|
1 /* |
|
2 * Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * |
|
16 */ |
|
17 |
|
18 |
|
19 // NOTE: Assumes OMX_SKIP64BIT is not set when building OMX CORE |
|
20 |
|
21 #include <hal.h> |
|
22 #include <openmax/il/khronos/v1_x/OMX_Other.h> // OMX port |
|
23 #include "omxilspecversion.h" // OMX version number |
|
24 #include "clocksupervisor.h" |
|
25 #include "comxilclockprocessingfunction.h" |
|
26 #include "clockpanics.h" |
|
27 #include "omxilclock.hrh" |
|
28 |
|
29 #include "log.h" |
|
30 |
|
31 ////////////// |
|
32 // File scoped constants |
|
33 // |
|
34 |
|
35 /** The maximum number of simultaneous outstanding requests (across all ports) */ |
|
36 static const TUint KMaxRequests = 20; |
|
37 static const TUint KThreadStackSize = 1024; |
|
38 |
|
39 /** |
|
40 * Assumption that timer will always take at least this long to complete. |
|
41 * How soon an outstanding delay must be before we complete immediately instead of setting a timer. |
|
42 */ |
|
43 static const TInt KMinTimerOverhead = 1000; // 1000usecs = 1ms |
|
44 |
|
45 // assumption that timers go off at some time rounded to this many microseconds |
|
46 static const TInt KTimerQuantization = |
|
47 #ifdef __WINSCW__ |
|
48 15000; |
|
49 #else |
|
50 1; |
|
51 #endif |
|
52 |
|
53 // aim to select a counter accurate to ~1ms |
|
54 #ifdef __WINSCW__ |
|
55 #define USE_FASTCOUNTER // typically faster than 1ms on emulator, 1ms on hardware |
|
56 #else |
|
57 #define USE_NTICKCOUNT // typically 5ms on emulator, 1ms on hardware |
|
58 #endif |
|
59 |
|
60 #if !defined(USE_FASTCOUNTER) && !defined(USE_NTICKCOUNT) |
|
61 #error Either USE_FASTCOUNTER or USE_NTICKCOUNT must be defined |
|
62 #endif |
|
63 |
|
64 /** |
|
65 * Structure to map OMX_INDEXTYPE to behaviour required by the Clock component. |
|
66 */ |
|
67 |
|
68 // Indexes for time configs start after OMX_IndexTimeStartUnused = 0x09000000 |
|
69 // Simply deduct this to index this table |
|
70 |
|
71 static const OMX_INDEXTYPE KMinJumpTableIndex = OMX_IndexConfigTimeScale; |
|
72 static const OMX_INDEXTYPE KMaxJumpTableIndex = OMX_IndexConfigTimeClientStartTime; |
|
73 |
|
74 const CClockSupervisor::FunctionPtr CClockSupervisor::iJumpTable[] = |
|
75 { |
|
76 /*OMX_IndexConfigTimeScale*/ &CClockSupervisor::HandleGetSetTimeScale ,// requires buffers |
|
77 /*OMX_IndexConfigTimeClockState*/ &CClockSupervisor::HandleGetSetClockState ,// requires buffers |
|
78 /*OMX_IndexConfigTimeActiveRefClock*/ &CClockSupervisor::HandleGetSetActiveRefClock , |
|
79 /*OMX_IndexConfigTimeCurrentMediaTime*/ &CClockSupervisor::HandleQueryCurrentMediaTime , |
|
80 /*OMX_IndexConfigTimeCurrentWallTime*/ &CClockSupervisor::HandleQueryCurrentWallTime , |
|
81 /*OMX_IndexConfigTimeCurrentAudioReference*/ &CClockSupervisor::HandleUpdateAudioReference , |
|
82 /*OMX_IndexConfigTimeCurrentVideoReference*/ &CClockSupervisor::HandleUpdateVideoReference , |
|
83 /*OMX_IndexConfigTimeMediaTimeRequest*/ &CClockSupervisor::HandleSubmitMediaTimeRequest,// requires buffers |
|
84 /*OMX_IndexConfigTimeClientStartTime*/ &CClockSupervisor::HandleSetPortClientStartTime, |
|
85 }; |
|
86 |
|
87 #ifdef _DEBUG |
|
88 #define CHECK_DEBUG() DbgCheck() |
|
89 #else |
|
90 #define CHECK_DEBUG() |
|
91 #endif |
|
92 |
|
93 |
|
94 ////////////// |
|
95 |
|
96 |
|
97 /** |
|
98 * Euclid's algorithm. |
|
99 * Returns the largest common factor of aX and aY. |
|
100 */ |
|
101 static TInt LargestCommonFactor(TInt aX, TInt aY) |
|
102 { |
|
103 // based on knowledge that lcf(x,0)=x, lcf(x,y)=lcf(y,x) and lcf(x,y)=lcf(y,x%y) |
|
104 while(aX != 0) |
|
105 { |
|
106 aY %= aX; |
|
107 if(aY == 0) |
|
108 { |
|
109 return aX; |
|
110 } |
|
111 aX %= aY; |
|
112 } |
|
113 return aY; |
|
114 } |
|
115 |
|
116 |
|
117 /** |
|
118 * |
|
119 * |
|
120 */ |
|
121 CClockSupervisor* CClockSupervisor::NewL(COmxILClockProcessingFunction& aProcessingFunction) |
|
122 { |
|
123 CClockSupervisor* self = new (ELeave) CClockSupervisor(aProcessingFunction); |
|
124 CleanupStack::PushL(self); |
|
125 self->ConstructL(); |
|
126 CleanupStack::Pop(self); |
|
127 return self; |
|
128 } |
|
129 |
|
130 |
|
131 /** |
|
132 * |
|
133 * |
|
134 */ |
|
135 void CClockSupervisor::ConstructL() |
|
136 { |
|
137 // calculate tick frequency |
|
138 // |
|
139 #ifdef USE_FASTCOUNTER |
|
140 TInt frequency; // tick frequency in Hz |
|
141 User::LeaveIfError(HAL::Get(HAL::EFastCounterFrequency, frequency)); |
|
142 // conversion factor from ticks into microseconds |
|
143 // using a fraction in integer arithmetic |
|
144 iMicroConvNum = 1000000; |
|
145 iMicroConvDen = frequency; |
|
146 TInt countsUp; |
|
147 User::LeaveIfError(HAL::Get(HAL::EFastCounterCountsUp, countsUp)); |
|
148 iSystemClockReversed = !countsUp; |
|
149 #elif defined(USE_NTICKCOUNT) |
|
150 User::LeaveIfError(HAL::Get(HAL::ENanoTickPeriod, iMicroConvNum)); // tick period in microseconds |
|
151 iMicroConvDen = 1; |
|
152 #else |
|
153 #error |
|
154 #endif |
|
155 |
|
156 // divide out any common factor to reduce chance of overflow |
|
157 TInt factor = LargestCommonFactor(iMicroConvNum, iMicroConvDen); |
|
158 iMicroConvNum /= factor; |
|
159 iMicroConvDen /= factor; |
|
160 |
|
161 // wraparound time in microseconds is 2^32 * iMicroConv |
|
162 // take the heartbeat interval as half of this (i.e shift left by 31 places) to ensure we wake up often enough to implement the carry properly |
|
163 TUint64 interval = (static_cast<TUint64>(iMicroConvNum) << 31) / iMicroConvDen; |
|
164 if (interval > KMaxTInt32) |
|
165 { |
|
166 iHeartbeatTimerInterval = KMaxTInt32; |
|
167 } |
|
168 else |
|
169 { |
|
170 iHeartbeatTimerInterval = interval; |
|
171 } |
|
172 |
|
173 // if denominator is a power of 2, use shift instead |
|
174 // (shifting is faster than division) |
|
175 if(iMicroConvDen & (iMicroConvDen - 1) == 0) |
|
176 { |
|
177 // PRECONDITION: iMicroConvDen = 2^n, iMicroConvShift = 0 |
|
178 // POSTCONDITION: iMicroConvDen = 1, iMicroConvShift = n |
|
179 while(iMicroConvDen >= 2) |
|
180 { |
|
181 iMicroConvDen >>= 1; |
|
182 iMicroConvShift++; |
|
183 } |
|
184 } |
|
185 |
|
186 // Create the locks |
|
187 User::LeaveIfError(iQueMutex.CreateLocal()); |
|
188 |
|
189 // Create the memory block of empty Time requests that make up the free list. |
|
190 iRequestBlock = new(ELeave) TMediaRequest [iMaxRequests]; |
|
191 |
|
192 // zero the fields for peace of mind |
|
193 Mem::FillZ(iRequestBlock, (sizeof(TMediaRequest)*iMaxRequests)); |
|
194 |
|
195 // Initialise the free list |
|
196 for(TInt requestIndex = 0; requestIndex < iMaxRequests; requestIndex++) |
|
197 { |
|
198 // Add all free items with delta 0 |
|
199 iFreeRequestQue.Add(iRequestBlock+requestIndex, static_cast<TInt64>(0)); |
|
200 } |
|
201 |
|
202 iStartTimes.ReserveL(KNumPorts); |
|
203 for(TInt portIndex = 0; portIndex < KNumPorts; portIndex++) |
|
204 { |
|
205 iStartTimes.Append(0); |
|
206 } |
|
207 |
|
208 __ASSERT_DEBUG(iMaxRequests == iFreeRequestQue.Count(), Panic(ERequestQueueCorrupt)); |
|
209 |
|
210 // Create the timer consumer thread |
|
211 TBuf<19> threadName; |
|
212 threadName.Format(_L("OmxILClock@%08X"), this); |
|
213 |
|
214 // Timer created on creation of the thread as it is thread relative |
|
215 User::LeaveIfError(iThread.Create(threadName, ThreadEntryPoint, KThreadStackSize, NULL, this)); |
|
216 |
|
217 // High priority thread |
|
218 iThread.SetPriority(EPriorityRealTime); |
|
