byte. |
|
2316 } |
|
2317 |
|
2318 entry.iDCPredictor[0] = iDCPredictor[0]; |
|
2319 entry.iDCPredictor[1] = iDCPredictor[1]; |
|
2320 entry.iDCPredictor[2] = iDCPredictor[2]; |
|
2321 entry.iRestartMCUCount = iRestartMCUCount; |
|
2322 } |
|
2323 } |
|
2324 |
|
2325 // |
|
2326 // |
|
2327 // |
|
2328 #ifdef JPEG_DEBUG_OUTPUT |
|
2329 void CSequentialJpgReadCodec::DumpCache() |
|
2330 { |
|
2331 JPEG_DEBUG1("CACHE DUMP"); |
|
2332 |
|
2333 for (TInt i = 0; i < iTotalMCUCount; i++) |
|
2334 { |
|
2335 TMCUEntry& entry = iMCULookup[i]; |
|
2336 if (entry.iPosition == 0) |
|
2337 { |
|
2338 return; |
|
2339 } |
|
2340 |
|
2341 JPEG_DEBUG7("Entry[%6d] location=%8d; predictors[%4d, %4d, %4d] restart=%d", |
|
2342 i, |
|
2343 entry.iPosition, |
|
2344 entry.iDCPredictor[0], |
|
2345 entry.iDCPredictor[1], |
|
2346 entry.iDCPredictor[2], |
|
2347 entry.iRestartMCUCount); |
|
2348 } |
|
2349 } |
|
2350 #endif |
|
2351 |
|
2352 // |
|
2353 // This is called after a seek has been performed. |
|
2354 // It sets everything up so that we're decoding from |
|
2355 // the correct position in the bitstream and does |
|
2356 // some other housekeeping. |
|
2357 // |
|
2358 void CSequentialJpgReadCodec::RestoreAfterSeekL() |
|
2359 { |
|
2360 // Reset the bitstream. |
|
2361 TInt bitOffset = 0; |
|
2362 iBitsLeft = 0; |
|
2363 iBitBufferPtrLimit = 0; |
|
2364 iDataValue = 0; |
|
2365 |
|
2366 if (iMCULookup) |
|
2367 { |
|
2368 TMCUEntry& entry = iMCULookup[iNeededMCU]; |
|
2369 |
|
2370 // Divide entry.iPosition into byte and bit offsets. |
|
2371 bitOffset = (entry.iPosition & 0x07); |
|
2372 |
|
2373 // Make sure re-caching will work. |
|
2374 iCurrentMCUBitOffset = entry.iPosition; |
|
2375 iDCPredictor[0] = entry.iDCPredictor[0]; |
|
2376 iDCPredictor[1] = entry.iDCPredictor[1]; |
|
2377 iDCPredictor[2] = entry.iDCPredictor[2]; |
|
2378 iRestartMCUCount = entry.iRestartMCUCount; |
|
2379 |
|
2380 iStreamMCU = iNeededMCU; |
|
2381 } |
|
2382 else |
|
2383 { |
|
2384 // The seek was to the start of the image. |
|
2385 iRestartMCUCount = iFrameInfo.iRestartInterval; |
|
2386 iDCPredictor[0] = 0; |
|
2387 iDCPredictor[1] = 0; |
|
2388 iDCPredictor[2] = 0; |
|
2389 iStreamMCU = 0; |
|
2390 iCurrentMCUBitOffset = iScanInfo.iImageOffset * 8; |
|
2391 } |
|
2392 |
|
2393 //FetchNext3BytesL(); |
|
2394 FillBitBufferL(iBitsLeft); |
|
2395 iBitsLeft -= bitOffset; |
|
2396 iSeekDone = EFalse; |
|
2397 } |
|
2398 |
|
2399 |
|
2400 // |
|
2401 // Check's if the location of iNeededMCU is known in advance. |
|
2402 // |
|
2403 TBool CSequentialJpgReadCodec::QueryCache() |
|
2404 { |
|
2405 // Prevent an infinite seeking loop. |
|
2406 if (iNeededMCU == iStreamMCU) |
|
2407 { |
|
2408 return EFalse; |
|
2409 } |
|
2410 |
|
2411 if (!iMCULookup) |
|
2412 { |
|
2413 if (iNeededMCU < iStreamMCU) |
|
2414 { |
|
2415 // We can seek to the start of the image and start |
|
2416 // decoding again from there. |
|
2417 iDataPtr++; |
|
2418 return ETrue; |
|
2419 } |
|
2420 |
|
2421 return EFalse; |
|
2422 } |
|
2423 |
|
2424 if ((iNeededMCU < 0) || (iNeededMCU >= iTotalMCUCount)) |
|
2425 { |
|
2426 // Out of bounds. |
|
2427 return EFalse; |
|
2428 } |
|
2429 |
|
2430 TMCUEntry& entry = iMCULookup[iNeededMCU]; |
|
2431 if (entry.iPosition != 0) |
|
2432 { |
|
2433 // This is in order to get the framework to do the seek. |
|
2434 iDataPtr++; |
|
2435 return ETrue; |
|
2436 } |
|
2437 |
|
2438 return EFalse; |
|
2439 } |
|
2440 |
|
2441 |
|
2442 #if defined(__ARMCC__) |
|
2443 #pragma pop |
|
2444 #endif |
|
2445 |
|
2446 // |
|
2447 // |
|
2448 // |
|
2449 TFrameState CSequentialJpgReadCodec::DoProcessL() |
|
2450 { |
|
2451 if (iSeekDone) |
|
2452 { |
|
2453 RestoreAfterSeekL(); |
|
2454 } |
|
2455 |
|
2456 while (iDataPtr < iDataPtrLimit) |
|
2457 { |
|
2458 if (iNeededMCU > iTotalMCUCount) |
|
2459 { |
|
2460 JPEG_LEAVE(KErrOverflow, "iNeededMCU is out of bounds"); |
|
2461 } |
|
2462 |
|
2463 // See if we're done. |
|
2464 if (iNeededMCU == KErrCompletion) |
|
2465 { |
|
2466 return EFrameComplete; |
|
2467 } |
|
2468 else if (QueryCache()) |
|
2469 { |
|
2470 return EFrameIncompleteRepositionRequest; |
|
2471 } |
|
2472 |
|
2473 StoreState(); |
|
2474 if (iRestartMCUCount == 0) |
|
2475 { |
|
2476 TInt skipped = RestartStateL(); |
|
2477 iCurrentMCUBitOffset += (skipped * 8); |
|
2478 } |
|
2479 |
|
2480 CacheMCULocation(); |
|
2481 |
|
2482 TInt error = KErrNone; |
|
2483 TInt mcuBitSize = 0; |
|
2484 // we do that "if" in order to bypass exception handling which can |
|
2485 // affect performance of the decoder |
|
2486 if (iPreviousDataLeft < KMCUDataLeftThreshhold) |
|
2487 { |
|
2488 const TUint8* const latestDataPtr = iDataPtr; |
|
2489 TRAP(error, mcuBitSize = ProcessMCUL()); |
|
2490 |
|
2491 // leave if it wasn't a partial MCU |
|
2492 if ((error != KErrNone) && |
|
2493 (error != KErrEof || |
|
2494 latestDataPtr == iDataPtr || |
|
2495 (latestDataPtr + sizeof(TUint16) <= iDataPtrLimit && |
|
2496 PtrReadUtil::ReadBigEndianUint16(latestDataPtr) == KJpgEOISignature))) |
|
2497 { |
|
2498 User::Leave(error); |
|
2499 } |
|
2500 } |
|
2501 else |
|
2502 { |
|
2503 mcuBitSize = ProcessMCUL(); |
|
2504 } |
|
2505 |
|
2506 iCurrentMCUBitOffset += mcuBitSize; |
|
2507 |
|
2508 // we would try to render the partially decoded MCU |
|
2509 // in case if there is a partial MCU/incompelete image |
|
2510 // and do leave with original error code later |
|
2511 if (iStreamMCU == iNeededMCU) |
|
2512 { |
|
2513 if (iIsBlockStreaming && |
|
2514 (iNavigation == TDecodeStreamCaps::ENavigationRandomForward || |
|
2515 iNavigation == TDecodeStreamCaps::ENavigationRandomBackwards) && |
|
2516 iStreamMCU < iStreamDecodeConfig.iSeqPosition) |
|
2517 { |
|
2518 iNeededMCU = iMCUStore->GetNextMCU(); |
|
2519 } |
|
2520 else |
|
2521 { |
|
2522 PostProcessMCUL(error != KErrNone); |
|
2523 |
|
2524 User::LeaveIfError(error); |
|
2525 |
|
2526 if (iIsBlockStreaming) |
|
2527 { |
|
2528 iNeededMCU++; |
|
2529 if (EBlockComplete == ProcessStreaming()) |
|
2530 { |
|
2531 iStreamMCU++; |
|
2532 iRestartMCUCount--; |
|
2533 return EBlockComplete; |
|
2534 } |
|
2535 } |
|
2536 else |
|
2537 { |
|
2538 iNeededMCU = iMCUStore->GetNextMCU(); |
|
2539 } |
|
2540 } |
|
2541 } |
|
2542 |
|
2543 iStreamMCU++; |
|
2544 iRestartMCUCount--; |
|
2545 |
|
2546 TInt dataLeft = iDataPtrLimit - iDataPtr; |
|
2547 if (dataLeft < KMCUDataLeftThreshhold) |
|
2548 { |
|
2549 TBool needLeave = (iPreviousDataLeft > dataLeft); |
|
2550 iPreviousDataLeft = dataLeft; |
|
2551 if (needLeave) |
|
2552 { |
|
2553 StoreState(); |
|
2554 User::Leave(KErrCompletion); |
|
2555 } |
|
2556 } |
|
2557 } |
|
2558 |
|
2559 return EFrameIncomplete; |
|
2560 } |
|
2561 |
|
2562 TFrameState CSequentialJpgReadCodec::ProcessStreaming() |
|
2563 { |
|
2564 if(iNavigation == TDecodeStreamCaps::ENavigationSequentialForward) |
|
2565 { |
|
2566 if(iTotalMCUCount > iNeededMCU) |
|
2567 { |
|
2568 *(iStreamDecodeConfig.iHaveMoreBlocks) = ETrue; |
|
2569 } |
|
2570 else |
|
2571 { |
|
2572 *(iStreamDecodeConfig.iHaveMoreBlocks) = EFalse; |
|
2573 } |
|
2574 } |
|
2575 |
|
2576 *(iStreamDecodeConfig.iNumBlocksRead) += 1; |
