// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include "MMFCodecBaseDefinitions.h"
#include "MMFAudioCodecBase.h"
#include <mmf/common/mmfpaniccodes.h>
// Base of Audio codecs
// These T Classes are "wrapped" by derived MMFCodecs, not exposed directly.
void Panic(TInt aPanicCode)
{
_LIT(KMMFCodecBaseDefinitionsPanicCategory, "MMFCodecBaseDefinitions");
User::Panic(KMMFCodecBaseDefinitionsPanicCategory, aPanicCode);
}
void TMMFImaAdpcmBaseCodecOld::ResetBuffer()
{
iBufferStep = ETrue;
iBuffer = 0;
}
TBool TMMFImaAdpcmBaseCodecOld::OutputStep()
{
return !iBufferStep;
}
void TMMFImaAdpcmTo16PcmCodecOld::Convert(TUint8* aSrc, TUint8* aDst, TInt aSamples)
{
TInt delta; // Current adpcm output value
TInt step; // Stepsize
TInt valpred; // Predicted value
TInt vpdiff; // Current change to valpred
TInt index; // Current step change index
TInt channelCount=16;//for stereo only
aSamples*=iChannels;
//Read first sample and index from block header
iState[0].iPredicted = *aSrc++;
iState[0].iPredicted |= STATIC_CAST(TInt16, ((*aSrc++) << 8));
iState[0].iIndex = *aSrc++;
aSrc++; //skip reserved header byte
valpred = iState[0].iPredicted;
index = iState[0].iIndex;
TUint8* dst=aDst;
//Write first sample to dest
*aDst++ = STATIC_CAST( TUint8, valpred);
*aDst++ = STATIC_CAST( TUint8, valpred >> 8);
dst += 2;
aSamples --;
if (iChannels==2)
{
iState[1].iPredicted = *aSrc++;
iState[1].iPredicted |= STATIC_CAST(TInt16, ((*aSrc++) << 8));
iState[1].iIndex = *aSrc++;
aSrc++;
*aDst++ = STATIC_CAST( TUint8, iState[1].iPredicted);
*aDst++ = STATIC_CAST( TUint8, iState[1].iPredicted >> 8);
dst += 2;
aSamples --;
}
for ( ; aSamples > 0 ; aSamples-- )
{
// Step 1 - get the delta value
if (iBufferStep)
{
iBuffer = *aSrc++;
delta = iBuffer & 0xf;
}
else
{
delta = (iBuffer >> 4) & 0xf;
}
iBufferStep = !iBufferStep;
ASSERT(index >= 0);
step = iStepSizeTable[index];
vpdiff = step>>3;
if ( delta & 4 )
vpdiff += step;
if ( delta & 2 )
vpdiff += step>>1;
if ( delta & 1 )
vpdiff += step>>2;
if ( delta & 8 )
valpred -= vpdiff;
else
valpred += vpdiff;
if ( valpred > (KClamp - 1) )
valpred = (KClamp - 1);
else if ( valpred < -KClamp )
valpred = -KClamp;
index += iIndexTable[delta];
if ( index < 0 )
index = 0;
if ( index > KMaxImaAdpcmTableEntries )
index = KMaxImaAdpcmTableEntries;
*dst++ = STATIC_CAST( TUint8, valpred&KAndMask8bit);
*dst++ = STATIC_CAST( TUint8, (valpred>>8)&KAndMask8bit);
if (iChannels==2)
{
dst+=2;
if (--channelCount == 8)
{
dst=aDst+2; //right channel
iState[0].iPredicted=STATIC_CAST(TInt16, valpred);
iState[0].iIndex=STATIC_CAST(TUint8,index);
valpred = iState[1].iPredicted;
index = iState[1].iIndex;
}
else
{
if (!channelCount)
{
aDst+=32;
dst=aDst;
channelCount=16;
iState[1].iPredicted=STATIC_CAST(TInt16, valpred);
iState[1].iIndex=STATIC_CAST(TUint8, index);
valpred = iState[0].iPredicted;
index = iState[0].iIndex;
}
}
}
}
if (iChannels==1)
{
iState[0].iPredicted=STATIC_CAST(TInt16,valpred);
iState[0].iIndex=STATIC_CAST(TUint8,index);
}
}
void TMMF16PcmToImaAdpcmCodecOld::Convert(TUint8* aSrc, TUint8* aDst, TInt aSamples)
{
TInt val; // Current input sample value
TInt sign; // Current adpcm sign bit
TInt delta; // Current adpcm output value
TInt diff; // Difference between val and valprev