219 // start the thread and wait for it to create the timer |
|
220 TRequestStatus status; |
|
221 iThread.Rendezvous(status); |
|
222 iThread.Resume(); |
|
223 iThreadStarted = ETrue; |
|
224 User::WaitForRequest(status); |
|
225 User::LeaveIfError(status.Int()); |
|
226 } |
|
227 |
|
228 |
|
229 /** |
|
230 * |
|
231 * |
|
232 */ |
|
233 CClockSupervisor::CClockSupervisor(COmxILClockProcessingFunction& aProcessingFunction) |
|
234 : iActiveRefClock(OMX_TIME_RefClockAudio), |
|
235 iMaxRequests(KMaxRequests), |
|
236 iProcessingFunction(aProcessingFunction) |
|
237 { |
|
238 // compile time assertion that fields requiring atomic access are |
|
239 // 4-byte aligned |
|
240 __ASSERT_COMPILE((_FOFF(CClockSupervisor, iWallTicks) & 3) == 0); |
|
241 |
|
242 // run time assertion that class itself is allocated on a 4-byte boundary |
|
243 __ASSERT_ALWAYS((reinterpret_cast<TInt>(this) & 3) == 0, Panic(EBadAlignment)); |
|
244 |
|
245 iMediaClockState.nSize = sizeof(iMediaClockState); |
|
246 iMediaClockState.nVersion = TOmxILSpecVersion(); |
|
247 iMediaClockState.eState = OMX_TIME_ClockStateStopped; |
|
248 |
|
249 iCancelStatus = KRequestPending; |
|
250 } |
|
251 |
|
252 /** |
|
253 * |
|
254 * |
|
255 */ |
|
256 CClockSupervisor::~CClockSupervisor() |
|
257 { |
|
258 // signal the timing thread and wait for it to terminate |
|
259 if(iThreadStarted) |
|
260 { |
|
261 iThreadRunning = EFalse; |
|
262 TRequestStatus logonStatus; |
|
263 iThread.Logon(logonStatus); |
|
264 // Want the thread to terminate ASAP instead of waiting for a media |
|
265 // time request completion or a wall time heartbeat. Can't cancel the |
|
266 // timer without duplicating the handle, and that gives |
|
267 // KErrPermissionDenied. So we use a second TRequestStatus to wake the |
|
268 // timing thread before the timer completes. |
|
269 TRequestStatus* cancelStatus = &iCancelStatus; |
|
270 iThread.RequestComplete(cancelStatus, KErrCancel); |
|
271 User::WaitForRequest(logonStatus); |
|
272 } |
|
273 |
|
274 if (iRequestBlock) |
|
275 { |
|
276 delete[] iRequestBlock; |
|
277 iRequestBlock = NULL; |
|
278 } |
|
279 |
|
280 iStartTimes.Close(); |
|
281 iThread.Close(); |
|
282 iQueMutex.Close(); |
|
283 } |
|
284 |
|
285 |
|
286 /** |
|
287 * Timing thread entry point. |
|
288 */ |
|
289 TInt CClockSupervisor::ThreadEntryPoint(TAny* aPtr) |
|
290 { |
|
291 CClockSupervisor& supervisor = *static_cast<CClockSupervisor*>(aPtr); |
|
292 supervisor.iThreadRunning = ETrue; |
|
293 CTrapCleanup* cleanup = CTrapCleanup::New(); |
|
294 if(cleanup == NULL) |
|
295 { |
|
296 return KErrNoMemory; |
|
297 } |
|
298 |
|
299 // Delegate to object's clock timing routine |
|
300 TRAPD(err, supervisor.RunTimingThreadL()); |
|
301 delete cleanup; |
|
302 return err; |
|
303 } |
|
304 |
|
305 |
|
306 /** |
|
307 * |
|
308 * |
|
309 */ |
|
310 void CClockSupervisor::RunTimingThreadL() |
|
311 { |
|
312 // Create the timer (thread relative) |
|
313 User::LeaveIfError(iTimer.CreateLocal()); |
|
314 // rendezvous with the creating thread as it must be blocked until the timer is created |
|
315 iThread.Rendezvous(KErrNone); |
|
316 |
|
317 // Start the timer loop to enable us to wake up on heart beat or requests |
|
318 TimerLoop(); |
|
319 |
|
320 iTimer.Close(); |
|
321 } |
|
322 |
|
323 /** |
|
324 * Services media time requests. |
|
325 */ |
|
326 void CClockSupervisor::TimerLoop() |
|
327 { |
|
328 // Here we are only interested in setting the timer for a request timeout |
|
329 // or the heart beat. States are taken care of in ConsumeRequests(). |
|
330 // On shutdown the flag iThreadRunning is set to EFalse and the timer |
|
331 // completed with KErrCancel or something other than KRequestPending |
|
332 // Therefore we no longer try to get another request. |
|
333 |
|
334 TInt measuredTimerOverhead = KTimerQuantization; |
|
335 TRequestStatus timerStatus; |
|
336 |
|
337 while(iThreadRunning) |
|
338 { |
|
339 // Call our consumer function |
|
340 TInt timeout = ConsumeRequests(); |
|
341 |
|
342 // round down sleep based on overhead and quantization of timers |
|
343 timeout -= timeout % KTimerQuantization; |
|
344 timeout -= measuredTimerOverhead; |
|
345 timeout -= KMinTimerOverhead; |
|
346 |
|
347 // limit sleep by the heartbeat interval |
|
348 if(timeout > iHeartbeatTimerInterval) |
|
349 { |
|
350 timeout = iHeartbeatTimerInterval; |
|
351 } |
|
352 |
|
353 // Perhaps timeout not positive from ConsumeRequests(), or due to |
|
354 // rounding down it is no longer positive. In this case we may spin, so |
|
355 // be careful when setting KTimerQuantization, KMinTimerOverhead and |
|
356 // KRequestDeltaLimit |
|
357 if(timeout <= 0) |
|
358 { |
|
359 continue; |
|
360 } |
|
361 |
|
362 iQueMutex.Wait(); |
|
363 TInt64 actualSleepTime = WallTime(); |
|
364 iQueMutex.Signal(); |
|
365 iTimer.HighRes(timerStatus, timeout); |
|
366 // can't cancel iTimer from another thread, instead we use a second |
|
367 // TRequestStatus to wake up early, then we can cancel the timer in |
|
368 // this thread. |
|
369 User::WaitForRequest(timerStatus, iCancelStatus); |
|
370 |
|
371 if(iCancelStatus.Int() != KRequestPending) |
|
372 { |
|
373 iTimer.Cancel(); |
|
374 iCancelStatus = KRequestPending; |
|
375 } |
|
376 else |
|
377 { |
|
378 // update measuredTimerOverhead |
|
379 iQueMutex.Wait(); |
|
380 actualSleepTime = WallTime() - actualSleepTime; |
|
381 iQueMutex.Signal(); |
|
382 TInt sleepOverhead = (TInt) (actualSleepTime - timeout); |
|
383 |
|
384 /* Dampen adjustments to measuredTimerOverhead |
|
385 * |
|
386 * measuredTimerOverhead = max(sleepOverhead, |
|
387 * avg(measuredTimerOverhead, sleepOverhead)) |
|
388 * |
|
389 * i.e. immediate increase, gradual decrease |
|
390 */ |
|
391 measuredTimerOverhead = (measuredTimerOverhead + sleepOverhead) >> 1; |
|
392 if(measuredTimerOverhead < sleepOverhead) |
|
393 { |
|
394 measuredTimerOverhead = sleepOverhead; |
|
395 } |
|
396 } |
|
397 } |
|
398 DEBUG_PRINTF(_L("Clock thread shutting down...")); |
|
399 } |
|
400 |
|
401 |
|
402 /** |
|
403 * Update the wall clock with the system ticks |
|
404 * |
|
405 */ |
|
406 void CClockSupervisor::UpdateWallTicks() |
|
407 { |
|
408 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
409 |
|
410 TUint32 oldLowPart(I64LOW(iWallTicks)); // save lower 32-bits |
|
411 #ifdef USE_FASTCOUNTER |
|
412 // Gets the fast iCounter. |
|
413 // This is the current value of the machine's high resolution timer. |
|
414 // If a high resolution timer is not available, it uses the millisecond timer instead. |
|
415 // The freqency of this iCounter can be determined by reading the HAL attribute EFastCounterFrequency. |
|
416 TUint32 newLowPart(User::FastCounter()); // set lower 32-bits |
|
417 if(iSystemClockReversed) |
|
418 { |
|
419 newLowPart = -newLowPart; |
|
420 } |
|
421 #elif defined(USE_NTICKCOUNT) |
|
422 TUint32 newLowPart(User::NTickCount()); // set lower 32-bits |
|
423 #else |
|
424 #error |
|
425 #endif |
|
426 TUint32 newHighPart(I64HIGH(iWallTicks)); // save upper 32-bits |
|
427 |
|
428 // note: did not use LockedInc() here because: |
|
429 // We need a critical section to capture the system time and update the wall clock |
|
430 // at the same time. |
|
431 // The wall clock is unsigned. |
|
432 // LockedInc doesn't stop a preemption directly after the test, only during the inc |
|
433 if (newLowPart < oldLowPart) |
|
434 { |
|