|
2577 |
|
2578 if(*(iStreamDecodeConfig.iNumBlocksRead) >= iStreamDecodeConfig.iNumBlocksToGet) |
|
2579 { |
|
2580 return EBlockComplete; |
|
2581 } |
|
2582 else |
|
2583 { |
|
2584 return EFrameIncomplete; |
|
2585 } |
|
2586 } |
|
2587 |
|
2588 // |
|
2589 // This functions turns the MCU data into pixel data. |
|
2590 // The pixel data is written into an intermediate buffer, |
|
2591 // iRgbBuffer, by WriteMCU() and then if this intermediate |
|
2592 // buffer is full this is copied to the output bitmap by |
|
2593 // SetPixelBlock(). |
|
2594 // |
|
2595 void CSequentialJpgReadCodec::PostProcessMCUL(TBool aForceBufferFlush) |
|
2596 { |
|
2597 if (!iImageFrameCodecPtr) |
|
2598 { |
|
2599 TBool copyIt = aForceBufferFlush; |
|
2600 |
|
2601 WriteMCU(); |
|
2602 iHorzMCUBlkCount++; |
|
2603 |
|
2604 // Only copy the buffer if we have rendered a row of MCUs or are forced to. |
|
2605 copyIt |= (iHorzMCUBlkCount == iMCUsPerBuffer); |
|
2606 if (copyIt) |
|
2607 { |
|
2608 CImageProcessor* proc = ImageProcessor(); |
|
2609 ASSERT(proc != NULL); |
|
2610 proc->SetPixelBlock(iRgbBuffer); |
|
2611 iMCUStore->NextLine(); |
|
2612 iHorzMCUBlkCount = 0; |
|
2613 } |
|
2614 } |
|
2615 else |
|
2616 { |
|
2617 RArray<const TDataUnit*> dataUnits; |
|
2618 CleanupClosePushL(dataUnits); |
|
2619 for(TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++) |
|
2620 { |
|
2621 TDataUnit* compPtr = iComponent[i]; |
|
2622 TInt numSamples = iMCUDataUnitCount[i]; |
|
2623 while (numSamples > 0) |
|
2624 { |
|
2625 numSamples--; |
|
2626 User::LeaveIfError(dataUnits.Append(compPtr++)); |
|
2627 } |
|
2628 } |
|
2629 iImageFrameCodecPtr->ProcessL(dataUnits); |
|
2630 CleanupStack::PopAndDestroy(1, &dataUnits); |
|
2631 } |
|
2632 } |
|
2633 |
|
2634 |
|
2635 TInt CSequentialJpgReadCodec::ProcessMCUL() |
|
2636 { |
|
2637 TDataUnit temp; |
|
2638 TInt numValues; |
|
2639 TInt bitsBefore = iBitsLeft; |
|
2640 const TUint8* startPtr = iDataPtr; |
|
2641 |
|
2642 iEscapeAtEnd = EFalse; |
|
2643 for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++) |
|
2644 { |
|
2645 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[i]; |
|
2646 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
2647 TJpgFrameInfo::TComponentInfo& compInfo = iFrameInfo.iComponent[compIndex]; |
|
2648 const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable]; |
|
2649 const TDecHuffmanTable& acTable = iACHuffmanTable[scanInfo.iACCodingTable]; |
|
2650 const TQTable& qTable = iQTable[compInfo.iQTable]; |
|
2651 TDataUnit* compPtr = iComponent[compIndex]; |
|
2652 if (compPtr==NULL) |
|
2653 { |
|
2654 compPtr = &temp; // we'd throw it away in case of Mono mode |
|
2655 } |
|
2656 TInt numSamples = iMCUDataUnitCount[compIndex]; |
|
2657 |
|
2658 while (numSamples > 0) |
|
2659 { |
|
2660 GetComponentBlockL(*compPtr, numValues, iDCPredictor[compIndex], dcTable, acTable); |
|
2661 if (compIndex == 0 || !iMonochrome) |
|
2662 { |
|
2663 (qTable.*iCompConf[compIndex].iDequantFunc)(temp, *compPtr, numValues); |
|
2664 iCompConf[compIndex].iDCT->InverseTransform(*compPtr, temp); |
|
2665 compPtr++; |
|
2666 } |
|
2667 numSamples--; |
|
2668 } |
|
2669 } |
|
2670 |
|
2671 if (iRestartMCUCount == 1) |
|
2672 { |
|
2673 iBitsLeft = 0; |
|
2674 } |
|
2675 else |
|
2676 { |
|
2677 iEscapeAtEnd = ((iDataValue & 0xFF) == 0xFF); |
|
2678 } |
|
2679 |
|
2680 TInt bytesRead = iDataPtr - startPtr; |
|
2681 return bitsBefore + (bytesRead * 8) - iBitsLeft; |
|
2682 } |
|
2683 |
|
2684 |
|
2685 #if defined(__ARMCC__) |
|
2686 // use ARM instruction for performance-critical code |
|
2687 #pragma push |
|
2688 #pragma thumb |
|
2689 #endif |
|
2690 |
|
2691 // CProgressiveJpgReadCodec |
|
2692 CProgressiveJpgReadCodec::CProgressiveJpgReadCodec(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo,const TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],const TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
2693 : CJpgReadCodec(aFrameInfo,aScanInfo), |
|
2694 iOriginalFrameInfo(aFrameInfo), |
|
2695 iOriginalScanInfo(aScanInfo) |
|
2696 { |
|
2697 iProgressive = ETrue; |
|
2698 Mem::Copy(iDCHuffmanTable,aDCHuffmanTable,sizeof(TDecHuffmanTable) * KJpgMaxNumberOfTables); |
|
2699 Mem::Copy(iACHuffmanTable,aACHuffmanTable,sizeof(TDecHuffmanTable) * KJpgMaxNumberOfTables); |
|
2700 Mem::Copy(iQTable,aQTable,sizeof(TQTable) * KJpgMaxNumberOfTables); |
|
2701 } |
|
2702 |
|
2703 CProgressiveJpgReadCodec* CProgressiveJpgReadCodec::NewL(const TJpgFrameInfo& aFrameInfo,const TJpgScanInfo& aScanInfo,const TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables],const TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables],const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
2704 { |
|
2705 CProgressiveJpgReadCodec* self = new(ELeave) CProgressiveJpgReadCodec(aFrameInfo, aScanInfo, aDCHuffmanTable, aACHuffmanTable, aQTable); |
|
2706 CleanupStack::PushL(self); |
|
2707 self->ConstructL(); |
|
2708 CleanupStack::Pop(self); |
|
2709 return self; |
|
2710 } |
|
2711 |
|
2712 CProgressiveJpgReadCodec::~CProgressiveJpgReadCodec() |
|
2713 { |
|
2714 CleanupBuffers(); |
|
2715 } |
|
2716 |
|
2717 void CProgressiveJpgReadCodec::DoInitFrameL() |
|
2718 { |
|
2719 iFrameInfo = iOriginalFrameInfo; |
|
2720 iScanInfo = iOriginalScanInfo; |
|
2721 |
|
2722 TInt maxMCUWidth = KJpgDCTBlockWidth * iMaxHorzSampleFactor; |
|
2723 TInt maxMCUHeight = KJpgDCTBlockWidth * iMaxVertSampleFactor; |
|
2724 iHorzMCUCount = (iFrameInfo.iSizeInPixels.iWidth + maxMCUWidth - 1) / maxMCUWidth; |
|
2725 iVertMCUCount = (iFrameInfo.iSizeInPixels.iHeight + maxMCUHeight - 1) / maxMCUHeight; |
|
2726 iTotalMCUCount = iHorzMCUCount * iVertMCUCount; |
|
2727 iCurrentMCUCount = 0; |
|
2728 iCurrentMCUHorzCount = 0; |
|
2729 iCurrentMCUVertCount = 0; |
|
2730 iMCUChunkAllocated = EFalse; |
|
2731 |
|
2732 // We calculate how many data units we'll need in total |
|
2733 TInt totalDataUnitCount = 0; |
|
2734 for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++) |
|
2735 { |
|
2736 totalDataUnitCount += iMCUDataUnitCount[compIndex] * iTotalMCUCount; |
|
2737 } |
|
2738 |
|
2739 TUint8* offset = NULL; |
|
2740 if(totalDataUnitCount > KMCUMaxTotalDataUnits) |
|
2741 { |
|
2742 iMCUChunk.Close(); |
|
2743 User::LeaveIfError(iMCUChunk.CreateLocal(totalDataUnitCount * sizeof(TDataUnit), totalDataUnitCount * sizeof(TDataUnit))); |
|
2744 offset = iMCUChunk.Base(); |
|
2745 iMCUChunkAllocated = ETrue; |
|
2746 } |
|
2747 else |
|
2748 { |
|
2749 delete iMCUMemoryBuffer; |
|
2750 iMCUMemoryBuffer = NULL; |
|
2751 iMCUMemoryBuffer = new (ELeave) TUint8 [ totalDataUnitCount * sizeof(TDataUnit) ]; |
|
2752 offset = iMCUMemoryBuffer; |
|
2753 } |
|
2754 |
|
2755 |
|
2756 for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++) |
|
2757 { |
|
2758 TInt dataUnitCount = iMCUDataUnitCount[compIndex] * iTotalMCUCount; |
|
2759 |
|
2760 iMCUBuffer[compIndex] = new(offset) TDataUnit[dataUnitCount]; |
|
2761 offset += dataUnitCount * sizeof(TDataUnit); |
|
2762 |
|
2763 Mem::FillZ(iMCUBuffer[compIndex],dataUnitCount * sizeof(TDataUnit)); |
|
2764 iMCUBufferPtr[compIndex] = iMCUBuffer[compIndex]; |
|