TInt step; // Stepsize
TInt valpred; // Predicted value
TInt vpdiff; // Current change to valpred
TInt index; // Current step change index
TInt16* srcPtr=REINTERPRET_CAST(TInt16*, aSrc);
TInt16* src=srcPtr;
TInt bufferCount=16;//for stereo only
if (iChannels==2)
{
aSamples*=2;
iBufferStep=ETrue;
}
iState[0].iPredicted = *aSrc++;
iState[0].iPredicted |= STATIC_CAST(TInt16, ((*aSrc++) << 8));
valpred = iState[0].iPredicted;
index = iState[0].iIndex;
ASSERT(index >= 0);
step = iStepSizeTable[index];
//Write block header
*aDst++ = STATIC_CAST( TUint8, valpred);
*aDst++ = STATIC_CAST( TUint8, valpred >> 8);
*aDst++ = STATIC_CAST( TUint8, index);
*aDst++ = 0; //reserved byte
src++;
aSamples --;
if (iChannels==2)
{
iState[1].iPredicted = *aSrc++;
iState[1].iPredicted |= STATIC_CAST(TInt16, ((*aSrc++) << 8));
//Write header for second channel
*aDst++ = STATIC_CAST( TUint8, iState[1].iPredicted);
*aDst++ = STATIC_CAST( TUint8, iState[1].iPredicted >> 8);
*aDst++ = STATIC_CAST( TUint8, iState[1].iIndex);
*aDst++ = 0;
src ++;
aSamples --;
}
for (; aSamples > 0; aSamples--)
{
val = *src;
src += iChannels;
ASSERT(index >= 0);
step = iStepSizeTable[index];
// Step 1 - compute difference with previous value
diff = val - valpred;
sign = (diff < 0) ? 8 : 0;
if ( sign ) diff = (-diff);
// Step 2 - Divide and clamp
// Note:
// This code *approximately* computes:
// delta = diff*4/step;
// vpdiff = (delta+0.5)*step/4;
// but in shift step bits are dropped. The net result of this is
// that even if you have fast mul/div hardware you cannot put it to
// good use since the fixup would be too expensive.
//
delta = 0;
vpdiff = (step >> 3);
if ( diff >= step )
{
delta = 4;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 2;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 1;
vpdiff += step;
}
// Step 3 - Update previous value
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
// Step 4 - Clamp previous value to 16 bits
if ( valpred > KClamp - 1 )
valpred = KClamp - 1;
else if ( valpred < - KClamp )
valpred = - KClamp;
// Step 5 - Assemble value, update index and step values
delta |= sign;
index += iIndexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
// Step 6 - Output value
if (iBufferStep)
iBuffer = delta & 0x0f;
else
*aDst++ = STATIC_CAST( TInt8, ((delta << 4) & 0xf0) | iBuffer);
iBufferStep = !iBufferStep;
if (iChannels==2)
{
if (--bufferCount==8)
{
src=srcPtr+1; //right channel
iState[0].iPredicted = STATIC_CAST(TInt16, valpred);
iState[0].iIndex = STATIC_CAST(TUint8, index);
valpred = iState[1].iPredicted;
index = iState[1].iIndex;
}
else
{
if (!bufferCount)
{
iState[1].iPredicted = STATIC_CAST(TInt16, valpred);
iState[1].iIndex = STATIC_CAST(TUint8, index);
valpred = iState[0].iPredicted;
index = iState[0].iIndex;
bufferCount=16;
srcPtr+=16;//32bytes
src=srcPtr;
}
}
}
}
if (iChannels==1)
{
iState[0].iPredicted = STATIC_CAST(TInt16, valpred);
iState[0].iIndex = STATIC_CAST(TUint8, index);
}
}
// IMA-ADPCM step variation table
const TInt TMMFImaAdpcmBaseCodecOld::iIndexTable[16] =
{
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
};
const TInt TMMFImaAdpcmBaseCodecOld::iStepSizeTable[89] =
{
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};