435 newHighPart++; |
|
436 } |
|
437 |
|
438 iWallTicks = MAKE_TUINT64(newHighPart,newLowPart); |
|
439 } |
|
440 |
|
441 |
|
442 /** |
|
443 * Returns the current wall time in microseconds. |
|
444 */ |
|
445 TInt64 CClockSupervisor::WallTime() |
|
446 { |
|
447 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
448 |
|
449 UpdateWallTicks(); |
|
450 |
|
451 // if power of two use shift (faster than division) |
|
452 if (iMicroConvDen == 1) |
|
453 { |
|
454 return iWallTicks * iMicroConvNum >> iMicroConvShift; |
|
455 } |
|
456 return iWallTicks * iMicroConvNum / iMicroConvDen; |
|
457 } |
|
458 |
|
459 /** |
|
460 * |
|
461 * |
|
462 */ |
|
463 TBool CClockSupervisor::AllStartTimesReported () |
|
464 { |
|
465 return !(static_cast<TBool>(iMediaClockState.nWaitMask)); |
|
466 } |
|
467 |
|
468 /** |
|
469 * Called when timer expires or is cancelled. |
|
470 * |
|
471 */ |
|
472 TInt CClockSupervisor::ConsumeRequests() |
|
473 { |
|
474 // Events are consumed here only in the Running state. |
|
475 // Waiting events, State change events, etc. are handled elsewhere. |
|
476 // These are called broadcast events and have a higher priority |
|
477 // than the request events requested by the clients. |
|
478 // This function is called by the TimerLoop only. |
|
479 |
|
480 // IMPORTANT: every code path through here must result in a call to UpdateWallTicks to ensure |
|
481 // that 64-bit time is updated correctly (heartbeat interval makes sure ConsumeRequests is called |
|
482 // often enough). |
|
483 |
|
484 // Our event loop - return if stopped but not for pause (keep heart beat going) |
|
485 if(OMX_TIME_ClockStateStopped != iMediaClockState.eState) |
|
486 { |
|
487 // Acquire the mutex |
|
488 iQueMutex.Wait(); |
|
489 |
|
490 // this can be entered from the timer on heartbeat or on a call to a state change. |
|
491 // Don't want this to happen on a state change! |
|
492 if (OMX_TIME_ClockStateWaitingForStartTime == iMediaClockState.eState) |
|
493 { |
|
494 // We need to check if all clients have reported their start times |
|
495 if (!AllStartTimesReported()) |
|
496 { |
|
497 // Not all reported as yet... |
|
498 UpdateWallTicks(); |
|
499 |
|
500 // Release the mutex |
|
501 iQueMutex.Signal(); |
|
502 |
|
503 // wait until they have! keep heat beat going in case it takes looooong! |
|
504 return iHeartbeatTimerInterval; |
|
505 } |
|
506 else |
|
507 { |
|
508 // depending on scale decide which start time to use |
|
509 CalculateStartTime(); |
|
510 |
|
511 // no need to check error, we are in the waiting state |
|
512 DoTransitionToRunningState(); |
|
513 |
|
514 // Now just go and send the iNext request! |
|
515 } |
|
516 } |
|
517 |
|
518 /////////////////////////////// |
|
519 // There is a request pending !!! |
|
520 // |
|
521 |
|
522 // check the timeout period against the wall clock to determine if this is a heart beat |
|
523 |
|
524 if(iMtc.iScaleQ16 == 0) |
|
525 { |
|
526 // do not pop front of the queue because we are effectively paused |
|
527 UpdateWallTicks(); |
|
528 |
|
529 // Release the mutex |
|
530 iQueMutex.Signal(); |
|
531 |
|
532 return iHeartbeatTimerInterval; |
|
533 } |
|
534 |
|
535 // try to pop the next pending request |
|
536 TInt64 delta; |
|
537 TBool present = iPendingRequestQue.FirstDelta(delta); |
|
538 |
|
539 // Is there nothing there? |
|
540 if (!present) |
|
541 { |
|
542 // Nothing on the queue |
|
543 // Here because of heart beat |
|
544 UpdateWallTicks(); |
|
545 |
|
546 // Release the mutex |
|
547 iQueMutex.Signal(); |
|
548 |
|
549 return iHeartbeatTimerInterval; |
|
550 } |
|
551 |
|
552 // update the delta against clock |
|
553 delta -= WallTime(); |
|
554 |
|
555 // Some time to go before head of queue should be serviced? |
|
556 if (delta > KMinTimerOverhead) |
|
557 { |
|
558 // Release the mutex |
|
559 iQueMutex.Signal(); |
|
560 |
|
561 return delta; |
|
562 } |
|
563 |
|
564 // Request timed out, delta expired! |
|
565 // Fulfill the request |
|
566 TMediaRequest* request = iPendingRequestQue.RemoveFirst(); |
|
567 |
|
568 // Acquire fulfillment buffer for a specific port |
|
569 OMX_BUFFERHEADERTYPE* buffer = iProcessingFunction.AcquireBuffer(request->iPortIndex); |
|
570 if(buffer == NULL) |
|
571 { |
|
572 // starved of buffers! |
|
573 DEBUG_PRINTF(_L("ConsumeRequests starved of buffers, transitioning to OMX_StateInvalid")); |
|
574 iThreadRunning = EFalse; |
|
575 iQueMutex.Signal(); |
|
576 iProcessingFunction.InvalidateComponent(); |
|
577 return 0; |
|
578 } |
|
579 OMX_TIME_MEDIATIMETYPE* mT = reinterpret_cast<OMX_TIME_MEDIATIMETYPE*>(buffer->pBuffer); |
|
580 buffer->nOffset = 0; |
|
581 buffer->nFilledLen = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
582 |
|
583 mT->nSize = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
584 mT->nVersion = TOmxILSpecVersion(); |
|
585 mT->eUpdateType = OMX_TIME_UpdateRequestFulfillment; |
|
586 mT->nClientPrivate = reinterpret_cast<OMX_U32>(request->iClientPrivate); |
|
587 mT->xScale = iMtc.iScaleQ16; |
|
588 mT->eState = OMX_TIME_ClockStateRunning; |
|
589 mT->nMediaTimestamp = request->iMediaTime; |
|
590 mT->nWallTimeAtMediaTime = request->iTriggerWallTime + request->iOffset; |
|
591 mT->nOffset = mT->nWallTimeAtMediaTime - WallTime(); // could be waiting on buffer b4 this! |
|
592 |
|
593 #ifdef _OMXIL_COMMON_DEBUG_TRACING_ON |
|
594 DEBUG_PRINTF(_L8("CLOCK::ConsumeRequest*******************************OMX_TIME_UpdateRequestFulfillment***VS2")); |
|
595 TTime t; |
|
596 t.HomeTime(); |
|
597 DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : t.HomeTime() = %ld"), t.Int64()); |
|
598 DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : Buffer = 0x%X"), mT->nClientPrivate); |
|
599 DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : mT->nMediaTimestamp = %ld"), mT->nMediaTimestamp); |
|
600 #endif |
|
601 |
|
602 iProcessingFunction.SendBuffer(buffer); |
|
603 |
|
604 // clear the delta on this now free request |
|
605 request->iTriggerWallTime = 0; |
|
606 |
|
607 // Add element back to the free pool |
|
608 iFreeRequestQue.Add(request, 0); |
|
609 |
|
610 // Release the mutex |
|
611 iQueMutex.Signal(); |
|
612 |
|
613 // Update delta for next request. |
|
614 // NOTE: we do not know if scale change or not so when we re-enter here |
|
615 // we should recalculate the delta above and perform the appropriate action. |
|
616 return 0; |
|
617 } |
|
618 else |
|
619 { |
|
620 // clock is stopped - sleep for the heartbeat interval |
|
621 return iHeartbeatTimerInterval; |
|
622 } |
|
623 } |
|
624 |
|
625 /** |
|
626 * |
|
627 * |
|
628 */ |
|
629 OMX_ERRORTYPE CClockSupervisor::ProduceRequest(OMX_INDEXTYPE aIndex, TEntryPoint aEntryPoint, TAny* aPassedStructPtr) |
|
630 { |
|
631 // Range checking on parameter/config index |
|
632 if(aIndex < KMinJumpTableIndex || aIndex > KMaxJumpTableIndex) |
|
633 { |
|
634 return OMX_ErrorUnsupportedIndex; |
|
635 } |
|
636 // Note also that certain combinations on Get/Set within the supported range are unsupported. |
|
637 // This is left to the function in the jump table. |
|
638 |
|
639 // Acquire the mutex |
|
640 iQueMutex.Wait(); |
|
641 |
|
642 // Index the routing table for the correct handler |
|
643 FunctionPtr jumpTableFptr = iJumpTable[aIndex-KMinJumpTableIndex]; |
|
644 OMX_ERRORTYPE ret = (this->*jumpTableFptr)(aEntryPoint, aPassedStructPtr); |
|
645 |
|
646 // Release the mutex |
|
647 iQueMutex.Signal(); |