2765 iMCUBufferPtrLimit[compIndex] = iMCUBuffer[compIndex] + dataUnitCount; |
|
2766 |
|
2767 iIndividualHorzMCUCount[compIndex] = ((iFrameInfo.iSizeInPixels.iWidth*iHorzSampleFactor[compIndex]) + maxMCUWidth - 1) / maxMCUWidth; |
|
2768 iIndividualVertMCUCount[compIndex] = ((iFrameInfo.iSizeInPixels.iHeight*iVertSampleFactor[compIndex]) + maxMCUHeight - 1) / maxMCUHeight; |
|
2769 } |
|
2770 |
|
2771 iProcessing = ETrue; |
|
2772 iRefinedDCValue = 0; |
|
2773 } |
|
2774 |
|
2775 // |
|
2776 // Progressive supports scaling and normal decode only. |
|
2777 // |
|
2778 void CProgressiveJpgReadCodec::PreInitFrameL() |
|
2779 { |
|
2780 CJpgReadCodec::PreInitFrameL(); |
|
2781 |
|
2782 if (iOperation != EDecodeNormal) |
|
2783 { |
|
2784 JPEG_LEAVE(KErrNotSupported, "No operations on Progressive"); |
|
2785 } |
|
2786 |
|
2787 if (iUseClipRect) |
|
2788 { |
|
2789 JPEG_LEAVE(KErrNotSupported, "No clipping on Progressive"); |
|
2790 } |
|
2791 } |
|
2792 |
|
2793 void CProgressiveJpgReadCodec::InitFrameL(TFrameInfo& aFrameInfo, CFrameImageData& aFrameImageData, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* aFrameMask) |
|
2794 { |
|
2795 CJpgReadCodec::InitFrameL(aFrameInfo, aFrameImageData, aDisableErrorDiffusion, aFrame, aFrameMask); |
|
2796 |
|
2797 ClearBitmapL(aFrame, KRgbWhite); // clear bitmap so sensibly draw partial decodes |
|
2798 |
|
2799 DoInitFrameL(); |
|
2800 } |
|
2801 |
|
2802 void CProgressiveJpgReadCodec::InitFrameL(CImageFrame& aFrame) |
|
2803 { |
|
2804 CJpgReadCodec::InitFrameL(aFrame); |
|
2805 |
|
2806 DoInitFrameL(); |
|
2807 } |
|
2808 |
|
2809 #if defined(__ARMCC__) |
|
2810 #pragma pop |
|
2811 #endif |
|
2812 |
|
2813 TFrameState CProgressiveJpgReadCodec::DoProcessL() |
|
2814 { |
|
2815 FOREVER |
|
2816 { |
|
2817 if (iProcessing) |
|
2818 ProcessFrameL(); |
|
2819 else |
|
2820 { |
|
2821 StoreState(); |
|
2822 TInt dataRemaining = iDataPtrLimit - iDataPtr; |
|
2823 if (dataRemaining < 2) |
|
2824 return EFrameIncomplete; |
|
2825 |
|
2826 TInt sig = (iDataPtr[0] << 8) | iDataPtr[1]; |
|
2827 switch (sig) |
|
2828 { |
|
2829 case KJpgDHTSignature: |
|
2830 LoadHuffmanTableL(); |
|
2831 break; |
|
2832 case KJpgDQTSignature: |
|
2833 break; |
|
2834 case KJpgSOSSignature: |
|
2835 LoadSOSL(); |
|
2836 iProcessing = ETrue; |
|
2837 break; |
|
2838 case KJpgRestartIntervalSignature: |
|
2839 LoadRestartIntervalL(); |
|
2840 break; |
|
2841 case KJpgEOISignature: |
|
2842 iDataPtr += 2; |
|
2843 return EFrameComplete; |
|
2844 default: |
|
2845 #if defined(RELAX_JPEG_STRICTNESS) |
|
2846 iDataPtr += 1; |
|
2847 dataRemaining = iDataPtrLimit - iDataPtr; |
|
2848 if (dataRemaining < 2) |
|
2849 { |
|
2850 return EFrameIncomplete; |
|
2851 } |
|
2852 #else |
|
2853 User::Leave(KErrCorrupt); |
|
2854 #endif |
|
2855 break; |
|
2856 } |
|
2857 } |
|
2858 } |
|
2859 } |
|
2860 |
|
2861 void CProgressiveJpgReadCodec::ProcessFrameL() |
|
2862 { |
|
2863 if (iScanInfo.iEndSpectralSelection == 0) |
|
2864 { |
|
2865 if (iScanInfo.iSuccessiveApproximationBitsHigh == 0) |
|
2866 InitDCL(); |
|
2867 else |
|
2868 RefineDCL(); |
|
2869 } |
|
2870 else |
|
2871 { |
|
2872 if (iScanInfo.iSuccessiveApproximationBitsHigh == 0) |
|
2873 InitACL(); |
|
2874 else |
|
2875 RefineACL(); |
|
2876 } |
|
2877 } |
|
2878 |
|
2879 void CProgressiveJpgReadCodec::InitDCL() |
|
2880 { |
|
2881 if(iScanInfo.iNumberOfComponents == 1) |
|
2882 { //Non interleaved scan |
|
2883 for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++) |
|
2884 { |
|
2885 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex]; |
|
2886 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
2887 const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable]; |
|
2888 TInt& dcPredictor = iDCPredictor[compIndex]; |
|
2889 TInt dataUnitCount = iMCUDataUnitCount[compIndex]; |
|
2890 |
|
2891 TInt horzSamples = iHorzSampleFactor[compIndex]; |
|
2892 TInt vertSamples = iVertSampleFactor[compIndex]; |
|
2893 TDataUnit* dataUnit = iMCUBuffer[compIndex]; |
|
2894 for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++) |
|
2895 { |
|
2896 TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount; |
|
2897 TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples; |
|
2898 for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++) |
|
2899 { |
|
2900 StoreState(); |
|
2901 if (iRestartMCUCount == 0) |
|
2902 RestartStateL(); |
|
2903 |
|
2904 TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples); |
|
2905 TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples); |
|
2906 |
|
2907 GetDCValueL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],dcTable,dcPredictor); |
|
2908 |
|
2909 iRestartMCUCount--; |
|
2910 } |
|
2911 |
|
2912 iCurrentMCUHorzCount = 0; |
|
2913 } |
|
2914 iCurrentMCUVertCount = 0; |
|
2915 } |
|
2916 } |
|
2917 else |
|
2918 { // Interleaved scan |
|
2919 for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++) |
|
2920 { |
|
2921 StoreState(); |
|
2922 if (iRestartMCUCount == 0) |
|
2923 RestartStateL(); |
|
2924 |
|
2925 for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++) |
|
2926 { |
|
2927 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex]; |
|
2928 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
2929 const TDecHuffmanTable& dcTable = iDCHuffmanTable[scanInfo.iDCCodingTable]; |
|
2930 TInt& dcPredictor = iDCPredictor[compIndex]; |
|
2931 TDataUnit* tempMCUBufferPtr = iMCUBufferPtr[compIndex]; |
|
2932 |
|
2933 for (TInt count = iMCUDataUnitCount[compIndex]; count > 0; count--) |
|
2934 { |
|
2935 GetDCValueL(*tempMCUBufferPtr,dcTable,dcPredictor); |
|
2936 tempMCUBufferPtr++; |
|
2937 } |
|
2938 } |
|
2939 |
|
2940 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
2941 iMCUBufferPtr[count] += iMCUDataUnitCount[count]; |
|
2942 |
|
2943 iRestartMCUCount--; |
|
2944 } |
|
2945 } |
|
2946 |
|
2947 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
2948 iMCUBufferPtr[count] = iMCUBuffer[count]; |
|
2949 |
|
2950 ResetState(); |
|
2951 iCurrentMCUCount = 0; |
|
2952 iProcessing = EFalse; |
|
2953 } |
|
2954 |
|
2955 void CProgressiveJpgReadCodec::RefineDCL() |
|
2956 { |
|
2957 for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++) |
|
2958 { |
|
2959 StoreState(); |
|
2960 if (iRestartMCUCount == 0) |
|
2961 RestartStateL(); |
|
2962 |
|
2963 for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++) |
|
2964 { |
|
2965 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex]; |
|
2966 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
2967 TDataUnit* tempMCUBufferPtr = iMCUBufferPtr[compIndex]; |
|
2968 |
|
2969 for (TInt count = iMCUDataUnitCount[compIndex]; count > 0; count--) |
|
2970 { |
|
2971 if (NextBitL()) |
|
2972 tempMCUBufferPtr->iCoeff[0] |= iRefinedDCValue; |
|
2973 tempMCUBufferPtr++; |
|
2974 } |
|
2975 } |
|
2976 |
|
2977 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
2978 iMCUBufferPtr[count] += iMCUDataUnitCount[count]; |
|
2979 |
|
2980 iRestartMCUCount--; |
|
2981 } |
|
2982 |
|
2983 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
2984 iMCUBufferPtr[count] = iMCUBuffer[count]; |
|
2985 |
|
2986 ResetState(); |
|
2987 iCurrentMCUCount = 0; |
|