|
648 |
|
649 return ret; |
|
650 } |
|
651 |
|
652 |
|
653 /** |
|
654 * According to scale, choose the earliest start time among the set of client |
|
655 * start times. For forward play this is the minimum, for reverse play this is |
|
656 * the maximum. |
|
657 */ |
|
658 void CClockSupervisor::CalculateStartTime() |
|
659 { |
|
660 // The nWaitMask field of the Media clock state is a bit mask specifying the client |
|
661 // components that the clock component will wait on in the |
|
662 // OMX_TIME_ClockStateWaitingForStartTime state. Bit masks are defined |
|
663 // as OMX_CLOCKPORT0 through OMX_CLOCKPORT7. |
|
664 |
|
665 // Based on scale locate the minimum or maximum start times of all clients |
|
666 TInt64 startTime; |
|
667 |
|
668 if (iMtc.iScaleQ16 >= 0) |
|
669 { |
|
670 startTime = KMaxTInt64; |
|
671 |
|
672 // choose minimum |
|
673 for (TInt portIndex = 0; portIndex < iStartTimes.Count(); portIndex++) |
|
674 { |
|
675 if(iStartTimesSet & (1 << portIndex)) |
|
676 { |
|
677 startTime = Min(startTime, iStartTimes[portIndex]); |
|
678 } |
|
679 } |
|
680 } |
|
681 else |
|
682 { |
|
683 startTime = KMinTInt64; |
|
684 |
|
685 // choose maximum |
|
686 for (TInt portIndex = 0; portIndex < iStartTimes.Count(); portIndex++) |
|
687 { |
|
688 if(iStartTimesSet & (1 << portIndex)) |
|
689 { |
|
690 startTime = Max(startTime, iStartTimes[portIndex]); |
|
691 } |
|
692 } |
|
693 } |
|
694 |
|
695 // adjust the media time to the new start time |
|
696 UpdateMediaTime(startTime); |
|
697 } |
|
698 |
|
699 |
|
700 /** |
|
701 * Perform actions related to placing the clock into the Stopped state |
|
702 */ |
|
703 void CClockSupervisor::DoTransitionToStoppedState() |
|
704 { |
|
705 // OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all |
|
706 // pending media time requests, clear all client start times, and transition to the |
|
707 // stopped state. This transition is valid from all other states. |
|
708 |
|
709 // We should already have the mutex! |
|
710 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
711 |
|
712 // clear any current start time |
|
713 iMediaClockState.nStartTime = 0; |
|
714 iMediaClockState.nWaitMask = 0; |
|
715 |
|
716 // clear client start times |
|
717 for(TInt index = 0, count = iStartTimes.Count(); index < count; index++) |
|
718 { |
|
719 iStartTimes[index] = 0; |
|
720 } |
|
721 iStartTimesSet = 0; |
|
722 |
|
723 // clear all pending requests, placing them back on the free queue |
|
724 while (!iPendingRequestQue.IsEmpty()) |
|
725 { |
|
726 TMediaRequest* request = iPendingRequestQue.RemoveFirst(); |
|
727 |
|
728 // clear the delta on this now free request |
|
729 request->iTriggerWallTime = 0; |
|
730 |
|
731 iFreeRequestQue.Add(request,0); |
|
732 } |
|
733 |
|
734 TInt64 wallTimeNow = WallTime(); |
|
735 |
|
736 // if clock was previously running, stop the media time at the present value |
|
737 if(iMediaClockState.eState == OMX_TIME_ClockStateRunning) |
|
738 { |
|
739 TInt64 mediaTimeNow = ((wallTimeNow - iMtc.iWallTimeBase) * iMtc.iScaleQ16 >> 16) + iMtc.iMediaTimeBase; |
|
740 iMtc.iWallTimeBase = wallTimeNow; |
|
741 iMtc.iMediaTimeBase = mediaTimeNow; |
|
742 } |
|
743 |
|
744 // Indicate stopped state |
|
745 iMediaClockState.eState = OMX_TIME_ClockStateStopped; |
|
746 |
|
747 // Indicate to clients a state change |
|
748 OMX_TIME_MEDIATIMETYPE update; |
|
749 update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
750 update.nVersion = TOmxILSpecVersion(); |
|
751 update.nClientPrivate = NULL; |
|
752 update.eUpdateType = OMX_TIME_UpdateClockStateChanged; |
|
753 update.xScale = iMtc.iScaleQ16; |
|
754 update.eState = OMX_TIME_ClockStateStopped; |
|
755 update.nMediaTimestamp = iMtc.iMediaTimeBase; |
|
756 update.nWallTimeAtMediaTime = wallTimeNow; |
|
757 update.nOffset = 0; |
|
758 |
|
759 BroadcastUpdate(update); |
|
760 } |
|
761 |
|
762 |
|
763 /** |
|
764 * Perform actions related to placing the clock into the Running state |
|
765 */ |
|
766 void CClockSupervisor::DoTransitionToRunningState() |
|
767 { |
|
768 // OMX_TIME_ClockStateRunning: Immediately start the media clock using the given |
|
769 // start time and offset, and transition to the running state. This transition is valid from |
|
770 // all other states. |
|
771 |
|
772 // We should already have the mutex! |
|
773 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
774 |
|
775 // if we transistioned from stopped to running then start time will be cleared. |
|
776 // we only set it on transition from waiting to running |
|
777 // this is enforced not by a check but by logic flow! |
|
778 // If this is not the case then start time should have been cleared and we can start now! |
|
779 |
|
780 // Indicate running state |
|
781 iMediaClockState.eState = OMX_TIME_ClockStateRunning; |
|
782 |
|
783 // Indicate to clients a state change |
|
784 OMX_TIME_MEDIATIMETYPE update; |
|
785 update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
786 update.nVersion = TOmxILSpecVersion(); |
|
787 update.nClientPrivate = NULL; |
|
788 update.eUpdateType = OMX_TIME_UpdateClockStateChanged; |
|
789 update.xScale = iMtc.iScaleQ16; |
|
790 update.eState = iMediaClockState.eState; |
|
791 update.nMediaTimestamp = iMtc.iMediaTimeBase; |
|
792 update.nWallTimeAtMediaTime = iMtc.iWallTimeBase; |
|
793 update.nOffset = 0; |
|
794 |
|
795 BroadcastUpdate(update); |
|
796 } |
|
797 |
|
798 /** |
|
799 * Perform actions related to placing the clock into the Waiting state |
|
800 */ |
|
801 void CClockSupervisor::DoTransitionToWaitingState(OMX_U32 nWaitMask) |
|
802 { |
|
803 // OMX_TIME_WaitingForStartTime: Transition immediately to the waiting state, wait |
|
804 // for all clients specified in nWaitMask to report their start time, start the media clock |
|
805 // using the minimum of all client start times and transition to |
|
806 // OMX_TIME_ClockStateRunning. This transition is only valid from the |
|
807 // OMX_TIME_ClockStateStopped state. |
|
808 // (*Added*) If in the backwards direction start the media clock using the maximum |
|
809 // of all client start times. |
|
810 |
|
811 // validity of state transition has been checked in HandleGetSetClockState() |
|
812 |
|
813 // We should already have the mutex! |
|
814 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
815 |
|
816 iMediaClockState.eState = OMX_TIME_ClockStateWaitingForStartTime; |
|
817 |
|
818 // Start times set in calling function HandleClientStartTime() |
|
819 |
|
820 // Remember all clients that need to report their start times |
|
821 iMediaClockState.nWaitMask = nWaitMask; |
|
822 |
|
823 // Indicate to clients a state change |
|
824 OMX_TIME_MEDIATIMETYPE update; |
|
825 update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
826 update.nVersion = TOmxILSpecVersion(); |
|
827 update.nClientPrivate = NULL; |
|
828 update.eUpdateType = OMX_TIME_UpdateClockStateChanged; |
|
829 update.xScale = iMtc.iScaleQ16; |
|
830 update.eState = OMX_TIME_ClockStateWaitingForStartTime; |
|
831 update.nMediaTimestamp = iMtc.iMediaTimeBase; |
|
832 update.nWallTimeAtMediaTime = WallTime(); |
|
833 update.nOffset = 0; |
|
834 |
|
835 BroadcastUpdate(update); |
|
836 } |
|
837 |
|
838 |
|
839 /** |
|
840 * Update the wall clock with the system ticks |
|
841 * |
|
842 */ |
|
843 OMX_ERRORTYPE CClockSupervisor::HandleSubmitMediaTimeRequest(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
844 { |
|
845 // We should already have the mutex! |
|
846 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
847 |
|
848 // A client requests the transmission of a particular timestamp via OMX_SetConfig on its |
|
849 // clock port using the OMX_IndexConfigTimeMediaTimeRequest configuration |
|
850 // and structure OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE |
|
851 |
|
852 // OMX_GetConfig doesn't make any sense for MediaTimeRequest |
|
853 if(aEntry == EGetConfig) |
|
854 { |
|
855 return OMX_ErrorUnsupportedIndex; |
|
856 } |
|
857 |
|
858 TMediaRequest *request = iFreeRequestQue.RemoveFirst(); |
|
859 if(request == NULL) |
|
860 { |
|
861 // too many pending requests! |
|
862 return OMX_ErrorInsufficientResources; |
|
863 } |
|
864 |
|
865 OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE* rT = static_cast<OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE*>(aPassedStructPtr); |
|
866 |
|
867 request->iMediaTime = rT->nMediaTimestamp; |
|
868 request->iOffset = rT->nOffset; |
|
869 request->iTriggerWallTime = |
|
870 ((rT->nMediaTimestamp - iMtc.iMediaTimeBase) * iMtc.iInverseScaleQ16 >> 16) |
|
871 + iMtc.iWallTimeBase - rT->nOffset; |
|
872 request->iPortIndex = rT->nPortIndex; |
|
873 request->iClientPrivate = rT->pClientPrivate; |
|
874 |
|
875 TInt64 prevHeadTime(0); |
|
876 TBool nonEmpty = iPendingRequestQue.FirstDelta(prevHeadTime); |
|
877 iPendingRequestQue.Add(request, request->iTriggerWallTime); |
|
878 // Wake the thread immediately if head of queue now will complete sooner |
|
879 // than it would have previously, or if the queue was empty previously. |
|
880 // This causes the timing thread to recalculate the sleep time. |
|
881 if(!nonEmpty || prevHeadTime > request->iTriggerWallTime) |
|
882 { |
|
883 TRequestStatus* status = &iCancelStatus; |
|
884 iThread.RequestComplete(status, KErrCancel); |
|
885 } |
|
886 return OMX_ErrorNone; |
|
887 } |
|
888 |
|
889 |
|
890 /** |
|
891 * |
|
892 * |
|
893 */ |
|
894 OMX_ERRORTYPE CClockSupervisor::HandleQueryCurrentWallTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
895 { |
|
896 // An IL client may query the current wall time via OMX_GetConfig on OMX_IndexConfigTimeCurrentWallTime. |
|
897 // A client may obtain the current wall time, which is obtained via OMX_GetConfig on |
|
898 // OMX_IndexConfigTimeCurrentWallTime. |
|
899 |
|
900 // OMX_SetConfig doesn't make sense for wall time |
|
901 if(aEntry == ESetConfig) |
|
902 { |
|
903 return OMX_ErrorUnsupportedIndex; |
|
904 } |
|
905 |
|
906 // We should already have the mutex! |
|
907 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
908 |
|
909 OMX_TIME_CONFIG_TIMESTAMPTYPE& wallTs = *static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr); |
|
910 wallTs.nTimestamp = WallTime(); |
|
911 return OMX_ErrorNone; |
|
912 } |
|
913 |
|
914 |
|
915 /** |
|
916 * Calculates and returns the current media time. |
|
917 */ |
|
918 OMX_ERRORTYPE CClockSupervisor::HandleQueryCurrentMediaTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
919 { |
|
920 // The clock component can be queried for the current media clock time using |
|
921 // OMX_GetConfig with the read-only index OMX_IndexConfigTimeCurrentMediaTime and structure |
|
922 // OMX_TIME_CONFIG_TIMESTAMPTYPE. |
|
923 |
|
924 // OMX_SetConfig cannot be used for Media Time (audio or video reference updates are used instead) |
|
925 if(aEntry == ESetConfig) |
|
926 { |
|
927 return OMX_ErrorUnsupportedIndex; |
|
928 } |
|
929 |
|
930 // We should already have the mutex! |
|
931 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
932 |
|
933 OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr); |
|
934 if(iMediaClockState.eState == OMX_TIME_ClockStateRunning) |
|
935 { |
|
936 ts->nTimestamp = ((WallTime() - iMtc.iWallTimeBase) * iMtc.iScaleQ16 >> 16) + iMtc.iMediaTimeBase; |
|
937 } |
|
938 else |
|
939 { |
|
940 ts->nTimestamp = iMtc.iMediaTimeBase; |
|
941 } |
|
942 return OMX_ErrorNone; |
|
943 } |
|
944 |
|
945 /** |
|
946 * An external component is providing an Audio reference time update. |
|
947 */ |
|
948 OMX_ERRORTYPE CClockSupervisor::HandleUpdateAudioReference(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
949 { |
|
950 // The clock component can accept an audio reference clock. |
|
951 // The reference clock tracks the media time at its associated component |
|
952 // (i.e., the timestamp of the data currently being processed at that component) |
|
953 // and provides periodic references to the clock component via OMX_SetConfig |
|
954 // using OMX_IndexConfigTimeCurrentAudioReference, and structure OMX_TIME_CONFIG_TIMESTAMPTYPE |
|
955 // |
|
956 // When the clock component receives a reference, it updates its internally maintained |
|
957 // media time with the reference. This action synchronizes the clock component with the |
|
958 // component that is providing the reference clock. |
|
959 |
|
960 // OMX_GetConfig not supported on reference time as it will generally be |
|
961 // some arbitary time in the past |
|
962 if(aEntry == EGetConfig) |
|
963 { |
|
964 return OMX_ErrorUnsupportedIndex; |
|
965 } |
|
966 |
|
967 // We should already have the mutex! |
|
968 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
969 |
|
970 if(iActiveRefClock == OMX_TIME_RefClockAudio) |
|
971 { |
|
972 OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr); |
|
973 UpdateMediaTime(ts->nTimestamp); |
|
974 } |
|
975 |
|
976 return OMX_ErrorNone; |
|
977 } |
|
978 |
|
979 /** |
|
980 * An external component is providing a Video reference time update. |
|
981 */ |
|
982 OMX_ERRORTYPE CClockSupervisor::HandleUpdateVideoReference(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
983 { |
|
984 // The clock component can accept a video reference clock. |
|
985 // The reference clock tracks the media time at its associated component |
|
986 // (i.e., the timestamp of the data currently being processed at that component) |
|
987 // and provides periodic references to the clock component via OMX_SetConfig |
|
988 // using OMX_IndexConfigTimeCurrentVideoReference, and structure OMX_TIME_CONFIG_TIMESTAMPTYPE |
|
989 // |
|
990 // When the clock component receives a reference, it updates its internally maintained |
|
991 // media time with the reference. This action synchronizes the clock component with the |
|
992 // component that is providing the reference clock. |
|
993 |
|
994 // OMX_GetConfig not supported on reference time as it will generally be |
|
995 // some arbitary time in the past |
|
996 if(aEntry == EGetConfig) |
|
997 { |
|
998 return OMX_ErrorUnsupportedIndex; |
|
999 } |
|
1000 |
|
1001 // We should already have the mutex! |
|
1002 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
1003 |
|
1004 if(iActiveRefClock == OMX_TIME_RefClockVideo) |
|
1005 { |
|
1006 OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr); |
|
1007 UpdateMediaTime(ts->nTimestamp); |
|
1008 } |
|
1009 |
|
1010 return OMX_ErrorNone; |
|
1011 } |
|
1012 |
|
1013 /** |
|
1014 * |
|
1015 * |
|
1016 */ |
|
1017 OMX_ERRORTYPE CClockSupervisor::HandleSetPortClientStartTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
1018 { |
|
1019 // We should already have the mutex! |
|
1020 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
1021 |
|
1022 // When a clock component client receives a buffer with flag OMX_BUFFERFLAG_STARTTIME set, |
|
1023 // it performs an OMX_SetConfig call with OMX_IndexConfigTimeClientStartTime |