2988 iProcessing = EFalse; |
|
2989 } |
|
2990 |
|
2991 void CProgressiveJpgReadCodec::InitACL() |
|
2992 { |
|
2993 if (iScanInfo.iNumberOfComponents > 1) |
|
2994 User::Leave(KErrCorrupt); |
|
2995 |
|
2996 TInt compIndex = ComponentIndexL(iScanInfo.iComponent[0].iId); |
|
2997 const TDecHuffmanTable& acTable = iACHuffmanTable[iScanInfo.iComponent[0].iACCodingTable]; |
|
2998 TInt dataUnitCount = iMCUDataUnitCount[compIndex]; |
|
2999 |
|
3000 if (dataUnitCount == 1) |
|
3001 { |
|
3002 for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++) |
|
3003 { |
|
3004 StoreState(); |
|
3005 if (iRestartMCUCount == 0) |
|
3006 RestartStateL(); |
|
3007 |
|
3008 if (iSkipCount == 0) |
|
3009 iSkipCount = GetACValuesL(*iMCUBufferPtr[compIndex],acTable); |
|
3010 else |
|
3011 iSkipCount--; |
|
3012 |
|
3013 iMCUBufferPtr[compIndex]++; |
|
3014 iRestartMCUCount--; |
|
3015 } |
|
3016 |
|
3017 iCurrentMCUCount = 0; |
|
3018 } |
|
3019 else |
|
3020 { |
|
3021 TInt horzSamples = iHorzSampleFactor[compIndex]; |
|
3022 TInt vertSamples = iVertSampleFactor[compIndex]; |
|
3023 TDataUnit* dataUnit = iMCUBuffer[compIndex]; |
|
3024 for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++) |
|
3025 { |
|
3026 TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount; |
|
3027 TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples; |
|
3028 for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++) |
|
3029 { |
|
3030 StoreState(); |
|
3031 if (iRestartMCUCount == 0) |
|
3032 RestartStateL(); |
|
3033 |
|
3034 if (iSkipCount == 0) |
|
3035 { |
|
3036 TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples); |
|
3037 TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples); |
|
3038 iSkipCount = GetACValuesL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],acTable); |
|
3039 } |
|
3040 else |
|
3041 iSkipCount--; |
|
3042 |
|
3043 iRestartMCUCount--; |
|
3044 } |
|
3045 |
|
3046 iCurrentMCUHorzCount = 0; |
|
3047 } |
|
3048 iCurrentMCUVertCount = 0; |
|
3049 } |
|
3050 |
|
3051 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
3052 iMCUBufferPtr[count] = iMCUBuffer[count]; |
|
3053 |
|
3054 iSkipCount = 0; |
|
3055 ResetState(); |
|
3056 iProcessing = EFalse; |
|
3057 } |
|
3058 |
|
3059 void CProgressiveJpgReadCodec::RefineACL() |
|
3060 { |
|
3061 if (iScanInfo.iNumberOfComponents > 1) |
|
3062 User::Leave(KErrCorrupt); |
|
3063 |
|
3064 TInt compIndex = ComponentIndexL(iScanInfo.iComponent[0].iId); |
|
3065 const TDecHuffmanTable& acTable = iACHuffmanTable[iScanInfo.iComponent[0].iACCodingTable]; |
|
3066 TInt dataUnitCount = iMCUDataUnitCount[compIndex]; |
|
3067 if (dataUnitCount == 1) |
|
3068 { |
|
3069 for(; iCurrentMCUCount < iTotalMCUCount; iCurrentMCUCount++) |
|
3070 { |
|
3071 StoreState(); |
|
3072 if (iRestartMCUCount == 0) |
|
3073 RestartStateL(); |
|
3074 |
|
3075 RefineACValuesL(*iMCUBufferPtr[compIndex],acTable); |
|
3076 iMCUBufferPtr[compIndex]++; |
|
3077 |
|
3078 iRestartMCUCount--; |
|
3079 } |
|
3080 |
|
3081 iCurrentMCUCount = 0; |
|
3082 } |
|
3083 else |
|
3084 { |
|
3085 TInt horzSamples = iHorzSampleFactor[compIndex]; |
|
3086 TInt vertSamples = iVertSampleFactor[compIndex]; |
|
3087 TDataUnit* dataUnit = iMCUBuffer[compIndex]; |
|
3088 for (; iCurrentMCUVertCount < iIndividualVertMCUCount[compIndex]; iCurrentMCUVertCount++) |
|
3089 { |
|
3090 TInt blockBase = (iCurrentMCUVertCount / vertSamples) * iHorzMCUCount; |
|
3091 TInt unitBase = (iCurrentMCUVertCount % vertSamples) * horzSamples; |
|
3092 for (; iCurrentMCUHorzCount < iIndividualHorzMCUCount[compIndex]; iCurrentMCUHorzCount++) |
|
3093 { |
|
3094 StoreState(); |
|
3095 if (iRestartMCUCount == 0) |
|
3096 RestartStateL(); |
|
3097 |
|
3098 TInt blockOffset = blockBase + (iCurrentMCUHorzCount / horzSamples); |
|
3099 TInt unitOffset = unitBase + (iCurrentMCUHorzCount % horzSamples); |
|
3100 RefineACValuesL(dataUnit[(blockOffset * dataUnitCount) + unitOffset],acTable); |
|
3101 |
|
3102 iRestartMCUCount--; |
|
3103 } |
|
3104 |
|
3105 iCurrentMCUHorzCount = 0; |
|
3106 } |
|
3107 iCurrentMCUVertCount = 0; |
|
3108 } |
|
3109 |
|
3110 for (TInt count = 0; count < iFrameInfo.iNumberOfComponents; count++) |
|
3111 iMCUBufferPtr[count] = iMCUBuffer[count]; |
|
3112 |
|
3113 ResetState(); |
|
3114 iProcessing = EFalse; |
|
3115 } |
|
3116 |
|
3117 void CProgressiveJpgReadCodec::InitDrawFrame() |
|
3118 { |
|
3119 iCurrentDrawMCU = 0; |
|
3120 TInt numberOfComponents = iMonochrome ? 1 : iFrameInfo.iNumberOfComponents; |
|
3121 for (TInt count = 0; count < numberOfComponents; count++) |
|
3122 { |
|
3123 iDrawMCUPtr[count] = iMCUBuffer[count]; |
|
3124 } |
|
3125 |
|
3126 if (!iImageFrameCodecPtr) |
|
3127 { |
|
3128 CImageProcessor* const imageProc = ImageProcessor(); |
|
3129 imageProc->SetPos(TPoint(0,0)); |
|
3130 } |
|
3131 } |
|
3132 |
|
3133 TBool CProgressiveJpgReadCodec::DrawFrameL() |
|
3134 { |
|
3135 TInt numberOfComponents = iMonochrome ? 1 : iFrameInfo.iNumberOfComponents; |
|
3136 |
|
3137 TDataUnit dataUnit; |
|
3138 CImageProcessor* const imageProc = ImageProcessor(); |
|
3139 |
|
3140 const TInt drawMCULimit = Min(iCurrentDrawMCU + KMaxMCUPerDraw, iTotalMCUCount); |
|
3141 |
|
3142 while (iCurrentDrawMCU < drawMCULimit) |
|
3143 { |
|
3144 for (TInt compIndex = 0; compIndex < numberOfComponents; compIndex++) |
|
3145 { |
|
3146 TQTable& qTable = iQTable[iFrameInfo.iComponent[compIndex].iQTable]; |
|
3147 TDataUnit* compPtr = iComponent[compIndex]; |
|
3148 for (TInt dataUnitCount = iMCUDataUnitCount[compIndex]; dataUnitCount > 0; dataUnitCount--) |
|
3149 { |
|
3150 qTable.DeQuantize(dataUnit, *iDrawMCUPtr[compIndex], KJpgDCTBlockSize); |
|
3151 iCompConf[compIndex].iDCT->InverseTransform(*compPtr, dataUnit); |
|
3152 iDrawMCUPtr[compIndex]++; |
|
3153 compPtr++; |
|
3154 } |
|
3155 } |
|
3156 |
|
3157 if (imageProc) |
|
3158 { |
|
3159 WriteMCU(); |
|
3160 imageProc->SetPixelBlock(iRgbBuffer); |
|
3161 } |
|
3162 else |
|
3163 { |
|
3164 RArray<const TDataUnit*> dataUnits; |
|
3165 CleanupClosePushL(dataUnits); |
|
3166 for (TInt compIndex = 0; compIndex < iFrameInfo.iNumberOfComponents; compIndex++) |
|
3167 { |
|
3168 TDataUnit* compPtr = iComponent[compIndex]; |
|
3169 TInt numSamples = iMCUDataUnitCount[compIndex]; |
|
3170 while (numSamples > 0) |
|
3171 { |
|
3172 numSamples--; |
|
3173 User::LeaveIfError(dataUnits.Append(compPtr++)); |
|
3174 } |
|
3175 } |
|
3176 iImageFrameCodecPtr->ProcessL(dataUnits); |
|
3177 CleanupStack::PopAndDestroy(1, &dataUnits); |
|
3178 } |
|
3179 |
|
3180 iCurrentDrawMCU++; |
|
3181 } |
|
3182 |
|
3183 if (iCurrentDrawMCU < iTotalMCUCount) |
|
3184 { |
|
3185 return EFalse; |
|
3186 } |
|
3187 |
|
3188 return ETrue; |
|
3189 } |
|
3190 |
|
3191 void CProgressiveJpgReadCodec::GetDCValueL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable,TInt& aDCPredictor) |
|
3192 { |
|
3193 TInt size = GetHuffmanCodeL(aHuffmanTable); |
|
3194 TInt amplitude = (size > 0) ? GetBinaryNumberL(size) : 0; |
|
3195 aDCPredictor += amplitude; |
|
3196 ASSERT(aDCPredictor <= KMaxTInt16 && aDCPredictor >= KMinTInt16); |
|
3197 aDataUnit.iCoeff[0] = TInt16(aDCPredictor << iScanInfo.iSuccessiveApproximationBitsLow); |