|
1024 // on the clock component that is sending the buffer’s timestamp. |
|
1025 // The transmission of the start time informs the clock component that the client’s stream |
|
1026 // is ready for presentation and the timestamp of the first data to be presented. |
|
1027 // |
|
1028 // If the IL client requests a transition to OMX_TIME_ClockStateWaitingForStartTime, it |
|
1029 // designates which clock component clients to wait for. The clock component then waits |
|
1030 // for these clients to send their start times via the |
|
1031 // OMX_IndexConfigTimeClientStartTime configuration. Once all required |
|
1032 // clients have responded, the clock component starts the media clock using the earliest |
|
1033 // client start time. |
|
1034 // |
|
1035 // When a client is sent a start time (i.e., the timestamp of a buffer marked with the |
|
1036 // OMX_BUFFERFLAG_STARTTIME flag ), it sends the start time to the clock component |
|
1037 // via OMX_SetConfig on OMX_IndexConfigTimeClientStartTime. This |
|
1038 // action communicates to the clock component the following information about the client’s |
|
1039 // data stream: |
|
1040 // - The stream is ready. |
|
1041 // - The starting timestamp of the stream |
|
1042 |
|
1043 // TODO Perhaps OMX_GetConfig can be done for client start time, after all |
|
1044 // the start times on each port have been stored. But for now this is not |
|
1045 // supported. |
|
1046 if(aEntry == EGetConfig) |
|
1047 { |
|
1048 return OMX_ErrorUnsupportedIndex; |
|
1049 } |
|
1050 |
|
1051 if(iMediaClockState.eState != OMX_TIME_ClockStateWaitingForStartTime) |
|
1052 { |
|
1053 return OMX_ErrorIncorrectStateOperation; |
|
1054 } |
|
1055 |
|
1056 OMX_TIME_CONFIG_TIMESTAMPTYPE* state = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr); |
|
1057 iMediaClockState.nWaitMask &= ~(1 << state->nPortIndex); // switch off bit |
|
1058 iStartTimesSet |= 1 << state->nPortIndex; // switch on bit |
|
1059 iStartTimes[state->nPortIndex] = state->nTimestamp; |
|
1060 |
|
1061 if(iMediaClockState.nWaitMask == 0) |
|
1062 { |
|
1063 // cancel timer so transition occurs immediately instead of waiting for a heartbeat |
|
1064 TRequestStatus* cancelStatus = &iCancelStatus; |
|
1065 iThread.RequestComplete(cancelStatus, KErrCancel); |
|
1066 } |
|
1067 |
|
1068 return OMX_ErrorNone; |
|
1069 } |
|
1070 |
|
1071 /** |
|
1072 * Sets the current media time to the specified value. |
|
1073 */ |
|
1074 void CClockSupervisor::UpdateMediaTime(TInt64 aMediaTime) |
|
1075 { |
|
1076 #ifdef _OMXIL_COMMON_DEBUG_TRACING_ON |
|
1077 OMX_TIME_CONFIG_TIMESTAMPTYPE ts; |
|
1078 HandleQueryCurrentMediaTime(EGetConfig, &ts); |
|
1079 DEBUG_PRINTF4(_L8("Clock::UpdateMediaTime=[%ld]currentmediaTime=<%d> MediaTime <%ld>"), ts.nTimestamp-aMediaTime,ts.nTimestamp, aMediaTime); |
|
1080 #endif // _OMXIL_COMMON_DEBUG_TRACING_ON |
|
1081 iMtc.iWallTimeBase = WallTime(); |
|
1082 iMtc.iMediaTimeBase = aMediaTime; |
|
1083 iPendingRequestQue.RecalculateAndReorder(iMtc); |
|
1084 |
|
1085 TRequestStatus* status = &iCancelStatus; |
|
1086 iThread.RequestComplete(status, KErrCancel); |
|
1087 } |
|
1088 |
|
1089 /** |
|
1090 * |
|
1091 * |
|
1092 */ |
|
1093 OMX_ERRORTYPE CClockSupervisor::HandleGetSetTimeScale(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
1094 { |
|
1095 // The IL client queries and sets the media clock’s scale via the |
|
1096 // OMX_IndexConfigTimeScale configuration, passing structure |
|
1097 // OMX_TIME_CONFIG_SCALETYPE |
|
1098 |
|
1099 // We should already have the mutex! |
|
1100 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
1101 |
|
1102 OMX_TIME_CONFIG_SCALETYPE* sT = static_cast<OMX_TIME_CONFIG_SCALETYPE*>(aPassedStructPtr); |
|
1103 |
|
1104 if (EGetConfig == aEntry) |
|
1105 { |
|
1106 sT->xScale = iMtc.iScaleQ16; |
|
1107 } |
|
1108 else |
|
1109 { // ESetConfig |
|
1110 |
|
1111 if(sT->xScale == iMtc.iScaleQ16) |
|
1112 { |
|
1113 // do not broadcast update if the scale changed to the same value |
|
1114 // IL client causes the scale change but only IL components receive the notification |
|
1115 return OMX_ErrorNone; |
|
1116 } |
|
1117 iMtc.SetScaleQ16(sT->xScale, WallTime()); |
|
1118 |
|
1119 // Reorder before sending notifications |
|
1120 iPendingRequestQue.RecalculateAndReorder(iMtc); |
|
1121 |
|
1122 // Indicate to clients a scale change |
|
1123 // The buffer payload is written here then copied to all clients' buffers |
|
1124 // It should be noted that as this is happening across all ports, time can pass |
|
1125 // making nMediaTimestamp and nWallTimeAtMediaTime inaccurate. Since at present we do |
|
1126 // not recover buffer exhaustion scenarios, it is assumed that the messaging time is short |
|
1127 // thus we do not recalculate the time. |
|
1128 |
|
1129 OMX_TIME_MEDIATIMETYPE update; |
|
1130 update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
1131 update.nVersion = TOmxILSpecVersion(); |
|
1132 update.nClientPrivate = NULL; |
|
1133 update.eUpdateType = OMX_TIME_UpdateScaleChanged; |
|
1134 update.xScale = iMtc.iScaleQ16; |
|
1135 update.eState = iMediaClockState.eState; |
|
1136 update.nMediaTimestamp = iMtc.iMediaTimeBase; |
|
1137 update.nWallTimeAtMediaTime = iMtc.iWallTimeBase; |
|
1138 update.nOffset = 0; |
|
1139 |
|
1140 BroadcastUpdate(update); |
|
1141 |
|
1142 // Signal the Timer thread as it may need to fulfill all requests on a direction change, |
|
1143 // of fulfill some requests as we have moved forward in time |
|
1144 TRequestStatus* cancelStatus = &iCancelStatus; |
|
1145 iThread.RequestComplete(cancelStatus, KErrCancel); |
|
1146 //****************************************** |
|
1147 } |
|
1148 return OMX_ErrorNone; |
|
1149 } |
|
1150 |
|
1151 |
|
1152 /** |
|
1153 * |
|
1154 * |
|
1155 */ |
|
1156 OMX_ERRORTYPE CClockSupervisor::HandleGetSetClockState(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
1157 { |
|
1158 // An OMX_GetConfig execution using index OMX_IndexConfigTimeClockState |
|
1159 // and structure OMX_TIME_CONFIG_CLOCKSTATETYPE queries the current clock state. |
|
1160 // An OMX_SetConfig execution using index OMX_IndexConfigTimeClockState |
|
1161 // and structure OMX_TIME_CONFIG_CLOCKSTATETYPE commands the clock |
|
1162 // component to transition to the given state, effectively providing the IL client a |
|
1163 // mechanism for starting and stopping the media clock. |
|
1164 // |
|
1165 // Upon receiving OMX_SetConfig from the IL client that requests a transition to the |
|
1166 // given state, the clock component will do the following: |
|
1167 // |
|
1168 // - OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all |
|
1169 // pending media time requests, clear and all client start times, and transition to the |
|
1170 // stopped state. This transition is valid from all other states. |
|
1171 // |
|
1172 // - OMX_TIME_ClockStateRunning: Immediately start the media clock using the given |
|
1173 // start time and offset, and transition to the running state. This transition is valid from |
|
1174 // all other states. |
|
1175 // |
|
1176 // - OMX_TIME_WaitingForStartTime: Transition immediately to the waiting state, wait |
|
1177 // for all clients specified in nWaitMask to report their start time, start the media clock |
|
1178 // using the minimum of all client start times and transition to |
|
1179 // OMX_TIME_ClockStateRunning. This transition is only valid from the |
|
1180 // OMX_TIME_ClockStateStopped state. |
|
1181 |
|
1182 // We should already have the mutex! |
|
1183 __ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld)); |
|
1184 |
|
1185 OMX_ERRORTYPE ret = OMX_ErrorNone; |
|
1186 |
|
1187 OMX_TIME_CONFIG_CLOCKSTATETYPE* const &clkState |
|
1188 = static_cast<OMX_TIME_CONFIG_CLOCKSTATETYPE*>(aPassedStructPtr); |
|
1189 |
|
1190 if (ESetConfig == aEntry) |
|
1191 { |
|
1192 if (iMediaClockState.eState == clkState->eState) |
|
1193 { |
|
1194 // Already in this state! |
|
1195 return OMX_ErrorSameState; |
|
1196 } |
|
1197 if (clkState->eState != OMX_TIME_ClockStateStopped && |
|
1198 clkState->eState != OMX_TIME_ClockStateWaitingForStartTime && |
|
1199 clkState->eState != OMX_TIME_ClockStateRunning) |
|
1200 { |
|
1201 return OMX_ErrorUnsupportedSetting; |
|
1202 } |
|
1203 |
|
1204 // need buffers to notify clock state changes, so require to be in Executing |
|
1205 if(!iProcessingFunction.IsExecuting()) |
|
1206 { |
|
1207 return OMX_ErrorIncorrectStateOperation; |
|
1208 } |
|
1209 |
|
1210 switch (clkState->eState) |
|
1211 { |
|
1212 case OMX_TIME_ClockStateStopped: |
|
1213 { |
|
1214 DoTransitionToStoppedState(); |
|
1215 break; |
|
1216 } |
|
1217 case OMX_TIME_ClockStateWaitingForStartTime: |
|
1218 { |
|
1219 // Can't go into this state from Running state |
|
1220 if (OMX_TIME_ClockStateRunning == iMediaClockState.eState) |
|
1221 { |
|
1222 ret = OMX_ErrorIncorrectStateTransition; |
|
1223 break; |
|
1224 } |
|
1225 // Waiting for no ports makes no sense. Also don't allow wait on ports we don't have. |
|
1226 if (clkState->nWaitMask == 0 || clkState->nWaitMask >= 1 << KNumPorts) |
|
1227 { |
|
1228 ret = OMX_ErrorUnsupportedSetting; |
|
1229 break; |
|
1230 } |
|
1231 DoTransitionToWaitingState(clkState->nWaitMask); |
|
1232 break; |
|
1233 } |
|
1234 case OMX_TIME_ClockStateRunning: |
|
1235 { |
|
1236 // set media time to that passed by the IL client |
|
1237 iMtc.iWallTimeBase = WallTime(); |
|
1238 iMtc.iMediaTimeBase = clkState->nStartTime; |
|
1239 // changed time base so pending trigger wall times may be different |
|
1240 iPendingRequestQue.RecalculateAndReorder(iMtc); |
|
1241 DoTransitionToRunningState(); |
|
1242 // wake the timer thread to reset timer or service pending updates |
|
1243 TRequestStatus* statusPtr = &iCancelStatus; |
|
1244 iThread.RequestComplete(statusPtr, KErrCancel); |
|
1245 |
|
1246 break; |
|
1247 } |
|
1248 // default condition already checked before Executing test |
|
1249 } |
|
1250 } |
|
1251 else |
|
1252 { |
|
1253 clkState->eState = iMediaClockState.eState; |
|
1254 } |
|
1255 |
|
1256 return ret; |
|
1257 } |
|
1258 |
|
1259 /** |
|
1260 * |
|
1261 * |
|
1262 */ |
|
1263 OMX_ERRORTYPE CClockSupervisor::HandleGetSetActiveRefClock(TEntryPoint aEntry, OMX_PTR aPassedStructPtr) |
|
1264 { |
|
1265 // The IL client controls which reference clock the clock component uses (if any) via the |
|
1266 // OMX_IndexConfigTimeActiveRefClock configuration and structure OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE |
|
1267 |
|
1268 // don't need the mutex here as just getting/setting one machine word |
|
1269 |
|
1270 OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE& ref = *static_cast<OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE*>(aPassedStructPtr); |
|
1271 |
|
1272 if (ESetConfig == aEntry) |
|
1273 { |
|
1274 if (ref.eClock != OMX_TIME_RefClockAudio && |
|
1275 ref.eClock != OMX_TIME_RefClockVideo && |
|
1276 ref.eClock != OMX_TIME_RefClockNone) |
|
1277 { |
|
1278 return OMX_ErrorUnsupportedSetting; |
|
1279 } |
|
1280 iActiveRefClock = ref.eClock; |
|
1281 } |
|
1282 else // EGetConfig |
|
1283 { |
|
1284 ref.eClock = iActiveRefClock; |
|
1285 } |
|
1286 return OMX_ErrorNone; |
|
1287 } |
|
1288 |
|
1289 void CClockSupervisor::BroadcastUpdate(const OMX_TIME_MEDIATIMETYPE& aUpdate) |
|
1290 { |
|
1291 // notify state change on all enabled ports |
|
1292 for(TInt portIndex = 0; portIndex < KNumPorts; portIndex++) |
|
1293 { |
|
1294 if(iProcessingFunction.PortEnabled(portIndex)) |
|
1295 { |
|
1296 OMX_BUFFERHEADERTYPE* buffer = iProcessingFunction.AcquireBuffer(portIndex); |
|
1297 if(buffer == NULL) |
|
1298 { |
|
1299 // starved of buffers! |
|
1300 iThreadRunning = EFalse; |
|
1301 iProcessingFunction.InvalidateComponent(); |
|
1302 return; |
|
1303 } |
|
1304 OMX_TIME_MEDIATIMETYPE& mT = *reinterpret_cast<OMX_TIME_MEDIATIMETYPE*>(buffer->pBuffer); |
|
1305 mT = aUpdate; |
|
1306 buffer->nOffset = 0; |
|
1307 buffer->nFilledLen = sizeof(OMX_TIME_MEDIATIMETYPE); |
|
1308 iProcessingFunction.SendBuffer(buffer); |
|
1309 } |
|
1310 } |
|
1311 } |
|
1312 |
|
1313 void CClockSupervisor::ReportClockThreadPanic() |
|
1314 { |
|
1315 iThreadRunning = EFalse; |
|
1316 iProcessingFunction.InvalidateComponent(); |
|
1317 } |
|
1318 /** |
|
1319 * Adjusts the media time scale. |
|
1320 * The wall/media time bases are updated so there is no instantaneous change to media time. |
|
1321 * iInverseScaleQ16 is also recalculated. |
|
1322 */ |
|
1323 void TMediaTimeContext::SetScaleQ16(TInt32 aScaleQ16, TInt64 aWallTimeNow) |
|
1324 { |
|
1325 TInt64 mediaTimeNow = ((aWallTimeNow - iWallTimeBase) * iScaleQ16 >> 16) + iMediaTimeBase; |
|
1326 iWallTimeBase = aWallTimeNow; |
|
1327 iMediaTimeBase = mediaTimeNow; |
|
1328 iScaleQ16 = aScaleQ16; |
|
1329 |
|
1330 // calculate inverse scale |
|
1331 // 1.0/scale in Q16 format becomes 2^32/scaleQ16 |
|
1332 // values of -1 and +1 will cause overflow and are clipped |
|
1333 // division by zero also yields KMaxTInt (2^31 - 1) |
|
1334 if(iScaleQ16 == 0 || iScaleQ16 == 1) |
|
1335 { |
|
1336 iInverseScaleQ16 = 0x7FFFFFFF; |
|
1337 } |
|
1338 else if(iScaleQ16 == -1) |
|
1339 { |
|
1340 iInverseScaleQ16 = 0x80000000; |
|
1341 } |
|
1342 else |
|
1343 { |
|
1344 iInverseScaleQ16 = static_cast<TInt32>(0x100000000LL / iScaleQ16); |
|
1345 } |
|
1346 } |
|
1347 |
|
1348 |
|
1349 TRequestDeltaQue::TRequestDeltaQue() |
|
1350 : iHead(0), |
|
1351 iCount(0) |
|
1352 { |
|
1353 // do nothing |
|
1354 } |
|
1355 |
|
1356 void TRequestDeltaQue::Add(TMediaRequest* aElement, TInt64 aDelta) |
|
1357 { |
|
1358 CHECK_DEBUG(); |
|
1359 |
|
1360 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1361 Panic(ERequestQueueCorrupt)); |
|
1362 |
|
1363 if (!iHead) |
|
1364 { |
|
1365 iHead = aElement; |
|
1366 aElement->iPrev = aElement; |
|
1367 aElement->iNext = aElement; |
|
1368 } |
|
1369 else // set the new element links |
|
1370 { |
|
1371 TBool front(EFalse); |
|
1372 TMediaRequest* item(NULL); |
|
1373 front = InsertBeforeFoundPosition (aDelta, item); |
|
1374 |
|
1375 if (front) |
|
1376 { |
|
1377 // insert infront BEFORE as we have the lesser delta |
|
1378 // set up the element |
|
1379 aElement->iPrev = item->iPrev; |
|
1380 aElement->iNext = item; |
|
1381 |
|
1382 // set up the item before in the list |
|
1383 item->iPrev->iNext = aElement; |
|
1384 |
|
1385 // set up the item after in the list |
|
1386 item->iPrev = aElement; |
|
1387 |
|
1388 // setup the new head |
|
1389 iHead = aElement; |
|
1390 } |
|
1391 else |
|
1392 { |
|
1393 // insert this element AFTER the item in the list |
|
1394 // set up the element |
|
1395 aElement->iPrev = item; |
|
1396 aElement->iNext = item->iNext; |
|
1397 |
|
1398 // set up the item before in the list |
|
1399 item->iNext = aElement; |
|
1400 |
|
1401 // set up the item after in the list |