|
3198 } |
|
3199 |
|
3200 TInt CProgressiveJpgReadCodec::GetACValuesL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable) |
|
3201 { |
|
3202 TInt16* valuePtr = &aDataUnit.iCoeff[iScanInfo.iStartSpectralSelection]; |
|
3203 TInt16* valuePtrLimit = &aDataUnit.iCoeff[iScanInfo.iEndSpectralSelection + 1]; |
|
3204 |
|
3205 while (valuePtr < valuePtrLimit) |
|
3206 { |
|
3207 TInt s = GetHuffmanCodeL(aHuffmanTable); |
|
3208 const TInt r = s >> 4; |
|
3209 s &= 0x0f; |
|
3210 if (s > 0) |
|
3211 { |
|
3212 valuePtr += r; |
|
3213 |
|
3214 if (valuePtr < valuePtrLimit) |
|
3215 *valuePtr++ |= TInt16(GetBinaryNumberL(s) << iScanInfo.iSuccessiveApproximationBitsLow); |
|
3216 } |
|
3217 else |
|
3218 { |
|
3219 if (r == 15) // Zero run length |
|
3220 valuePtr += 16; |
|
3221 else |
|
3222 { |
|
3223 TInt eobRun = 1 << r; |
|
3224 if (r > 0) |
|
3225 eobRun += GetPositiveBinaryNumberL(r); |
|
3226 return eobRun - 1; |
|
3227 } |
|
3228 } |
|
3229 } |
|
3230 return 0; |
|
3231 } |
|
3232 |
|
3233 void CProgressiveJpgReadCodec::RefineACValuesL(TDataUnit& aDataUnit,const TDecHuffmanTable& aHuffmanTable) |
|
3234 { |
|
3235 TInt s = 0; |
|
3236 TInt r; |
|
3237 TInt16* valuePtr = &aDataUnit.iCoeff[iScanInfo.iStartSpectralSelection]; |
|
3238 TInt16* valuePtrLimit = &aDataUnit.iCoeff[iScanInfo.iEndSpectralSelection]; |
|
3239 |
|
3240 TInt err; |
|
3241 TInt numNewNonZero = 0; |
|
3242 TInt16* newNonZeroPosition[KJpgDCTBlockSize]; |
|
3243 TInt oldEobRun = iEobRun; |
|
3244 if (iEobRun == 0) |
|
3245 { |
|
3246 for (; valuePtr <= valuePtrLimit; valuePtr++) |
|
3247 { |
|
3248 TRAP(err,s = GetHuffmanCodeL(aHuffmanTable)); |
|
3249 if (err == KErrCompletion) |
|
3250 goto OutOfData; |
|
3251 User::LeaveIfError(err); |
|
3252 r = s >> 4; |
|
3253 s &= 0x0f; |
|
3254 if (s > 0) |
|
3255 { |
|
3256 TBool nextBit = EFalse; |
|
3257 TRAP(err,nextBit = NextBitL()); |
|
3258 if (err == KErrCompletion) |
|
3259 goto OutOfData; |
|
3260 User::LeaveIfError(err); |
|
3261 if (nextBit) |
|
3262 s = iP1; |
|
3263 else |
|
3264 s = iM1; |
|
3265 } |
|
3266 else |
|
3267 { |
|
3268 if (r != 15) |
|
3269 { |
|
3270 iEobRun = 1 << r; |
|
3271 if (r > 0) |
|
3272 { |
|
3273 TRAP(err,iEobRun += GetPositiveBinaryNumberL(r)); |
|
3274 if (err == KErrCompletion) |
|
3275 goto OutOfData; |
|
3276 User::LeaveIfError(err); |
|
3277 } |
|
3278 break; |
|
3279 } |
|
3280 } |
|
3281 |
|
3282 do |
|
3283 { |
|
3284 TInt16* coef = valuePtr; |
|
3285 if (*coef != 0) |
|
3286 { |
|
3287 TBool nextBit = EFalse; |
|
3288 TRAP(err,nextBit = NextBitL()); |
|
3289 if (err == KErrCompletion) |
|
3290 goto OutOfData; |
|
3291 User::LeaveIfError(err); |
|
3292 if (nextBit) |
|
3293 { |
|
3294 if ((*coef & iP1) == 0) |
|
3295 { |
|
3296 if (*coef >= 0) |
|
3297 *coef = TInt16(*coef + iP1); |
|
3298 else |
|
3299 *coef = TInt16(*coef + iM1); |
|
3300 } |
|
3301 } |
|
3302 } |
|
3303 else |
|
3304 { |
|
3305 if (--r < 0) |
|
3306 break; |
|
3307 } |
|
3308 valuePtr++; |
|
3309 } |
|
3310 while (valuePtr <= valuePtrLimit); |
|
3311 |
|
3312 if (s != 0) |
|
3313 { |
|
3314 *valuePtr = TInt16(s); |
|
3315 newNonZeroPosition[numNewNonZero++] = valuePtr; |
|
3316 } |
|
3317 } |
|
3318 } |
|
3319 |
|
3320 if (iEobRun > 0) |
|
3321 { |
|
3322 for (; valuePtr <= valuePtrLimit; valuePtr++) |
|
3323 { |
|
3324 TInt16* coef = valuePtr; |
|
3325 if (*coef != 0) |
|
3326 { |
|
3327 TBool nextBit = EFalse; |
|
3328 TRAP(err,nextBit = NextBitL()); |
|
3329 if (err == KErrCompletion) |
|
3330 goto OutOfData; |
|
3331 User::LeaveIfError(err); |
|
3332 if (nextBit) |
|
3333 { |
|
3334 if ((*coef & iP1) == 0) |
|
3335 { |
|
3336 if (*coef >= 0) |
|
3337 *coef = TInt16(*coef + iP1); |
|
3338 else |
|
3339 *coef = TInt16(*coef + iM1); |
|
3340 } |
|
3341 } |
|
3342 } |
|
3343 } |
|
3344 iEobRun--; |
|
3345 } |
|
3346 return; |
|
3347 |
|
3348 OutOfData: |
|
3349 while (numNewNonZero > 0) |
|
3350 *(newNonZeroPosition[--numNewNonZero]) = 0; |
|
3351 iEobRun = oldEobRun; |
|
3352 |
|
3353 User::Leave(KErrCompletion); |
|
3354 } |
|
3355 |
|
3356 #if defined(__ARMCC__) |
|
3357 #pragma push |
|
3358 #pragma thumb |
|
3359 #endif |
|
3360 |
|
3361 void CProgressiveJpgReadCodec::LoadHuffmanTableL() |
|
3362 { |
|
3363 if (iDataPtr + 4 > iDataPtrLimit) |
|
3364 { |
|
3365 User::Leave(KErrCompletion); |
|
3366 } |
|
3367 |
|
3368 TInt length = (iDataPtr[2] << 8) | iDataPtr[3]; |
|
3369 |
|
3370 const TUint8* dataPtrLimit = iDataPtr + length + 2; |
|
3371 if (dataPtrLimit > iDataPtrLimit) |
|
3372 User::Leave(KErrCompletion); |
|
3373 |
|
3374 iDataPtr += 4; |
|
3375 while (iDataPtr < dataPtrLimit) |
|
3376 { |
|
3377 TInt index = *iDataPtr++; |
|
3378 TBool dcTable = !(index & 0x10); |
|
3379 index &= 0x0f; |
|
3380 if (index >= KJpgMaxNumberOfTables) |
|
3381 User::Leave(KErrCorrupt); |
|
3382 TDecHuffmanTable& table = dcTable ? iDCHuffmanTable[index] : iACHuffmanTable[index]; |
|
3383 iDataPtr += table.SetL(iDataPtr,dataPtrLimit); |
|
3384 } |
|
3385 } |
|
3386 |
|
3387 void CProgressiveJpgReadCodec::LoadSOSL() |
|
3388 { |
|
3389 if (iDataPtr + 4 > iDataPtrLimit) |
|
3390 User::Leave(KErrCompletion); |
|
3391 TInt length = (iDataPtr[2] << 8) | iDataPtr[3]; |
|
3392 |
|
3393 if (iDataPtr + length + 2 > iDataPtrLimit) |
|
3394 User::Leave(KErrCompletion); |
|
3395 |
|
3396 iDataPtr += 4; |
|
3397 iScanInfo.iNumberOfComponents = *iDataPtr++; |
|
3398 |
|
3399 // We ony support up to 3 components, even though spec supports up to 4. |
|
3400 // Additionaly, number must not be greater than in original frame SOS header |
|
3401 if (iScanInfo.iNumberOfComponents < KJpgMinNumberOfComponents || |
|
3402 iScanInfo.iNumberOfComponents > iOriginalFrameInfo.iNumberOfComponents) |
|
3403 User::Leave(KErrCorrupt); |
|
3404 |
|
3405 for (TInt count = 0; count < iScanInfo.iNumberOfComponents; count++) |
|
3406 { |
|
3407 iScanInfo.iComponent[count].iId = *iDataPtr++; |
|
3408 |
|
3409 TUint8 table = *iDataPtr++; |
|
3410 TUint8 DCTable = static_cast<TUint8>(table >> 4); |
|
3411 TUint8 ACTable = static_cast<TUint8>(table & 0x0f); |
|
3412 |
|
3413 if(DCTable >= KJpgMaxNumberOfTables || ACTable >= KJpgMaxNumberOfTables) |
|
3414 User::Leave(KErrCorrupt); |
|
3415 |
|
3416 iScanInfo.iComponent[count].iDCCodingTable = DCTable; |
|
3417 iScanInfo.iComponent[count].iACCodingTable = ACTable; |
|
3418 |
|
3419 iDCHuffmanTable[DCTable].MakeDerivedTableL(); |
|
3420 iACHuffmanTable[ACTable].MakeDerivedTableL(); |
|
3421 } |
|
3422 |
|
3423 iScanInfo.iStartSpectralSelection = *iDataPtr++; |
|
3424 iScanInfo.iEndSpectralSelection = *iDataPtr++; |
|
3425 TUint8 successiveApproximation = *iDataPtr++; |
|
3426 iScanInfo.iSuccessiveApproximationBitsHigh = successiveApproximation >> 4; |
|
3427 iScanInfo.iSuccessiveApproximationBitsLow = successiveApproximation & 0x0f; |
|
3428 iP1 = 1 << iScanInfo.iSuccessiveApproximationBitsLow; |
|
3429 iM1 = (-1) << iScanInfo.iSuccessiveApproximationBitsLow; |
|
3430 |
|
3431 iRefinedDCValue = TInt16(1 << iScanInfo.iSuccessiveApproximationBitsLow); |
|
3432 |
|
3433 // if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL |
|
3434 // This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame |
|
3435 iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound; |
|
3436 } |
|
3437 |
|
3438 void CProgressiveJpgReadCodec::LoadRestartIntervalL() |
|
3439 { |
|
3440 if (iDataPtr + 6 > iDataPtrLimit) |
|
3441 { |
|
3442 User::Leave(KErrCompletion); |
|
3443 } |
|
3444 |
|
3445 iFrameInfo.iRestartInterval = iDataPtr[5] | (iDataPtr[4] << 8); |
|
3446 iDataPtr += 6; |
|
3447 |
|
3448 // if iRestartInterval is 0, iRestartMCUCount is set to a negative value (KErrNotFound) to skip the 0 trigger points that would call RestartStateL |
|
3449 // This is done to solve the problem that on some images the iRestartInterval marker is 0 on every frame |
|
3450 iRestartMCUCount = iFrameInfo.iRestartInterval > 0 ? iFrameInfo.iRestartInterval : KErrNotFound; |
|
3451 } |
|
3452 |
|
3453 // 03/12/03 - function added as a result of INC037134 |
|
3454 // needed a way to cleanup buffers when decoding complete |
|
3455 void CProgressiveJpgReadCodec::CleanupBuffers() |
|
3456 { |
|
3457 if(!iMCUChunkAllocated) |
|
3458 { |
|
3459 delete iMCUMemoryBuffer; |
|
3460 iMCUMemoryBuffer = NULL; |
|
3461 } |
|
3462 else |
|
3463 { |
|
3464 iMCUChunk.Close(); |
|
3465 } |
|
3466 for (TInt count = 0; count < KJpgNumberOfComponents; count++) |
|
3467 { |
|
3468 iMCUBuffer[count] = NULL; |
|
3469 } |
|
3470 iMCUChunkAllocated = EFalse; |
|
3471 } |
|
3472 |
|
3473 // CJpgImageFrameReadCodec |
|
3474 CJpgImageFrameReadCodec::CJpgImageFrameReadCodec(CImageFrame* aFrame) |
|
3475 { |
|
3476 iDestination = aFrame; |
|
3477 } |
|
3478 |
|
3479 CJpgImageFrameReadCodec::~CJpgImageFrameReadCodec() |
|
3480 { |
|
3481 delete iImageFrameProcessorPtr; |
|
3482 } |
|
3483 |
|
3484 CJpgImageFrameReadCodec* CJpgImageFrameReadCodec::NewL(CImageFrame* aFrame) |
|
3485 { |
|
3486 CJpgImageFrameReadCodec* self = new(ELeave) CJpgImageFrameReadCodec(aFrame); |
|
3487 return self; |
|
3488 } |
|
3489 |
|
3490 void CJpgImageFrameReadCodec::CreateImageProcessorL(const TJpgFrameInfo& aFrameInfo) |
|
3491 { |
|
3492 ASSERT(iImageFrameProcessorPtr==NULL); |
|
3493 |
|
3494 iDestination->SetFrameSizeInPixels(aFrameInfo.iSizeInPixels); |
|
3495 CJpgImageFrameProcessorUtility::PrepareImageFrameL(aFrameInfo,*iDestination); |
|
3496 iImageFrameProcessorPtr = CJpgImageFrameProcessorUtility::NewL(*iDestination); |
|
3497 } |
|
3498 |
|
3499 void CJpgImageFrameReadCodec::ProcessL(const RArray<const TDataUnit*>& aDataUnits) |
|
3500 { |
|
3501 iImageFrameProcessorPtr->WriteBlockL(aDataUnits); |
|
3502 } |
|
3503 |
|
3504 CImageFrame* CJpgImageFrameReadCodec::Destination() |
|
3505 { |
|
3506 return iDestination; |
|
3507 } |
|
3508 |
|
3509 void CJpgImageFrameReadCodec::SetImageFrameBlocksL(CImageFrame* aFrame, const TJpgFrameInfo& aFrameInfo) |
|
3510 { |
|
3511 iDestination = aFrame; |
|
3512 |
|
3513 if(iImageFrameProcessorPtr) |
|
3514 { |
|
3515 delete iImageFrameProcessorPtr; |
|
3516 iImageFrameProcessorPtr = NULL; |
|
3517 } |
|
3518 |
|
3519 CJpgImageFrameProcessorUtility::PrepareImageFrameL(aFrameInfo, *iDestination); |
|
3520 iImageFrameProcessorPtr = CJpgImageFrameProcessorUtility::NewL(*iDestination); |
|
3521 } |
|
3522 |
|
3523 // |
|
3524 // Multiscan sequential read codec. |
|
3525 // |
|
3526 CMultiScanSequentialJpgReadCodec* CMultiScanSequentialJpgReadCodec::NewL( |
|
3527 const TJpgFrameInfo& aFrameInfo, |
|
3528 const TJpgScanInfo& aScanInfo, |
|
3529 TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables], |
|
3530 TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables], |
|
3531 const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
3532 { |
|
3533 CMultiScanSequentialJpgReadCodec* self = new(ELeave) CMultiScanSequentialJpgReadCodec( |
|
3534 aFrameInfo, |
|
3535 aScanInfo, |
|
3536 aDCHuffmanTable, |
|
3537 aACHuffmanTable, |
|
3538 aQTable); |
|
3539 CleanupStack::PushL(self); |
|
3540 self->ConstructL(EFalse); // No cache needed |
|
3541 CleanupStack::Pop(self); |
|
3542 return self; |
|
3543 } |
|
3544 |
|
3545 |
|
3546 // |
|
3547 // |
|
3548 // |
|
3549 CMultiScanSequentialJpgReadCodec::CMultiScanSequentialJpgReadCodec( |
|
3550 const TJpgFrameInfo& aFrameInfo, |
|
3551 const TJpgScanInfo& aScanInfo, |
|
3552 TDecHuffmanTable aDCHuffmanTable[KJpgMaxNumberOfTables], |
|
3553 TDecHuffmanTable aACHuffmanTable[KJpgMaxNumberOfTables], |
|
3554 const TQTable aQTable[KJpgMaxNumberOfTables]) |
|
3555 : CSequentialJpgReadCodec(aFrameInfo, |
|
3556 aScanInfo, |
|
3557 aDCHuffmanTable, |
|
3558 aACHuffmanTable, |
|
3559 aQTable) |
|
3560 { |
|
3561 Mem::Copy(&iFirstScan, &iScanInfo, sizeof(TJpgScanInfo)); |
|
3562 } |
|
3563 |
|
3564 |
|
3565 // |
|
3566 // |
|
3567 // |
|
3568 CMultiScanSequentialJpgReadCodec::~CMultiScanSequentialJpgReadCodec() |
|
3569 { |
|
3570 iMCUChunk.Close(); |
|
3571 } |
|
3572 |
|
3573 |
|
3574 // |
|
3575 // |
|
3576 // |
|
3577 void CMultiScanSequentialJpgReadCodec::PreInitFrameL() |
|
3578 { |
|
3579 CSequentialJpgReadCodec::PreInitFrameL(); |
|
3580 |
|
3581 // Restore the first scan. |
|
3582 Mem::Copy(&iScanInfo, &iFirstScan, sizeof(TJpgScanInfo)); |
|
3583 |
|
3584 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
3585 { |
|
3586 iCompAvailable[i] = EFalse; |
|
3587 } |
|
3588 |
|
3589 iMCUChunk.Close(); |
|
3590 iMCUMemoryOffset = NULL; |
|
3591 } |
|
3592 |
|
3593 |
|
3594 // |
|
3595 // |
|
3596 // |
|
3597 void CMultiScanSequentialJpgReadCodec::InitFrameL(TFrameInfo& aFrameInfo, CFrameImageData& aFrameImageData, TBool aDisableErrorDiffusion, CFbsBitmap& aFrame, CFbsBitmap* aFrameMask) |
|
3598 { |
|
3599 CJpgReadCodec::InitFrameL(aFrameInfo, aFrameImageData, aDisableErrorDiffusion, aFrame, aFrameMask); |
|
3600 |
|
3601 iTotalMCUBlocks = GetHorzMCUCount() * GetVertMCUCount(); |
|
3602 |
|
3603 // Prepare RChunk memory for all components |
|
3604 TInt mcuMemory = 0; |
|
3605 for (TInt i = 0; i < iFrameInfo.iNumberOfComponents; i++) |
|
3606 { |
|
3607 mcuMemory += iTotalMCUBlocks * iMCUDataUnitCount[i] * sizeof(TDataUnit); |
|
3608 } |
|
3609 |
|
3610 TInt err = iMCUChunk.CreateLocal(mcuMemory, mcuMemory); |
|
3611 JPEG_LEAVE_IF_ERROR(err, "Chunk creation"); |
|
3612 |
|
3613 iMCUMemoryOffset = iMCUChunk.Base(); |
|
3614 |
|
3615 // Allocate memory for individual components in scan. |
|
3616 for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++) |
|
3617 { |
|
3618 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex]; |
|
3619 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
3620 TInt unitCount = iTotalMCUBlocks * iMCUDataUnitCount[compIndex]; |
|
3621 |
|
3622 iCompBuf[compIndex] = reinterpret_cast<TDataUnit*>(iMCUMemoryOffset); |
|
3623 iCompAvailable[compIndex] = ETrue; |
|
3624 |
|
3625 iMCUMemoryOffset += unitCount * sizeof(TDataUnit); |
|
3626 } |
|
3627 |
|
3628 iCurrentMcuIdx = 0; |
|
3629 } |
|
3630 |
|
3631 #if defined(__ARMCC__) |
|
3632 #pragma pop |
|
3633 #endif |
|
3634 |
|
3635 // |
|
3636 // |
|
3637 // |
|
3638 TFrameState CMultiScanSequentialJpgReadCodec::DoProcessL() |
|
3639 { |
|
3640 while (iDataPtr < iDataPtrLimit) |
|
3641 { |
|
3642 StoreState(); |
|
3643 if (iRestartMCUCount == 0) |
|
3644 { |
|
3645 RestartStateL(); |
|
3646 } |
|
3647 |
|