|
1402 aElement->iNext->iPrev = aElement; |
|
1403 } |
|
1404 } |
|
1405 iCount++; |
|
1406 |
|
1407 #ifdef _OMXIL_COMMON_DEBUG_TRACING_ON |
|
1408 // print the trigger times in debug mode |
|
1409 DbgPrint(); |
|
1410 #endif |
|
1411 |
|
1412 CHECK_DEBUG(); |
|
1413 } |
|
1414 |
|
1415 TBool TRequestDeltaQue::InsertBeforeFoundPosition(TInt64 aDelta, TMediaRequest*& aItem) const |
|
1416 { |
|
1417 CHECK_DEBUG(); |
|
1418 |
|
1419 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1420 Panic(ERequestQueueCorrupt)); |
|
1421 |
|
1422 // search for the position where to insert |
|
1423 // and insert after this |
|
1424 |
|
1425 aItem = iHead->iPrev; // tail |
|
1426 |
|
1427 // start from the end and linearly work backwards |
|
1428 while (aItem->iTriggerWallTime > aDelta && aItem != iHead) |
|
1429 { |
|
1430 aItem = aItem->iPrev; |
|
1431 } |
|
1432 |
|
1433 // indicates that we insert before the item and not after it |
|
1434 if (aItem == iHead && aItem->iTriggerWallTime > aDelta) |
|
1435 { |
|
1436 return ETrue; |
|
1437 } |
|
1438 |
|
1439 // no CHECK_DEBUG required as this method is const |
|
1440 |
|
1441 return EFalse; |
|
1442 } |
|
1443 |
|
1444 /** |
|
1445 * If scale changes, the iTriggerWallTimes must be recalculated. |
|
1446 * |
|
1447 * In addition, because offset is not affected by scale, it is possible for |
|
1448 * the order of the elements to change. This event is assumed to be rare, and |
|
1449 * when it does occur we expect the list to remain 'roughly sorted' requiring |
|
1450 * few exchanges. |
|
1451 * |
|
1452 * So we choose ** bubble sort **. |
|
1453 * |
|
1454 * Time recalculation is merged with the first pass of bubble sort. Times are |
|
1455 * recalculated in the first iteration only. Swaps can occur as necessary in |
|
1456 * all iterations. We expect that in most cases there will only be one pass |
|
1457 * with no swaps. |
|
1458 * |
|
1459 * Note that bubble sort would be worst-case complexity if reversing the list |
|
1460 * due to a time direction change. In such cases future requests complete |
|
1461 * immediately (because they are now in the past). So we do not sort at at all |
|
1462 * in this case. |
|
1463 */ |
|
1464 void TRequestDeltaQue::RecalculateAndReorder(TMediaTimeContext& aMtc) |
|
1465 { |
|
1466 CHECK_DEBUG(); |
|
1467 |
|
1468 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1469 Panic(ERequestQueueCorrupt)); |
|
1470 |
|
1471 if(iCount == 0) |
|
1472 { |
|
1473 // nothing to do |
|
1474 return; |
|
1475 } |
|
1476 // note if there is 1 item there is no reorder but we do need to recalculate |
|
1477 |
|
1478 TBool swapped(EFalse); |
|
1479 TBool deltaCalculated(EFalse); |
|
1480 |
|
1481 do |
|
1482 { |
|
1483 // start from end of queue |
|
1484 swapped = EFalse; |
|
1485 TMediaRequest* item(iHead->iPrev); // tail |
|
1486 |
|
1487 if (!deltaCalculated) |
|
1488 { |
|
1489 // calculate the tails new delta |
|
1490 item->iTriggerWallTime = |
|
1491 ((item->iMediaTime - aMtc.iMediaTimeBase) * aMtc.iInverseScaleQ16 >> 16) |
|
1492 + aMtc.iWallTimeBase - item->iOffset; |
|
1493 } |
|
1494 |
|
1495 while (item != iHead) |
|
1496 { |
|
1497 TMediaRequest* swap = item->iPrev; |
|
1498 if (!deltaCalculated) |
|
1499 { |
|
1500 // recalculate the Prev item delta |
|
1501 swap->iTriggerWallTime = |
|
1502 ((swap->iMediaTime - aMtc.iMediaTimeBase) * aMtc.iInverseScaleQ16 >> 16) |
|
1503 + aMtc.iWallTimeBase - swap->iOffset; |
|
1504 } |
|
1505 |
|
1506 if (swap->iTriggerWallTime > item->iTriggerWallTime) |
|
1507 { |
|
1508 // switch (swap, item) for (item, swap) |
|
1509 item->Deque(); |
|
1510 item->AddBefore(swap); |
|
1511 if(swap == iHead) |
|
1512 { |
|
1513 iHead = item; |
|
1514 } |
|
1515 |
|
1516 swapped = ETrue; |
|
1517 } |
|
1518 else |
|
1519 { |
|
1520 // move along list |
|
1521 item = item->iPrev; |
|
1522 } |
|
1523 |
|
1524 } // while |
|
1525 |
|
1526 // after the first pass of the queue, all deltas calculated |
|
1527 deltaCalculated = ETrue; |
|
1528 |
|
1529 } while (swapped); |
|
1530 |
|
1531 #ifdef _OMXIL_COMMON_DEBUG_TRACING_ON |
|
1532 DbgPrint(); |
|
1533 #endif |
|
1534 |
|
1535 CHECK_DEBUG(); |
|
1536 } |
|
1537 |
|
1538 |
|
1539 TMediaRequest* TRequestDeltaQue::RemoveFirst() |
|
1540 { |
|
1541 CHECK_DEBUG(); |
|
1542 |
|
1543 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1544 Panic(ERequestQueueCorrupt)); |
|
1545 |
|
1546 TMediaRequest* item = NULL; |
|
1547 |
|
1548 // empty? |
|
1549 if (!iHead) |
|
1550 { |
|
1551 return NULL; |
|
1552 } |
|
1553 else |
|
1554 // only one element? |
|
1555 if (1 == iCount) |
|
1556 { |
|
1557 item = iHead; |
|
1558 iHead = NULL; |
|
1559 } |
|
1560 else |
|
1561 { |
|
1562 item = iHead; |
|
1563 item->iPrev->iNext = item->iNext; |
|
1564 item->iNext->iPrev = item->iPrev; |
|
1565 |
|
1566 // setup the new head |
|
1567 iHead = item->iNext; |
|
1568 } |
|
1569 |
|
1570 iCount--; |
|
1571 |
|
1572 CHECK_DEBUG(); |
|
1573 |
|
1574 return item; |
|
1575 } |
|
1576 |
|
1577 TBool TRequestDeltaQue::FirstDelta(TInt64& aDelta) const |
|
1578 { |
|
1579 CHECK_DEBUG(); |
|
1580 |
|
1581 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1582 Panic(ERequestQueueCorrupt)); |
|
1583 |
|
1584 if (!iHead) |
|
1585 { |
|
1586 return EFalse; |
|
1587 } |
|
1588 |
|
1589 aDelta = iHead->iTriggerWallTime; |
|
1590 return ETrue; |
|
1591 } |
|
1592 |
|
1593 TBool TRequestDeltaQue::IsEmpty() const |
|
1594 { |
|
1595 __ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)), |
|
1596 Panic(ERequestQueueCorrupt)); |
|
1597 |
|
1598 return (!iHead); |
|
1599 } |
|
1600 |
|
1601 TUint TRequestDeltaQue::Count() const |
|
1602 { |
|
1603 return iCount; |
|
1604 } |
|
1605 |
|
1606 void TMediaRequest::Deque() |
|
1607 { |
|
1608 iPrev->iNext = iNext; |
|
1609 iNext->iPrev = iPrev; |
|
1610 } |
|
1611 |
|
1612 void TMediaRequest::AddBefore(TMediaRequest* x) |
|
1613 { |
|
1614 x->iPrev->iNext = this; |
|
1615 iPrev = x->iPrev; |
|
1616 iNext = x; |
|
1617 x->iPrev = this; |
|
1618 } |
|
1619 |
|
1620 #ifdef _DEBUG |
|
1621 |
|
1622 /** |
|
1623 * Checks the linked list for consistency. |
|
1624 */ |
|
1625 void TRequestDeltaQue::DbgCheck() const |
|
1626 { |
|
1627 if(iCount == 0) |
|
1628 { |
|
1629 __ASSERT_DEBUG(iHead == NULL, Panic(ERequestQueueCorrupt)); |
|
1630 } |
|
1631 else |
|
1632 { |
|
1633 TMediaRequest* last = iHead; |
|
1634 TInt index = iCount - 1; |
|
1635 while(index-- > 0) |
|
1636 { |
|
1637 TMediaRequest* current = last->iNext; |
|
1638 __ASSERT_DEBUG(current->iPrev == last, Panic(ERequestQueueCorrupt)); |
|
1639 __ASSERT_DEBUG(current->iTriggerWallTime >= last->iTriggerWallTime, Panic(ERequestQueueUnordered)); |
|
1640 last = current; |
|
1641 } |
|
1642 __ASSERT_DEBUG(last->iNext == iHead, Panic(ERequestQueueCorrupt)); |
|
1643 __ASSERT_DEBUG(iHead->iPrev == last, Panic(ERequestQueueCorrupt)); |
|
1644 } |
|
1645 } |
|
1646 |
|
1647 #endif |
|
1648 |
|
1649 #ifdef _OMXIL_COMMON_DEBUG_TRACING_ON |
|
1650 |
|
1651 void TRequestDeltaQue::DbgPrint() const |
|
1652 { |
|
1653 TMediaRequest* x = iHead; |
|
1654 TBuf8<256> msg; |
|
1655 msg.Append(_L8("pending times: ")); |
|
1656 for(TInt index = 0; index < iCount; index++) |
|
1657 { |
|
1658 if(index > 0) |
|
1659 { |
|
1660 msg.Append(_L8(", ")); |
|
1661 } |
|
1662 msg.AppendFormat(_L8("%ld"), x->iTriggerWallTime); |
|
1663 x = x->iNext; |
|
1664 } |
|
1665 DEBUG_PRINTF(msg); |
|
1666 } |
|
1667 |
|
1668 #endif |