3648 const TUint8* const latestDataPtr = iDataPtr; |
|
3649 TInt error = KErrNone; |
|
3650 // we do that "if" in order to bypass exception handling which can |
|
3651 // affect performance of the decoder |
|
3652 if (iPreviousDataLeft < KMCUDataLeftThreshhold) |
|
3653 { |
|
3654 TRAP(error, ProcessMCUL()); |
|
3655 // leave if it wasn't a partial MCU |
|
3656 if (error != KErrNone && (error != KErrEof || latestDataPtr == iDataPtr || |
|
3657 (latestDataPtr + sizeof(TUint16) <= iDataPtrLimit |
|
3658 && PtrReadUtil::ReadBigEndianUint16(latestDataPtr)==KJpgEOISignature |
|
3659 ) |
|
3660 ) |
|
3661 ) |
|
3662 { |
|
3663 JPEG_LEAVE(error, "From ProcessMCUL_1"); |
|
3664 } |
|
3665 } |
|
3666 else |
|
3667 { |
|
3668 ProcessMCUL(); |
|
3669 } |
|
3670 |
|
3671 JPEG_LEAVE_IF_ERROR(error, "From slow ProcessMCUL"); |
|
3672 |
|
3673 //in case of corrupt image, if MCUs exceed total MCUs then leave |
|
3674 if (iCurrentMcuIdx >= iTotalMCUBlocks) |
|
3675 { |
|
3676 JPEG_LEAVE(KErrEof, "Too many MCUs in image"); |
|
3677 } |
|
3678 |
|
3679 for (TInt scanInfoIndex = 0; scanInfoIndex < iScanInfo.iNumberOfComponents; scanInfoIndex++) |
|
3680 { |
|
3681 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[scanInfoIndex]; |
|
3682 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
3683 CopyMCUs(compIndex); |
|
3684 } |
|
3685 |
|
3686 iCurrentMcuIdx++; |
|
3687 iRestartMCUCount--; |
|
3688 |
|
3689 if (iDataPtrLimit - iDataPtr < KMCUDataLeftThreshhold) |
|
3690 { |
|
3691 TBool needLeave = (iPreviousDataLeft > iDataPtrLimit - iDataPtr); |
|
3692 iPreviousDataLeft = iDataPtrLimit - iDataPtr; |
|
3693 if (needLeave && !iNewTableOrScan) |
|
3694 { |
|
3695 StoreState(); |
|
3696 User::Leave(KErrCompletion); |
|
3697 } |
|
3698 } |
|
3699 } |
|
3700 return EFrameIncomplete; |
|
3701 } |
|
3702 |
|
3703 |
|
3704 // |
|
3705 // Searches Start of Scan marker(0xffda) or Huffman table marker(0xffc4) and gives the position in aPos. |
|
3706 // |
|
3707 TBool CMultiScanSequentialJpgReadCodec::SearchTableOrSosMarker(TBufPtr8& aSourceData, TInt& aPos, TUint16& aMarker) |
|
3708 { |
|
3709 const TUint8* ptr = aSourceData.Ptr(); |
|
3710 const TUint8* limit = ptr + aSourceData.Length() - 1; |
|
3711 |
|
3712 aPos = 0; |
|
3713 while ((ptr + 1) <= limit) |
|
3714 { |
|
3715 // Mem::Copy must be used to avoid KERN:EXEC 3 access alignment panics on hardware. |
|
3716 TUint16 data = 0; |
|
3717 Mem::Copy(&data, ptr++, sizeof(TUint16)); |
|
3718 |
|
3719 switch (data) |
|
3720 { |
|
3721 case 0xDAFF: // Big-endian version of KJpgSOSSignature. |
|
3722 aMarker = KJpgSOSSignature; |
|
3723 return ETrue; |
|
3724 |
|
3725 case 0xC4FF: // Big-endian version of KJpgDHTSignature. |
|
3726 aMarker = KJpgDHTSignature; |
|
3727 return ETrue; |
|
3728 |
|
3729 default: |
|
3730 aPos++; |
|
3731 } |
|
3732 } |
|
3733 |
|
3734 return EFalse; |
|
3735 } |
|
3736 |
|
3737 |
|
3738 // |
|
3739 // Processes frame data. Renders only on decoding all MCUs. |
|
3740 // |
|
3741 TFrameState CMultiScanSequentialJpgReadCodec::ProcessFrameL(TBufPtr8& aSrc) |
|
3742 { |
|
3743 TUint16 marker = 0; |
|
3744 TInt markerPos = -1; |
|
3745 iDataPtr = const_cast<TUint8*>(aSrc.Ptr()); |
|
3746 TInt dataLen = aSrc.Length(); |
|
3747 const TUint8* newMarkerAddr = NULL; |
|
3748 const TUint8* bufferLimit = iDataPtr + dataLen; |
|
3749 TBool switched = EFalse; |
|
3750 |
|
3751 // Exclude table or next scan. |
|
3752 iNewTableOrScan = SearchTableOrSosMarker(aSrc, markerPos, marker); |
|
3753 if (iNewTableOrScan) |
|
3754 { |
|
3755 newMarkerAddr = iDataPtr + markerPos; |
|
3756 iDataPtrLimit = const_cast<TUint8*>(newMarkerAddr); |
|
3757 } |
|
3758 else |
|
3759 { |
|
3760 // If marker 0xff is in the last byte, exclude it. |
|
3761 iDataPtrLimit = iDataPtr + dataLen; |
|
3762 if (*(iDataPtrLimit - 1) == 0xFF) |
|
3763 { |
|
3764 iDataPtrLimit--; |
|
3765 } |
|
3766 } |
|
3767 |
|
3768 iPreviousDataLeft = iDataPtrLimit - iDataPtr; |
|
3769 |
|
3770 TFrameState frameState = EFrameComplete; |
|
3771 TRAPD(err, frameState = DoProcessL()); |
|
3772 // If there is new scan or table, switch to it. |
|
3773 if (iNewTableOrScan) |
|
3774 { |
|
3775 if (marker == KJpgDHTSignature) |
|
3776 { |
|
3777 switched = ProcessHuffmanTableL(newMarkerAddr, bufferLimit); |
|
3778 } |
|
3779 else if (marker == KJpgSOSSignature) |
|
3780 { |
|
3781 switched = SwitchScanL(newMarkerAddr, bufferLimit); |
|
3782 } |
|
3783 } |
|
3784 |
|
3785 if (err != KErrNone) |
|
3786 { |
|
3787 if (err == KErrCompletion) |
|
3788 { |
|
3789 RestoreState(); |
|
3790 frameState = EFrameIncomplete; |
|
3791 } |
|
3792 else if (err == KErrEof) |
|
3793 { |
|
3794 frameState = EFrameComplete; |
|
3795 // Render all MCUs. |
|
3796 RenderMCUsL(); |
|
3797 } |
|
3798 else |
|
3799 { |
|
3800 JPEG_LEAVE(err, "From DoProcessL"); |
|
3801 } |
|
3802 } |
|
3803 |
|
3804 if (switched) |
|
3805 { |
|
3806 iDataPtr = const_cast<TUint8*>(newMarkerAddr); |
|
3807 if (marker == KJpgSOSSignature) |
|
3808 { |
|
3809 ResetOnNewScan(); |
|
3810 } |
|
3811 } |
|
3812 |
|
3813 aSrc.Shift(iDataPtr - aSrc.Ptr()); // Shift out used data. |
|
3814 |
|
3815 return frameState; |
|
3816 } |
|
3817 |
|
3818 |
|
3819 // |
|
3820 // Switches to new scan if sufficient header information is available. |
|
3821 // |
|
3822 TBool CMultiScanSequentialJpgReadCodec::SwitchScanL(const TUint8*& aScan, const TUint8* aDataLimit) |
|
3823 { |
|
3824 const TInt KSosSizeFieldLength = 2; |
|
3825 if (aScan + sizeof(KJpgSOSSignature) + KSosSizeFieldLength > aDataLimit) |
|
3826 { |
|
3827 return EFalse; |
|
3828 } |
|
3829 |
|
3830 // Check for SOS marker. |
|
3831 TUint16 value = ReadBigEndianUint16(aScan); |
|
3832 if (value != KJpgSOSSignature) |
|
3833 { |
|
3834 return EFalse; |
|
3835 } |
|
3836 |
|
3837 // Read length and check if entire scan is available. |
|
3838 value = ReadBigEndianUint16(aScan); |
|
3839 if (aScan + value - KSosSizeFieldLength > aDataLimit) |
|
3840 { |
|
3841 return EFalse; |
|
3842 } |
|
3843 |
|
3844 // Keep track of MCUs available for components. |
|
3845 for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++) |
|
3846 { |
|
3847 TInt compIndex = ComponentIndexL(iScanInfo.iComponent[i].iId); |
|
3848 iCompMcuCount[compIndex] = iCurrentMcuIdx; |
|
3849 } |
|
3850 |
|
3851 iScanInfo.iNumberOfComponents = *aScan; |
|
3852 // Component id, table selector bytes. |
|
3853 const TInt KCompBytes = 2; |
|
3854 // Scan start, scan end, successive approx bytes. |
|
3855 const TInt KScanBytes = 3; |
|
3856 if (aScan + (iScanInfo.iNumberOfComponents * KCompBytes) + KScanBytes > aDataLimit) |
|
3857 { |
|
3858 // Header length is wrong. Entire header is not available in the buffer. |
|
3859 return EFalse; |
|
3860 } |
|
3861 |
|
3862 TJpgScanInfoProcessor::ProcessStartOfScanL(aScan, iFrameInfo, iScanInfo, iDCHuffmanTable, iACHuffmanTable); |
|
3863 |
|
3864 // Move to next address after scan. |
|
3865 aScan++; |
|
3866 for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++) |
|
3867 { |
|
3868 TJpgScanInfo::TScanComponentInfo& scanInfo = iScanInfo.iComponent[i]; |
|
3869 TInt compIndex = ComponentIndexL(scanInfo.iId); |
|
3870 if (iCompAvailable[compIndex]) |
|
3871 { |
|
3872 // If a same component repeats, then the file is corrupt. Stop further decoding. |
|
3873 JPEG_LEAVE(KErrEof, "Repeated component"); |
|
3874 } |
|
3875 |
|
3876 TInt unitCount = iTotalMCUBlocks * iMCUDataUnitCount[compIndex]; |
|
3877 iCompBuf[compIndex] = reinterpret_cast<TDataUnit*>(iMCUMemoryOffset); |
|
3878 iCompAvailable[compIndex] = ETrue; |
|
3879 |
|
3880 iMCUMemoryOffset += unitCount * sizeof(TDataUnit); |
|
3881 } |
|
3882 |
|
3883 iCurrentMcuIdx = 0; |
|
3884 if (iFrameInfo.iRestartInterval > 0) |
|
3885 { |
|
3886 iRestartMCUCount = iFrameInfo.iRestartInterval; |
|
3887 } |
|
3888 else |
|
3889 { |
|
3890 iRestartMCUCount = KErrNotFound; |
|
3891 } |
|
3892 |
|
3893 ResetState(); |
|
3894 return ETrue; |
|
3895 } |
|
3896 |
|
3897 |
|
3898 // |
|
3899 // |
|
3900 // |
|
3901 TBool CMultiScanSequentialJpgReadCodec::ProcessHuffmanTableL(const TUint8*& aData, const TUint8* aBufferLimit) |
|
3902 { |
|
3903 // Length of size field for table marker. |
|
3904 const TInt KTableMarkerSizeField = 2; |
|
3905 if (aData + sizeof(KJpgDHTSignature) + KTableMarkerSizeField > aBufferLimit) |
|
3906 { |
|
3907 return EFalse; |
|
3908 } |
|
3909 |
|
3910 // Read marker. |
|
3911 TUint16 value = ReadBigEndianUint16(aData); |
|
3912 if (value != KJpgDHTSignature) |
|
3913 { |
|
3914 return EFalse; |
|
3915 } |
|
3916 |
|
3917 // Read length. |
|
3918 value = ReadBigEndianUint16(aData); |
|
3919 |
|
3920 // Check if entire table data is available in buffer. |
|
3921 const TUint8* dataLimit = aData + value - KTableMarkerSizeField; |
|
3922 if (dataLimit > aBufferLimit) |
|
3923 { |
|
3924 return EFalse; |
|
3925 } |
|
3926 |
|
3927 THuffmanTableProcessor::ProcessHuffmanTableL(aData, dataLimit, iDCHuffmanTable, iACHuffmanTable); |
|
3928 |
|
3929 return ETrue; |
|
3930 } |
|
3931 |
|
3932 |
|
3933 // |
|
3934 // Copies MCUs to component buffers, where they are accumulated. |
|
3935 // |
|
3936 void CMultiScanSequentialJpgReadCodec::CopyMCUs(TInt aCompIdx) |
|
3937 { |
|
3938 if (iMonochrome && (aCompIdx != KYComp)) |
|
3939 { |
|
3940 return; |
|
3941 } |
|
3942 |
|
3943 // Assumes that iCurrentMcuIdx value start from 0. |
|
3944 const TDataUnit* src = iComponent[aCompIdx]; |
|
3945 TDataUnit* des = iCompBuf[aCompIdx]; |
|
3946 |
|
3947 // If Y with 4 DUs. |
|
3948 if ((aCompIdx == KYComp) && (iMCUDataUnitCount[KYComp] == 4)) |
|
3949 { |
|
3950 // Rearranges Y Data Units, so that they are rendered sequentially. |
|
3951 TInt mcusPerLine = GetHorzMCUCount(); |
|
3952 TInt dusPerLine = mcusPerLine * iMCUDataUnitCount[KYComp]; |
|
3953 TInt line = iCurrentMcuIdx / mcusPerLine; |
|
3954 TDataUnit* lineAddr = des + (line * dusPerLine); |
|
3955 TInt mcuIdxInLine = iCurrentMcuIdx - (line * mcusPerLine); |
|
3956 |
|
3957 // Copy offset. |
|
3958 TInt offset = 0; |
|
3959 if ((mcuIdxInLine + 1) <= mcusPerLine / 2) |
|
3960 { |
|
3961 offset = mcuIdxInLine * 8; |
|
3962 } |
|
3963 else |
|
3964 { |
|
3965 TInt idx = (mcuIdxInLine + 1) - (mcusPerLine / 2); |
|
3966 offset = (idx - 1) * 8 + 2; |
|
3967 } |
|
3968 |
|
3969 // Copy 2 DUs at a time, giving 2 DU space. |
|
3970 Mem::Copy(lineAddr + offset, src, 2 * sizeof(TDataUnit)); |
|
3971 Mem::Copy(lineAddr + offset + 4, src + 2, 2 * sizeof(TDataUnit)); |
|
3972 } |
|
3973 else |
|
3974 { |
|
3975 des += iCurrentMcuIdx * iMCUDataUnitCount[aCompIdx]; |
|
3976 Mem::Copy(des, src, iMCUDataUnitCount[aCompIdx] * sizeof(TDataUnit)); |
|
3977 } |
|
3978 } |
|
3979 |
|
3980 |
|
3981 // |
|
3982 // Sets up iComponent to point to the right parts of the RChunk memory. |
|
3983 // |
|
3984 void CMultiScanSequentialJpgReadCodec::PrepareToRenderMCU(TInt aMCUIndex) |
|
3985 { |
|
3986 JPEG_ASSERT(aMCUIndex >= 0); |
|
3987 |
|
3988 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
3989 { |
|
3990 if (iCompAvailable[i]) |
|
3991 { |
|
3992 iComponent[i] = &iCompBuf[i][aMCUIndex * iMCUDataUnitCount[i]]; |
|
3993 } |
|
3994 } |
|
3995 } |
|
3996 |
|
3997 |
|
3998 // |
|
3999 // Sends all MCUs of components to rendering. |
|
4000 // |
|
4001 void CMultiScanSequentialJpgReadCodec::RenderMCUsL() |
|
4002 { |
|
4003 for (TInt i = 0; i < iScanInfo.iNumberOfComponents; i++) |
|
4004 { |
|
4005 // Keep track of number of MCUs available for components. |
|
4006 TInt compIndex = ComponentIndexL(iScanInfo.iComponent[i].iId); |
|
4007 iCompMcuCount[compIndex] = iCurrentMcuIdx; |
|
4008 } |
|
4009 |
|
4010 FillEmptyMCUs(); |
|
4011 |
|
4012 while (iNeededMCU != KErrCompletion) |
|
4013 { |
|
4014 iStreamMCU = iNeededMCU; // Maintain behaviour of CSequentialJpgReadCodec. |
|
4015 |
|
4016 Mem::Copy(&iComponentCpy, &iComponent, sizeof(TDataUnit*) * KJpgNumberOfComponents); |
|
4017 PrepareToRenderMCU(iNeededMCU); |
|
4018 PostProcessMCUL(EFalse); |
|
4019 Mem::Copy(&iComponent, &iComponentCpy, sizeof(TDataUnit*) * KJpgNumberOfComponents); |
|
4020 |
|
4021 |
|
4022 iNeededMCU = iMCUStore->GetNextMCU(); |
|
4023 } |
|
4024 } |
|
4025 |
|
4026 |
|
4027 // |
|
4028 // If the number of available MCUs for Cb and Cr is less than that of Y, those MCUs are filled with 0x7f. |
|
4029 // |
|
4030 void CMultiScanSequentialJpgReadCodec::FillEmptyMCUs() |
|
4031 { |
|
4032 // MCU index to start filling. This may involve overwriting existing U or V data. |
|
4033 TInt startIdx = Min(iCompMcuCount[KUComp], iCompMcuCount[KVComp]); |
|
4034 for (TInt i = KUComp; i <= KVComp; i++) |
|
4035 { |
|
4036 if (iComponent[i] == NULL) |
|
4037 { |
|
4038 // If monochrome or if the component is not part of image. |
|
4039 continue; |
|
4040 } |
|
4041 |
|
4042 TDataUnit* des = NULL; |
|
4043 if (iCompAvailable[i]) |
|
4044 { |
|
4045 des = iCompBuf[i]; |
|
4046 des += startIdx * iMCUDataUnitCount[i]; |
|
4047 TInt dus = (iCompMcuCount[KYComp] - startIdx) * iMCUDataUnitCount[i]; |
|
4048 for (TInt k = 0; k < dus; k++) |
|
4049 { |
|
4050 FillEmptyDU(&des[k]); |
|
4051 } |
|
4052 } |
|
4053 else |
|
4054 { |
|
4055 des = iComponent[i]; |
|
4056 // If component is not at all available, fill iComponent[] buffer with 0x7f. |
|
4057 for (TInt k = 0; k < iMCUDataUnitCount[i]; k++) |
|
4058 { |
|
4059 FillEmptyDU(&des[k]); |
|
4060 } |
|
4061 } |
|
4062 } |
|
4063 } |
|
4064 |
|
4065 |
|
4066 // |
|
4067 // Resets the data members so that new scan can be started |
|
4068 // |
|
4069 void CMultiScanSequentialJpgReadCodec::ResetOnNewScan() |
|
4070 { |
|
4071 iInitialDataPtr = NULL; |
|
4072 iBitBufferPtrLimit = NULL; |
|
4073 iDataValue = 0; |
|
4074 iInitialDataValue = 0; |
|
4075 iBitsLeft = 0; |
|
4076 iInitialBitsLeft = 0; |
|
4077 |
|
4078 for (TInt i = 0; i < KJpgNumberOfComponents; i++) |
|
4079 { |
|
4080 iDCPredictor[i] = 0; |
|
4081 iInitialDCPredictor[i] = 0; |
|
4082 } |
|
4083 } |
|
4084 |
|
4085 |
|
4086 // |
|
4087 // Fills the given Data Unit with 0x7f. |
|
4088 // |
|
4089 void CMultiScanSequentialJpgReadCodec::FillEmptyDU(TDataUnit* pDU) |
|
4090 { |
|
4091 JPEG_ASSERT(pDU); |
|
4092 JPEG_ASSERT(pDU->iCoeff); |
|
4093 |
|
4094 TDataUnit::TDataUnitElemType* ptr = pDU->iCoeff; |
|
4095 for(TInt i = 0; i < KJpgDCTBlockSize; i++) |
|
4096 { |
|
4097 *ptr++ = 0x7f; |
|
4098 } |
|
4099 } |
|
4100 |
|
4101 |
|
4102 |